

ITTC Symbols and Terminology List

Alphabetic

Version 2017

September 2017

Supersedes all previous versions

Updated by the 28th ITTC Quality Systems Group

ITTC Symbols		
Version 2017		

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
A	MS	(<i>fundamental, statistical, stochastic</i>) Average, sample mean		
Α	AP	(fluid mechanics, lifting sur- faces) Projected area	$b c_M$	m ²
Α	A, AR, AREA	(ships, basic quantities) Area in general		m ²
A		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) As- sumed centre of gravity above keel used for cross curves of stability		1
A _O	AO	(ships, propulsor perfor- mance, propulsor geometry) Propeller disc area	$\pi D^2 / 4$	m ²
A_n, A_6		(ships, propulsor geometry, water jets) Nozzle discharge area		m ²
AB	XAB	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of buoy- ancy from aft perpendicular	Distance of centre of buoy- ancy from aft perpendicular	m
$A_{ m BL}$	ABL	(ships, hull geometry) Area of bulbous bow in longitudi- nal plane	The area of the ram projected on the middle line plane for- ward of the fore perpendicu- lar	m ²
$A_{ m BT}$	ABT	(ships, hull geometry) Area of transverse cross-section of a bulbous bow (full area port and star-board)	The cross sectional area at the fore perpendicular. Where the water lines are rounded so as to terminate on the forward perpendicular A_{BT} is measured by continu- ing the area curve forward to the perpendicular, ignoring the final rounding;	m ²
A _C	AC	(ships, appendage geome- try) Area under cut-up	,	m ²
$A_{ m C}$	CUA	(ACV and SES) Cushion area	Projected area of ACV or SES cushion on water sur- face	m ²

ITTC Symbols	
--------------	--

Version 2017

TTC Compu Symbol Symbol	ter Name	Definition or Explanation	SI- Unit
----------------------------	----------	---------------------------	-------------

Ac		<i>(seakeeping, large ampli- tude motions capsizing)</i> Area of deck available to crew		m²
A _D	AD	(ships, propulsor geometry) Developed blade area	D eveloped blade area of a screw propeller outside the boss or hub	m ²
$A_{\rm DEN}$	ADEN	<i>(ships, propulsor geometry)</i> Duct entry area		m ²
$A_{\rm DEX}$	ADEX	<i>(ships, propulsor geometry)</i> Duct exit area		m ²
$A_{ m E}$	AE	(ships, propulsor geometry) Expanded blade area	Expanded blade area of a screw propeller outside the boss or hub	m ²
ĀF	XAF	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Dis- tance of the centre of flota- tion from aft perpendicular		m
$A_{ m F}$	AFO	(hydrofoil boats) Foil area (general)	Foil area in horizontal plane	m^2
$A_{ m FB}$	AFB, AFB0	(<i>ships, appendage geometry, ships, manoeuvrability</i>) Projected area of bow fins		m ²
$A_{ m FE}$	AFE	(hydrofoil boats) Emerged area of foil		m ²
$A_{ m FF}$	ASFF	(hydrofoil boats) Sub- merged area of front foil		m ²
$A_{ m FR}$	AFR	(ships, appendage geome- try) Frontal area	Projected frontal area of an appendage	m ²
$A_{ m FS}$	AFS, AFST	(<i>ships, appendage geometry,</i> <i>seakeeping</i>) Projected area of stern fins		m ²
$A_{\rm FS}$	AFS	(hydrofoil boats) Sub- merged foil area		m ²
A _{FST0}	AFSTO	<i>(hydrofoil boats)</i> Sub- merged foil plan area at take-off speed		m ²
$A_{ m FT}$	AFT	<i>(hydrofoil boats)</i> Total foil plan area		m ²
\overline{AG}_{L}	XAG	<i>(seakeeping, large ampli- tude motions capsizing)</i> Longitudinal centre of grav- ity from aft perpendicular	Distance of centre of gravity from aft perpendicular	m

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$\overline{AG}_{\mathrm{T}}$	YAG	<i>(seakeeping, large ampli- tude motions capsizing)</i> Transverse distance from as- sumed centre of gravity A, to actual centre of gravity G		m
\overline{AG}_{V}	ZAG	(seakeeping, large ampli- tude motions capsizing) Vertical distance from as- sumed centre of gravity A, to actual centre of gravity G		m
$A_{ m HL}$	AHLT	(ships, manoeuvrability) Lateral area of the hull	The area of the profile of the underwater hull of a ship when projected normally upon the longitudinal centre plane	m ²
AI	AIA	<i>(multi-hull vessels)</i> Strut- hull intersection area		m ²
A_{ij}	AM(I,J)	(solid body mechanics, in- ertial and hydro properties) Added mass coefficient in <i>i</i> th mode due to <i>j</i> th motion		1
Aj	ASJ	<i>(sailing vessels)</i> Area of jib or genoa		m ²
$A_{ m LK}$	ALK	(sailing vessels) Lateral area of keel		m ²
$A_{ m LT}$	ALT	(sailing vessels) Total lateral area of yacht		m ²
$A_{ m LV}$	AHLV	(ships, manoeuvrability, seakeeping, large amplitude motions capsizing)) Lateral area of hull above water		m ²
A_{M}	AM	(<i>ships, hull geometry</i>) Area of midship section	Midway between fore and aft perpendiculars	m ²
Am	ASM	<i>(sailing vessels)</i> Area of mainsail		m ²
$A_{ m N}$	ASN	<i>(sailing vessels)</i> Normalized sail area		m ²
A_n		(ships, propulsor geometry, water jets)Nozzle discharge area		m ²
Ap	AP	(ships, propulsor geometry) Projected blade area	Projected blade area of a screw propeller outside the boss or hub	m ²
A_{PB}	APB	Wetted Surface Area of Pod Main Body		m ²

Version 2017

TTC Computer	Name	Definition or	SI-
Symbol Symbol		Explanation	Unit

$A_{ m PBF}$	APBF	Wetted Surface Area of Bot- tom Fin		m ²
$A_{\rm PS}$	APS	Wetted Surface Area of Strut		m ²
$A_{ m R}$	ARU	<i>(ships, manoeuvrability)</i> To- tal lateral area of rudder		m ²
$A_{ m RF}$	AF	(ships, appendage geome- try) Lateral area of rudder flap		m ²
$A_{ m RL}$		(seakeeping, large ampli- tude motions capsizing) Pos- itive area under righting lever curve		m²
$A_{ m Rmov}$	ARMV	<i>(ships, manoeuvrability)</i> Lateral area of the movable part of rudder		m^2
$A_{ m RN}$	ARNO	<i>(ships, manoeuvrability)</i> Nominal lateral area of rud- der	$(A_{\rm R} + A_{\rm Rmov}) / 2$	m^2
$A_{ m RP}$	ARP	<i>(ships, appendage geome- try)</i> Lateral area of rudder in the propeller race		m ²
$A_{ m RT}$	ART	(ships, appendage geome- try) Total lateral area of rud- der	$A_{\rm RX} + A_{ m Rmov}$	m ²
A_{RX}	ARX	(<i>ships, appendage geome-</i> <i>try</i>) Lateral area of the fixed part of rudder		m ²
$A_{ m S}$	AS	(seakeeping, large ampli- tude motions capsizing, sail- ing vessels) Sail area in gen- eral, Area of sails in profile according to ISO 8666	(P E + I J) / 2	m ²
A _s		(ships, propulsor geometry, water jets) Cross sectional area at station s		m ²
$A_{ m SFR}$	ASFR	(hydrofoil boats) Sub- merged area of rear foil		m ²
Asi	ASI	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) At- tained subdivision index		1
A _{SK}	ASK	(ships, appendage geome- try) Projected skeg area		m ²

Version 2017

ITTCComputer SymbolNameDefinition or Explanation	SI- Unit
--	-------------

-			1	1
$A_{\rm SP}$	ASSP	(sailing vessels) Area of spinnaker		m ²
Ass	ASS	(hydrofoil boats) Sub- merged strut area		m ²
A _T	ATR	<i>(ships, hull geometry)</i> Area of transom (full area port and starboard)	Cross-sectional area of tran- som stern below the load wa- terline	m ²
$A_{ m V}$	AV	(ships, hull geometry sea- keeping, large amplitude motions capsizing) Pro- jected lateral area of the por- tion of the ship and deck cargo above the waterline – (IMO/IS, IMO/HSC'2000) Area exposed to wind	Area of portion of ship above waterline projected normally to the direction of relative wind	m ²
$A_{ m W}$	AW	(ships, hull geometry) Area of water-plane		m ²
$A_{ m WA}$	AWA	(ships, hull geometry) Area of water-plane aft of mid- ship		m ₂
$A_{ m WF}$	AWF	(ships, hull geometry) Area of water-plane forward of midship		m ²
A_{X}	AX	<i>(ships, hull geometry)</i> Area of maximum transverse section		m ²
\overline{AZ}	YAZ	(seakeeping, large ampli- tude motions, capsizing ships, hydrostatics, stability) Righting arm based on hori- zontal distance from as- sumed centre of gravity A, to Z	Generally tabulated in cross curves of stability	m
$A_{z\zeta}(\omega)$		<i>(ships, seakeeping)</i> Ampli- tude of frequency response function for translatory mo- tions	$z_a(\omega) / \zeta_a(\omega)$ or $z_a(\omega) / \eta_a(\omega)$	1
$A_{ heta\zeta}(\omega)$		(<i>ships, seakeeping</i>) Ampli- tude of frequency response function for rotary motions	$\Theta_{a}(\omega) / \zeta_{a}(\omega)$ or $\Theta_{a}(\omega) / (\omega^{2}/(g\zeta_{a}(\omega)))$	1
<i>a</i> , <i>a</i> ¹	AC, A1	(ships, basic quantities) Lin- ear or translatory accelera- tion	dv / dt	m/s ²

Version 2017

If ICComputer NameDefinition of ExplanationSI- Unit	ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
--	----------------	--------------------	------	------------------------------	-------------

-				-
a	ADMP	(fundamental, time and fre- quency domain quantity) Damping	<i>s^r</i> , in Laplace variable	1/s
a	RAUG	(ships, performance) Re- sistance augment fraction	$(T - R_{\mathrm{T}}) / R_{\mathrm{T}}$	1
a	ATT	(ships, unsteady propeller forces) Cylindrical coordi- nates	Cylindrical system with origin O and longitudinal <i>x</i> - axis as defined before; angu- lar <i>a</i> -(attitude)-coordinate, zero at 12 o'clock position, positive clockwise looking forward, <i>r</i> distance measured from the <i>x</i> -axis	
a		Half-width of a rectangular distribution	Half-width of a rectangular distribution of possible val- ues of input quantity X_i : $a = (a_+ - a)/2$	
a _D	ADR	(ships, propulsor geometry) Developed blade area ratio	$A_{\mathrm{D}}/A_{\mathrm{0}}$	1
$a_{ m E}$	ADE	(ships, propulsor geometry) Expanded blade area ratio	$A_{ m E}/A_0$	1
a _i	AT(I)	(ships, seakeeping) Atti- tudes of the floating system	i = 1, 2, 3, e.g. Euler angles of roll, pitch, and yaw, re- spectively	rad
ap	ADP	(ships, propulsor geometry) Projected blade area ratio	$A_{\mathrm{P}}/A_{\mathrm{0}}$	1
<i>a</i> +		Upper bound	Upper bound, or upper limit, of input quantity X_i :	
<i>a</i> .		Lower bound	Lower bound, or lower limit, of input quantity X_i :	

Version 2017

				,
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Indille	Explanation	Unit

В	B, BR	<i>(ships, basic quantities, hull geometry)</i> Breadth, Beam or breadth, moulded, of ships hull		m
В		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Cen- tre of buoyancy	Centroid of the underwater volume	
BB	BB	(<i>multi-hull vessels</i>) Box beam	Beam of main deck	m
B _C	BCU	(ACV and SES) Cushion beam	SES cushion beam measured between the side walls	m
B ^C	CIRCB	(<i>ships, hull geometry</i>) R.E. Froude's breadth coefficient	$B \land \nabla^{1/3}$	1
B _{CB}		<i>(seakeeping, large amplitude motions capsizing)</i> Beam be- tween centres of buoyancy of side hulls		m
$B_{ m FOA}$	BFOA	<i>(hydrofoil boats)</i> Maximum vessel breadth including foils		m
B _{ij}	DA(I,J)	(solid body mechanics, iner- tial and hydro properties) Damping coefficient in <i>i</i> th mode due to <i>i</i> th motion		
B_{LCG}	BLCG	<i>(planing, semi-displacement vessels)</i> Beam at longitudi- nal position of the centre of gravity	Breadth over spray strips measured at transverse sec- tion containing centre of gravity	m
$B_{ m M}$	ВМ	(<i>ships, hull geometry</i>) Breadth, moulded of mid- ship section at design water line		m
\overline{BM}	ZBM	(seakeeping, large amplitude motions capsizing) Trans- verse metacentre above cen- tre of buoyancy	Distance from the centre of buoyancy B to transverse metacentre M $\overline{BM} = \frac{I_{\rm T}}{\nabla} = \overline{KM} - \overline{KB}$	m
\overline{BM}_L	ZBML	(seakeeping, large amplitude motions capsizing) Longitu- dinal metacentre above cen- tre of buoyancy	$\overline{BM}_L = \overline{KM}_L - \overline{KB}$	m
Bo	BN	(fluid mechanics, flow pa- rameter) Boussinesq number	$V/(g R_{\rm H})^{1/2}$	1

B, b

Version 2017

				/
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	inaine	Explanation	Unit

B _{OA}	BOA	(sailing vessels) Beam, over- all		m
B_P	ВР	(ships, propulsor perfor- mance) Taylor's propeller coefficient based on deliv- ered horsepower (obsolete)	$n P_{D}^{\frac{1}{2}} / V_{A}^{2.5}$ with <i>n</i> in revs/min, P_{D} in horsepower, and V_{A} in kn	1
BPA	BPA	(planing, semi-displacement vessels) Mean breadth over chines	$A_{ m P}$ / $L_{ m P}$	m
$B_{\rm PC}$	BPC	(planing, semi-displacement vessels) Beam over chines	Beam over chines, excluding external spray strips	m
$B_{ m PT}$	BPT	(planing, semi-displacement vessels) Transom breadth	Breadth over chines at tran- som, excluding external spray strips	m
B_{PX}	BPX	(planing, semi-displacement vessels) Maximum breadth over chines	Maximum breadth over chines, excluding external spray strips	m
B _S	BS	<i>(multi-hull vessels)</i> Hull spacing	Distance between hull centre lines	m
B_{T}	BTR	(ships, hull geometry) Breadth, moulded of tran- som at design water line		m
$B_{\rm TV}$	BTUN	<i>(multi-hull vessels)</i> Tunnel width	Minimal distance of the demihulls at the waterline	m
B_U	BU	(ships, propulsor perfor- mance) Taylor's propeller coefficient based on thrust horsepower (obsolete)	$n P_{\rm T}^{\frac{1}{2}} / V_{\rm A}^{2.5}$ with <i>n</i> in revs/min, <i>P</i> _{\rm T} in horsepower, and <i>V</i> _{\rm A} in kn	1
$B_{ m WL}$	BWL	<i>(ships, hull geometry)</i> Maxi- mum moulded breadth at de- sign water line		m
$B_{ m WLT}$	BWLT	(ACV and SES) Total water- line breadth of SES	At the water line	m
B _X	BX	(ships, hull geometry) Breadth, moulded of maxi- mum section area at design water line		m
BM	ZBM	(<i>ships, hydrostatics, stabil-</i> <i>ity</i>) Transverse metacentre above centre of buoyancy	Distance from the centre of buoyancy B to the transverse metacentre M. $\overline{BM} = I_T / \nabla = \overline{KM} - \overline{KB}$	m
$\overline{BM_{L}}$	ZBML	(<i>ships, hydrostatics, stabil-</i> <i>ity</i>) Longitudinal metacentre above centre of buoyancy	$\overline{\mathrm{KM}_{\mathrm{L}}}$ - $\overline{\mathrm{KB}}$	

B, b

ITTC	Computer	Namo	Definition or	SI-
Symbol	Symbol	IName	Explanation	Unit
		(ships, hydrostatics, stabil-		
		ity, seakeeping, large ampli-		
		tude motions capsizing) Cen-		
b		tre of flotation of added		
		buoyancy layer or centre of		
		lost buoyancy of the flooded		
		volume		
		(seakeeping, large amplitude		
b		motions capsizing) Maxi-		m
		mum tank breadth		
		(environmental mechanics,	Sampling frequency divided	
b	В	waves) Bandwidth of spec-	by the number of transform	Hz
		tral resolution	points	
b	SD	(fluid mechanics, lifting sur-		m
υ	5r	faces) Wing or foil span		111
h	DCDE	(fluid mechanics, lifting sur-		
$\nu_{ m F}$	DSFF	<i>faces)</i> Flap span		111
ha	SDDI	(ships, manoeuvrability)	Maximum distance from	m
$\nu_{\rm R}$	SFKU	Rudder span	root to tip	111
how	SPRIME	(ships, manoeuvrability)		m
URM	SI KUME	Mean span of rudder		111
ha	BST	(hydrofoil boats) Span of		m
05	051	struts		111
hst	BSTT	(hydrofoil boats) Transverse		m
031	0011	horizontal distance of struts		
h_{w}	BSPW	(hydrofoil boats) Foil span		m
0		wetted		
			Upper bound, or upper limit,	
b_{\pm}		Upper bound of the deviation	of the deviation of input	
			quantity X_i from its estimate	
			$x_{i:} b_+ = a_+ - x_i$	
			Lower bound, or lower limit,	
b.		Lower bound of the deviation	of the deviation of input	
			quantity X_i from its estimate	
			$x_{i:} b_{-} = x_{i} - a_{-}$	

Version 2017

				-,-
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

С	CR	(fundamental, statistical, sto- chastic) Population covari-		
С	FF(2)	ance (ships, basic quantities) Cross force	Force normal to lift and drag (forces)	N
C_{10}	C10M	<i>(environmental mechanics, wind)</i> Surface drag coefficient	$(0.08 + 0.065U_{10})10^{-3}$	
C _A	СА	<i>(ships, hull resistance)</i> In- cremental resistance coeffi- cient for model ship corre- lation	$R_{\rm A}/(Sq)$	1
$C_{ m AA}$	CAA	(<i>ships, hull resistance</i>) Air or wind resistance coeffi- cient	$\begin{vmatrix} R_{AA} / (S q) \\ = C_{DA} \frac{\rho_A}{\rho_S} \frac{A_V}{S_S} = -C_X \frac{\rho_A}{\rho_S} \frac{A_V}{S_S} \end{vmatrix}$	1
C _{ADM}	CADM	(<i>ships, performance</i>) Admi- ralty coefficient	$\Delta^{2/3} V^3 / P_{\rm S}$	1
C _{AL}	CAHL	<i>(ships, manoeuvrability)</i> Coefficient of lateral area of ship	$A_{\rm HL}$ / ($L T$)	1
$C_{ m APP}$	CAPP	(<i>ships, hull resistance</i>) Appendage resistance coefficient	$R_{\rm APP}/(S q)$	1
Св	СВ	(ships, hull geometry) Block coefficient	$\nabla/(L B T)$	1
CBFTC	CBFTC	Thickness Cord Ratio of Bottom Fin		1
Cc	CC	(ships, basic quantities) Cross force coefficient	$C_{\rm C} = \frac{C}{qA}$	1
CC	CIRCC	<i>(ships, hull resistance)</i> R.E. Froude's resistance coefficient	$1000 R_{\rm T} / (\varDelta(K^{\rm C})^2)$	1
C _D	CDSE	<i>(fluid mechanics, lifting surfaces)</i> Section drag co-efficient		1
CD	CD	(ships, hull resistance) Drag coefficient	D/(Sq)	1
CD		<i>(seakeeping, large ampli- tude motions capsizing)</i> Crew density	Proportion of boat plan needed for crew	

C, c

				- , -
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
<i>J</i>			r	

r				
CDA	CDA	(ships, Resistance and Pro- pulsion, Hull resistance) Fujiwara air or wind re- sistance coefficient, from wind tunnel tests	$R_{ m AA}/\left(A_{ m V} \; q_{ m R} ight)$	1
C_{DF}	CDF	<i>(hydrofoil boats)</i> Drag co- efficient of foil	$D_{ m F}$ / ($A_{ m FS}$ q)	1
C_{DI}	CDSI	<i>(fluid mechanics, lifting surfaces)</i> Section induced drag coefficient		1
C _{DI}	CDI	(hydrofoil boats) Induced drag coefficient	$D_{\mathrm{I}}/(A_{\mathrm{FS}} q)$	1
C_{DINT}	CDINT	(hydrofoil boats) Interfer- ence drag coefficient	$D_{ m INT}$ / ($A_{ m FS}$ q)	1
C_{D0}	CD0	<i>(hydrofoil boats)</i> Section drag coefficient for angle of attack equal to zero	$D_{ m P}$ / ($A_{ m FS}$ q)	1
C _{DS}	CDSP	(hydrofoil boats) Spray drag coefficient	$D_{ m S}$ / ($A_{ m FS}$ q)	1
C_{DVENT}	CDVENT	(hydrofoil boats) Ventila- tion drag coefficient	$D_{ m V}/\left(A_{ m FS}~q ight)$	1
C_{DW}	CDW	(hydrofoil boats) Wave drag coefficient	$D_{ m W}$ / ($A_{ m FS}$ q)	1
$C_{D\nabla}$	CDVOL	<i>(ships, performance)</i> Power-displacement coefficient	$P_{\rm D} / (\rho \ V^3 \ \nabla^{2/3} / 2)$	1
CF	CF	<i>(ships, hull resistance)</i> Frictional resistance coefficient of a body	$R_{\mathrm{F}}/(S q)$	1
$C_{ m f}$	CFL	(fluid mechanics, boundary layers) Skin friction coeffi- cient	$ au$ / ($ ho ~ U_{ m e}^2$ / 2)	1
$C_{\rm F0}$	CF0	<i>(ships, hull resistance)</i> Frictional resistance coefficient of a corresponding plate	$R_{ m F0}$ / (S q)	1
$C_{ m FU}$	CFU	<i>(sailing vessels)</i> Frictional resistance coefficient (up- right)	$R_{\rm FU}$ / (S q)	1
C _{GM}	CGM	(ships, Geometry and Hy- drostatics, Hull Geometry) Dimensionless GM coeffi- cient	$\overline{GM}/\nabla^{1/3}$	1

	_ /			-,-
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

$C_{ m GZ}$	CGZ	(ships, Geometry and Hy- drostatics, Hull Geome- try)Dimensionless \overline{GZ} co- efficient	\overline{GZ} / $\overline{V}^{1/3}$	1
Скд	CKG	(ships, Geometry and Hy- drostatics, Hull Geome- try)Dimensionless KG co- efficient	KG /T	1
Сн		(seakeeping, large ampli- tude motions capsizing) Height coefficient, depend- ing on the height above sea level of the structural mem- ber exposed to the wind		1
CI		(<i>sailing vessels</i>) Induced resistance coefficient		1
CI	CI	<i>(ice going vessels)</i> Coefficient of net ice resistance	$R_{\rm I}$ / ($ ho_{\rm I} g h^2 B$)	1
C_{ij}	RF(I,J)	(solid body mechanics, in- ertial and hydro properties) Restoring force coefficient in <i>i</i> th mode due to <i>j</i> th motion		
Сл	CWIL	(<i>ships, hull geometry</i>) Co- efficient of inertia of water plane, longitudinal	$12 I_{\rm L} / (B L^3)$	1
Слт	CWIT	<i>(ships, hull geometry)</i> Co- efficient of inertia of water plane, transverse	$12 I_{\rm T} / (B^3 L)$	1
CIW	CIW	<i>(ice going vessels)</i> Coefficient of water resistance in the presence of ice	$R_{\rm IW}$ / (S $q_{\rm IW}$)	1
CL		<i>(seakeeping, large amplitude motions capsizing)</i> Crew limit	Maximum number of per- sons on board	
C_L	CLSE	<i>(fluid mechanics, lifting surfaces)</i> Section lift coefficient		1
C_{LF}	CLF	(hydrofoil boats) Foil lift coefficient	$L_{ m F}$ / ($A_{ m FS}$ q)	1
C_{L0}	CL0	(<i>hydrofoil boats</i>) Profile lift coefficient for angle of at- tack equal to zero	$L_0 / (A_{\rm FS} q)$	1
C_{L0}	CL0D	<i>(planing, semi-displace- ment vessels)</i> Lift coeffi- cient for zero deadrise	$\Delta / (B_{\rm CG}^2 q)$	1

Version 2017

	/
Definition or Explanation	SI- Unit
	Definition or Explanation

C_{LTO}	CLTO	<i>(hydrofoil boats)</i> Lift coefficient at take-off condition	$L_{ m TO}$ / ($A_{ m FS}$ q)	1
C_{LX}	CLA	<i>(hydrofoil boats)</i> Slope of lift curve	$dC_L/d\alpha$	1
$C_{L\beta}$	CLBET	(planing, semi-displace- ment vessels) Lift coeffi- cient for dead rise surface	$\Delta / (B_{\rm CG}^2 q)$	1
См	CMSE	<i>(fluid mechanics, lifting surfaces)</i> Section moment coefficient		1
C _M	CMS	<i>(ships, hull geometry)</i> Mid- ship section coefficient (mid- way between forward and aft perpendiculars)	A _M / (B T)	1
C_M	СМ	(hydrofoil boats) Pitching moment coefficient	$M/\left(\left(A_{\mathrm{FF}}+A_{\mathrm{FR}} ight)\left(l_{\mathrm{F}}-l_{\mathrm{R}} ight)q ight)$	1
C_{MTL}	CMTL	Longitudinal trimming coef- ficient	Trimming moment divided by change in trim which ap- proximately equals \overline{BM}_L/L	1
C_N	CN	<i>(ships, performance)</i> Trial correction for propeller rate of revolution at speed iden- tity	$n_{\rm T}/n_{\rm S}$	1
C _{NP}	CNP	<i>(ships, performance)</i> Trial correction for propeller rate of revolution at power iden- tity	$P_{\rm DT}/P_{\rm DS}$	1
CP	CPL	(<i>ships, hull geometry</i>) Longi- tudinal prismatic coefficient	$\nabla / (A_{\rm X} L)$ or $\nabla / (A_{\rm M} L)$	1
C_P	CDP	<i>(ships, performance)</i> Trial correction for delivered power		1
C_P	CPD	(ships, propulsor perfor- mance) Power loading coeffi- cient	P_{D} / (A_{P} q_{A} V_{A})	1
C_p	СР	(<i>ships, hull resistance, water</i> <i>jets</i>) Local pressure coeffi- cient	$(p-p_0)/(\rho V^2/2)$	1
C_{PA}	СРА	<i>(ships, hull geometry)</i> Pris- matic coefficient, after body	$\overline{V_{\mathrm{A}}}$ / ($A_{\mathrm{X}}L/2$) or $\overline{V_{\mathrm{A}}}$ / ($A_{\mathrm{M}}L/2$)	1
$C_{ m PE}$	CPE	<i>(ships, hull geometry)</i> Pris- matic coefficient, entrance	$\overline{V_{\rm E}}$ / ($A_{\rm X}$ $L_{\rm E}$) or $\overline{V_{\rm E}}$ / ($A_{\rm M}$ $L_{\rm E}$)	1

C, c

Version 2017

	_ /			-,-
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
5			1	

$C_{ m PF}$	CPF	(ships, hull geometry) Pris-	$\overline{V}_{\rm F}/(A_{\rm X}L/2)$ or $\overline{V}_{\rm F}/(A_{\rm Y}L/2)$	1
C_{pi}	СРІ	(sailing vessels) Center of pressure for A:	VF/ (AM L / 2)	1
C _{PR}	CPR	<i>(ships, hull resistance)</i> Pressure resistance coefficient, including wave effect	$R_P / (S q)$	1
C_{PR}	CPR	(ships, hull geometry) Pris- matic coefficient, run	$\overline{V_{\mathrm{R}}} / (A_{\mathrm{X}} L_{\mathrm{R}}) or$ $\overline{V_{\mathrm{R}}} / (A_{\mathrm{M}} L_{\mathrm{R}})$	1
C_{PR}	CPR	(ACV and SES) Aerodynamic profile drag coefficient	$R_0 / (\rho_{\rm A} V_{\rm R}^2 A_{\rm C} / 2)$	1
C_{PV}	CPV	<i>(ships, hull resistance)</i> Vis- cous pressure resistance coef- ficient	$R_{PV} / (S q)$	1
C_{Q^*}	CQS	(ships, propulsor perfor- mance) Torque index	$Q / (A_{\rm P} q_{\rm S} D)$	1
CR	CR	(fundamental, statistical, sto- chastic) Population covari- ance		
C _R	CR	<i>(ships, hull resistance)</i> Re- siduary resistance coefficient	$R_{\rm R}$ / (S q)	1
Cr	CRA	(environmental mechanics, waves) Average reflection coefficient		1
Cr	CRDS	(ships, manoeuvrability, sea- keeping) Directional stability criterion	$Y_{v} (N_{r} - mux_{G}) - N_{v} (Y_{r} - mu)$	N ² s ²
$C_{\rm r}(f)$	CRF	(environmental mechanics, waves) Reflection coefficient amplitude function		1
$C_{ m RU}$	CRU	<i>(sailing vessels)</i> Residuary resistance coefficient (up- right)	$R_{\mathrm{RU}} / (S q)$	1
CS	CS	(fundamental, statistical, sto- chastic) Sample covariance		
Cs	CSR	<i>(ships, hull resistance)</i> Spray resistance coefficient	$R_{\rm S}$ / (S q)	1
Cs	CS	<i>(ships, hull geometry)</i> Wetted surface coefficient	$S / (\nabla L)^{1/2}$	1
Cs		<i>(seakeeping, large amplitude motions capsizing)</i> Shape co- efficient, depending on the shape of the structural mem- ber exposed to the wind		1

C, c

				-) -
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

$C_{ m STC}$	CSTC	Thickness Cord Ratio of Strut		1
C_{T}	СТ	<i>(ships, hull resistance)</i> Total resistance coefficient	$R_{\mathrm{T}} / (S q)$	1
C_{T^*}	CTHS	(ships, propulsor perfor- mance) Thrust index	$T/(A_{\rm P} q_S)$	1
C_{Th}	СТН	(ships, propulsor perfor- mance) Thrust loading coef- ficient, energy loading coef- ficient	$T / (A_{\rm P} q_{\rm A}) = (T_{\rm P} / A_{\rm P}) / q_{\rm A}$	1
C_{TL}	CTLT	<i>(ships, hull resistance)</i> Tel- fer's resistance coefficient	$g R L / (\Delta V^2)$	1
C_{Tn}		(ships, hull resistance, water jets) Thrust loading coeffi- cient:	$\frac{T_{\text{net}}}{\frac{1}{2}\rho U_0^2 A_{\text{n}}}$	1
C_{TQ}	СТQ	<i>(ships, hull resistance)</i> Quali- fied resistance coefficient	$C_{\mathrm{T}\overline{\nu}}/\left(\eta_{\mathrm{H}}\eta_{\mathrm{R}} ight)$	1
C_{TU}	CTU	<i>(sailing vessels)</i> Total re- sistance coefficient (upright)	$R_{\mathrm{TU}} / (S q)$	1
C_{T}	CTVOL	(ships, hull resistance) Re- sistance displacement	$R_{ m T}$ / ($ abla^{2/3} q$)	1
$C_{\mathrm{T} arphi}$	СТРНІ	<i>(sailing vessels)</i> Total re- sistance coefficient with heel and leeway	$R_{\mathrm{T} \varphi} / (S q)$	1
C _{uv}	SI(U,V)	(ships, unsteady propeller forces) Generalized stiffness		
$C_{ m V}$	CV	<i>(ships, hull resistance)</i> Total viscous resistance coefficient	$R_{\rm V} / (S q)$	1
Cv	CSP	(planing, semi-displacement vessels) Froude number based on breadth	$V/(B_{ m CG} g)^{1/2}$	1
C_{VP}	CVP	(<i>ships, hull geometry</i>) Pris- matic coefficient vertical	$\nabla/(A_{ m W}T)$	1
$C_{ m W}$	CW	(<i>ships, hull resistance</i>) Wave making resistance coefficient	$R_{ m W}$ / (S q)	1
$C_{\mathrm{W}\!A}$	CWA	<i>(ships, hull geometry)</i> Water plane area coefficient, aft	A _{WA} / (B L / 2)	1
$C_{ m WC}$	CWC	(ACV and SES) Cushion wave making coefficient		1
$C_{ m WF}$	CWF	<i>(ships, hull geometry)</i> Water plane area coefficient, for- ward	A _{WF} /(B L / 2)	1
C_{WP}	CW	<i>(ships, hull geometry)</i> Water plane area coefficient	$A_{\rm WP}$ /(L B)	1

TTTC Symbols				
Version 20	017			C , c
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

C_{WP}	CWP	(ships, hull resistance) Wave pattern resistance coefficient, by wave analysis	1
$C_{ m WU}$	CWU	(sailing vessels) Wave re- sistance coefficient (upright)	1
C _X	CX	(<i>ships, hull geometry</i>) Maxi- mum transverse section coef- ficient $A_X / (B T)$, where B and T are measured at the position of maximum area	1
Cx	СХА	(ships, hull resistance) Air or wind resistance coefficient, usually from wind tunnel tests $-R_{AA}/(A_V q_R)$	1
C_x		(sailing vessels) Force coefficients	1
C_{xx}	<i>XX</i> CR	(fundamental, statistical, sto- chastic) Auto-covariance of a stationary stochastic process $(x(t) - x^E)(x(t + \tau) - x^E)^E$	
C _{xy}	<i>XY</i> CR	(fundamental, statistical, sto- chastic) Cross-covariance of two stationary stochastic pro- cesses $(x(t) - x^E)(y(t + \tau) - y^E)^E$	
C_y		(sailing vessels) Force coefficients	1
C_z		(sailing vessels) Force coefficients	1
CV	CVOL	(ships, hull geometry) Volu- metric coefficient ∇/L^3	1
C_{\varDelta}	CDL	(planing, semi-displacement vessels) Load coefficient $\Delta / (B_{CG}^3 \rho g)$	1
C_{\varDelta}	CLOAD	(ACV and SES) Cushion loading coefficient $\Delta / (g \rho_A A_C^{3/2})$	1
с	CS	(fluid mechanics, flow pa- rameter) Velocity of sound $(E / \rho)^{1/2}$	m/s
C0.7	C07	(ships, propulsor geometry, appendage geometry)Chord Chord length at r/R=0.7 length	m
с	CH, LCH	(ships, propulsor geometry, appendage geometry) Chord length, chord length of a foil section	m
СС	СНС	(hydrofoil boats) Chord length at centre plane	m
CF	CFL	(hydrofoil boats) Chord length of flap	m

				- , -
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
•			1	

C _{es}		(<i>ships, hull resistance, water</i> <i>jets</i>) Energy velocity coeffi- cient at station s		1
CFT	CHTI	<i>(hydrofoil boats)</i> Chord length at foil tips		m
c _G	VG	(environmental mechanics, waves) Wave group velocity or celerity	The average :rate of ad- vance of the energy in a fi- nite train of gravity waves	m/s
Ci		(uncertainty) Sensitivity co- efficient	$c_i = \partial f / \partial x_i$.	1
CLE	CHLE	(ships, geometry and hydro- statics, propulsor geometry) Chord, leading part	The part of the Chord de- limited by the Leading Edge and the intersection between the Generator Line and the pitch helix at the considered radius	m
СM	CHM, CHME	(ships, appendage geometry, propulsor geometry, fluid mechanics, lifting surfaces hydrofoil boats) Mean chord length	The expanded or developed area of a propeller blade divided by the span from the hub to the tip, $A_{\rm RT}/S$	m
C _{ms}		(<i>ships, hull resistance, water</i> <i>jets</i>) Momentum velocity co- efficient at station <i>s</i>		1
С <i>р</i> F	CPFL	<i>(hydrofoil boats)</i> Distance of centre of pressure on a foil or flap from leading edge		m
CR	CHRT	(fluid mechanics, lifting sur- faces, ships, appendage ge- ometry) Chord length at the root		m
CS	CS	(<i>ships, propulsor geometry</i>) Skew displacement	The displacement between middle of chord and the blade reference line. Posi- tive when middle chord is at the trailing side regarding the blade reference line	m
CS	CSTR	<i>(hydrofoil boats)</i> Chord length of a strut		m
CSF	CHSF	<i>(hydrofoil boats)</i> Chord length of strut at intersection with foil		m
с _т	СНТР	<i>(ships, appendage geometry)</i> Chord length at the tip		m

ITTC Sym	bols			
Version 20	17			C , c
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

Сте	CHTE	Chord, trailing part	The part of the Chord de- limited by the Trailing Edge and the intersection between the Generator Line and the pitch helix at the considered radius	m
CW	VP	(environmental mechanics, waves) Wave phase velocity or celerity	$L_{\rm w}/T_{\rm w} = \sqrt{gL_{\rm w}/2\pi}$ in deep water	m/s
CWi	VP(I)	<i>(environmental mechanics, waves)</i> Wave phase velocity of harmonic components of a periodic wave	$const = c_W$ for periodic waves in deep water	m/s

Version 2017

ITTC Computer Symbol Symbol Name	Definition or Explanation	SI- Unit

D	DR	(<i>fundamental, statistical, stochastic</i>) Population deviation		
D	DEP	<i>(ships, hull geometry)</i> Depth, moulded, of a ship hull		m
D	D, DI	(ships, basic quantities) Diameter		m
D	DP	(ships, propulsor geometry, propulsor performance) Propeller diameter		m
D	FF(1)	(ships, basic quantities) Drag (force)	Force opposing translatory velocity, generally for a completely immersed body	N
D		(ships, propulsor geometry, water jets) Impeller diame- ter (maximum)		m
D_0	DC0	(ships, manoeuvrability, turning circles) Inherent steady turning diameter $\delta_R = \delta_0$		m
D_0'	DC0N	(<i>ships, manoeuvrability,</i> <i>turning circles</i>) Non- dimensional inherent steady turning diameter	D_0 / $L_{ m PP}$	1
D _C	DC	(<i>ships, manoeuvrability,</i> <i>turning circles</i>) Steady turn- ing diameter		m
Dc′	DCNO	(ships, manoeuvrability, turning circles) Non- dimensional steady turning diameter	$D_{ m C}$ / $L_{ m PP}$	1
D _C	DC	(fluid mechanics, cavitation) Cavity drag		N
$D_{ m F}$	DRF	(fluid mechanics, lifting surfaces, hydrofoil boats) Foil drag	Force in the direction of motion of an immersed foil	N
$D_{ m FF}$	DFF	(<i>hydrofoil boats</i>) Drag force on front foil	$C_{DF}A_{FF}q$	N
$D_{ m FR}$	DFA	(<i>hydrofoil boats</i>) Drag force on rear foil	C _{DF} A _{FR} q	N
$D_{ m H}$	DHUL	(<i>multi-hull vessels</i>) Hull diameter	Diameter of axis symmetric submerged hulls	m
$D^{\mathrm{h}}{}_{uv}$	DH(U,V)	(ships, basic quantities), Generalized hydrodynamic damping	$\partial F^{h}_{u} / \partial V_{v}$	

D, d

Version 2017

				,
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

				1
		(fluid mechanics, lifting	For finite span foil, the	
D_{I}	DRIND	surfaces, hydrofoil boats)	component of lift in the di-	Ν
		Induced drag	rection of motion	
		(fluid mechanics, lifting	Due to mutual interaction of	
$D_{\rm INT}$	DRINT	surfaces, hydrofoil boats)	the boundary layers of inter-	Ν
		Interference drag	secting foil	
		(ships, propulsor geometry,	8	
D		(<i>water jets</i>) Nozzle discharge		m
2 n		diameter		
		(fluid mechanics lifting		
$D_{\rm p}$	DRSE	surfaces) Section or profile	Streamline drag	N
$D_{\rm P}$	DRSE	drag at zero lift	Streamme drag	11
		Draggurg differential of flow		
Dp		Plessure differential of flow		Pa
		(herder fill berte) Drofile		
D		(<i>nyarojoli boats</i>) Prome		NT
$D_{ m P0}$	DRFU	drag for angle of attack	Streamline drag	IN
		equal to zero lift		
D_{PB}	DPB	Maximum Diameter of Pod		m
		Body		
		(fundamental, statistical,		
DR	DR	stochastic) Population devi-		
		ation		
		(fundamental, statistical,		
DS	DS	stochastic) Sample devia-		
		tion		
D_{SP}	DRSP	(hydrofoil boats) Spray drag	Due to spray generation	N
D_{ST}	DRST	(hydrofoil boats) Strut drag		N
		(ships, unsteady propeller		
D_{uv}	DA(U,V)	forces) Generalized damp-		
		ing		
D	DDUNT	(hydrofoil boats) Ventilation	Due to reduced pressure at	NT
$D_{ m V}$	DRVNI	drag	the rear side of the strut base	1
D			Due to propagation of sur-	NT
$D_{ m W}$	DKWA	(<i>nyarofoil boats</i>) wave drag	face waves	IN
		(multi-hull vessels) Hull		
$D_{\rm X}$	DX	diameter at the longitudinal		m
		position "X"		
$D_{-}(f_{0})$			$S(f,\theta) = S(f)D_X(f,\theta)$ where	
$D_{\mathbf{X}}(f,\theta),$	DIDOE	(environmental mechanics,	2π	
$D_{\rm X}(\omega,\mu),$	DIRSF	waves) Directional spread-	$\int D_{\mathbf{x}}(f,\theta)d\theta = 1$	rad
		ing function	0	
1	ים מ	(ships, basic quantities)		
a	ען, דע	Diameter		111
		(underwater noise)		
d	DIDR	Distance hydrophone to		m
		acoustic centre		
	1			

D, d

Version 2017

 $d_{\rm F}$

 $d_{\rm h}$

 d_{ha}

 $d_{\rm hf}$

 $d_{\rm KL}$

 $d_{\rm M}$

 $d_{\rm TR}$

 $d_{t\psi}$

TF, TFP

DH

DHA

DHF

KDROP

TM, TMS

DTRA

YART

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
d	Т	(ships, hull geometry sea- keeping, large amplitude motions capsizing)) Draught, moulded, of ship hull		m
d		(seakeeping, large ampli- tude motions capsizing) Density coefficient for sub- merged test weights		1
d_{A}	TA, TAP	(ships, hull geometry) Draught at aft perpendicular		m
d_{D}	CLEARD	(<i>ships, propulsor geometry</i>) Propeller tip clearance	Clearance between propeller tip and inner surface of duct	m

(ships, hull geometry)

Boss or hub diameter

Hub diameter, aft

Hub diameter, fore

Draught at midship

som, underway

(ships, hull geometry) De-

sign drop of the keel line (ships, hull geometry)

(planing, semi-displacement

vessels) Immersion of tran-

(ships, manoeuvrability)

Rate of change of course

dicular

Draught at forward perpen-

(ships, propulsor geometry)

 $2 r_{\rm h}$

der

Aft diameter of the hub, not

considering any shoulder Fore diameter of the hub,

not considering any shoul-

 T_{AD} - T_{FD} alias "keel drag"

 $(T_{\rm A} + T_{\rm F}) / 2$ for rigid bodies

Vertical depth of trailing

edge of boat at keel below

with straight keel

water surface level

dψ / dt

D.	Ь

m

m

m

m

m

m

m

rad/s

Version 2017

				_, -, -
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

		(fluid machanics flow		
F	FI	(Juna mechanics, Jiow		Do
L	LL	alasticity		га
E				
E	ENI			m
-		(fundamental, statistical,		
E	MR	stochastic) Expectation,		
		population mean		
E	E EN	(ships, basic quantities)		T
<i>L</i>		Energy		5
F	БМ	(sailing vessels) Mainsail		m
L		base		111
		(environmental mechanics,		
E_{I}	MEI	<i>ice</i>) Modulus of elasticity of		Pa
		ice		
		(ships, hull resistance, water		
F		<i>jets</i>) Total energy flux at	$\iint \left(\int \frac{1}{2} \frac{p}{2} + \frac{p}{2} \right) = \frac{1}{2} \int \frac{1}{2} \frac{p}{2} \frac{p}$	** 7
$E_{\rm s}$		station s (kinetic $+$ potential	$\iint_{\Omega} \rho \left(\frac{1}{2} \boldsymbol{u} + \frac{1}{2} - g_j \boldsymbol{x}_j \right) \mu_i n_i dA$	W
		+ pressure)		
		(ships. hull resistance. water		
-		$iets$) Total axial (in ξ	$\int \int \int \frac{1}{2} p$	
$E_{\mathrm{s}\xi}$		direction) energy flux at	$\left \iint \rho \right \frac{1}{2} u_{\xi}^{-} + \frac{1}{2} - g_{j} x_{j} \mu_{i} n_{i} dA$	W
		station s	$A_{s} \qquad P \qquad)$	
		(fluid mechanics flow fields)		
e	ED	Density of total flow energy	$\rho V^2 / 2 + p + \rho g h$	Ра
		(nlaning semi-displacement	Distance between N_{Λ} and	
P A	FNAPP	(pranting, sent displacement vessels) I ever of appendage	centre of gravity (measured	m
CA	ENAFF	lift force N_{\star}	normally to N_{\star})	111
		(planing semi-displacement	Distance between N _D and	
<i>Q</i> _D	ENBOT	(planing, semi-displacement	centre of gravity (measured	m
сB	LINDOT	normal force N-	recentle of gravity (incastree)	111
			Distance between propeller	
		(planing, semi-displacement	Distance between propener	
$e_{\mathrm PN}$	ENPN	vessels) Lever of propeller	centreline and centre of	m
		normal force $N_{\rm PN}$	gravity (measured along	
			shaft line)	
		(planing, semi-displacement	Distance between N_{PP} and	
$e_{\mathrm PP}$	ENPP	<i>vessels)</i> Lever of resultant of	centre of gravity (measured	m
		propeller pressure forces N_{PP}	normally to N_{PP}	
		(planing, semi-displacement	Distance between N_{PS} and	
$e_{\rm PS}$	ENPS	<i>vessels)</i> Lever of resultant	centre of gravity (measured	m
		propeller suction forces N _{PS}	normal to $N_{\rm PS}$)	
		(planing, semi-displacement	Distance between N_{RP} and	
$e_{\mathrm RP}$	ENRP	vessels) Lever of resultant of	centre of gravity (measured	m
		rudder pressure forces $N_{\rm RP}$	normal to N_{RP})	

E, e

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
F	CQF	(fluid mechanics, boundary layers) Entrainment factor	$1 / (U_e dQ / dx)$	1
F	FB	(hull geometry) Fore body		
F	FETCH	(environmental mechanics, wind) Fetch length	Distance over water the wind blows	m
F	F, F0	(ships, basic quantities) Force		N
F		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Centre of flotation of the water plane		
F		(seakeeping, large ampli- tude motions capsizing) Wind force - IMO/IS		
F^0	F, F0	<i>(ships, basic quantities)</i> Force		N
$F^{0}{}_{1}$	FX, F0(1), F(1)	(solid body mechanics, loads) Force in direction of body axis x		Ν
$F^{0}{}_{2}$	FY, F0(2), F(2)	<i>(solid body mechanics, loads)</i> Force in direction of body axis y		N
F^0_3	FZ, F0(3), F(3)	<i>(solid body mechanics, loads)</i> Force in direction of body axis z		N
F_1	FX, F0(1), F(1)	(solid body mechanics, loads) Force in direction of body axis x		Ν
F^1	F1	(<i>ships, basic quantities</i>) Mo- ment of forces	First order moment of a force distribution	Nm
F^{1}_{1}	F1(1), F(4)	(solid body mechanics, loads) Moment around body axis x		Nm
F^{1}_{2}	F1(2), F(5)	<i>(solid body mechanics, loads)</i> Moment around body axis y		Nm
F^1 3	F1(3), F(6)	(solid body mechanics, loads) Moment around body axis z		Nm
F_2	FY, F0(2), F(2)	(solid body mechanics, loads) Force in direction of body axis y		Nm
F_3	FZ, F0(3), F(3)	(solid body mechanics, loads) Force in direction of body axis z		Nm

F, f

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
F_4	F1(1), F(4)	(solid body mechanics, loads) Moment around body axis x		Nm
F_5	F1(2), F(5)	(solid body mechanics, loads) Moment around body axis y		Nm
F_6	F1(3), F(6)	(solid body mechanics, loads) Moment around body axis z		Nm
FB	XFB	(seakeeping, large ampli- tude motions capsizing) Longitudinal centre of buoy- ancy, L _{CB} , from forward per- pendicular	Distance of centre of buoy- ancy from forward perpen- dicular	m
F^C	CIRCF	<i>(ships, hull resistance)</i> R.E. Froude's frictional resistance coefficient	$1000 R_{\rm F} / (\varDelta(K^{\rm C})^2)$	1
FD	SFC	Friction deduction force in self-propulsion test. Skin friction correction in a self- propulsion test carried out at the ship self-propulsion point	Towing force applied to a model to correct the model resistance for different <i>Re</i> between model and full scale.	N
FF	XFF	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of float- ation, L _{CF} , from forward per- pendicular	Distance of centre of flota- tion from forward perpen- dicular	m
$F^{F_{1}}$	FF(1)	(ships, basic quantities) Re- sistance, Drag (force)	Force opposing translatory velocity, generally for a completely immersed body	N
F^{F}_{2}	FF(2)	(ships, basic quantities) Cross force	Force normal to lift and drag (forces)	N
F^{F}_{3}	FF(3)	(ships, basic quantities) Lift (force)	Force perpendicular to translatory velocity	N
FG	XFG	(ships, hydrostatics, stabil- ity) Longitudinal centre of gravity from forward per- pendicular	Distance of centre of gravity from forward perpendicular	m
FG	XFG	(seakeeping, large ampli- tude motions capsizing) Longitudinal centre of grav- ity, from forward perpendic- ular	Distance of centre of gravity from forward perpendicular	m

F, f

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
Fu		(sailing vessels) Heeling		N

		force of sails		
$F^{ m h}{}_{ m u}$	FH(U)	(solid body mechanics, iner- tial and hydro properties) Generalized hydrodynamic force		N
$F_{ m IN}$	FNIC	<i>(ice going vessels)</i> Normal ice force on a body	Projection of hull - ice inter- action force on the external normal	N
$F_{ m IT}$	FTIC	(<i>ice going vessels</i>) Tangen- tial ice force on a body	Projection of the hull - ice interaction force on the di- rection of motion	N
F_i	F(I)	(ships, unsteady propeller forces) Vibratory force	<i>i</i> = 1, 2, 3	N
F_{L}	FS(2)	(ships, seakeeping) Wave excited lateral shear force	Alias horizontal!	N
$F_{ m N}$	FS(3)	(ships, seakeeping) Wave excited normal shear force	Alias vertical!	N
FP	FP	<i>(hull geometry)</i> Fore perpendicular		
$F_{ m P}$	FP	(<i>ships</i> , <i>performance</i>) Force pulling or towing a ship		Ν
$F_{ m P0}$	FP0	(ships, performance) Pull during bollard test		N
Fr	FN	(fluid mechanics, flow pa- rameter) Froude number	$V / (g L)^{1/2}$	1
F _R		(sailing vessels) Driving force of sails		N
Fr _c	FNC	(hydrofoil boats) Froude number based on chord length	$V / (g c_{\rm M})^{1/2}$	1
Fr _h	FH	<i>(fluid mechanics, flow pa- rameter)</i> Froude depth num- ber	$V / (g h)^{1/2}$	1
Fr _I	FNIC	<i>(ice going vessels)</i> Froude number based on ice thick- ness	$V / (g h_{\rm I})^{1/2}$	1
Fr _L	FNFD	(hydrofoil boats) Froude number based on foil dis- tance	$V / (g L_{\rm F})^{1/2}$	1
Frv	FV	(fluid mechanics, flow pa- rameter) Froude displace- ment number	$V / (g \nabla^{1/3})^{1/2}$	1
F^{S}_{i}	FS(I)	(solid body mechanics, loads) Shearing force	$F^{S0}{}_2$, $F^{S0}{}_3$	N

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
		/ 1·11 1 •		
F ^S u	FS(U)	(solid body mechanics, loads) Force or load acting at a given planar cross-sec- tion of the body, general- ized, in section coordinates!	$F^{S}{}_{i} = F^{S0}{}_{i}$ $F^{S}{}_{3+i} = F^{SI}{}_{i} = M^{B}{}_{i}$	N Nm
F^{T}	FT, FS(1)	<i>(solid body mechanics, loads)</i> Tensioning or normal force	$F^{S0}{}_{1}$	N
F_{TA}	FTAPP	<i>(planing, semi-displacement vessels)</i> Appendage drag force (parallel to reference line)	Drag forces arising from ap- pendages inclined to flow, assumed to act parallel to the reference line	N
F_{TB}	FTBOT	<i>(planing, semi-displacement vessels)</i> Bottom frictional force (parallel to reference line)	Viscous component of bot- tom drag forces assumed acting parallel to the refer- ence line	N
Fтĸ	FTKL	<i>(planing, semi-displacement vessels)</i> Keel or skeg drag force (parallel to reference line)	Drag forces arising from keel or skeg, assumed to act parallel to the reference line	N
F_{TRP}	FTRP	(<i>planing, semi-displacement</i> <i>vessels</i>) Additional rudder drag force (parallel to refer- ence line)	Drag forces arising from in- fluence of propeller wake on the rudder assumed to act parallel to the reference line	N
F _u	F(U)	<i>(solid body mechanics, loads)</i> Force, generalized, load, in body coordinates		N
Fu	FG(I)	<i>(ships, unsteady propeller forces)</i> Generalized vibratory force	u = 1,, 6 u = 1, 2, 3: force u = 4, 5, 6: moment	N N Nm
$F_{ m V}$		(sailing vessels) Vertical force of sails		N
F_{XI}	FXIC	<i>(ice going vessels)</i> Components of the local ice force		N
F_x	XPF	(<i>fundamental, statistical</i>) Probability function (distri- bution) of a random quantity		1
F_x	FX, F0(1), F(1)	(solid body mechanics, loads) Force in direction of body axis x		Nm
F _{xy}	<i>XY</i> PF	(<i>fundamental, statistical</i>) Joint probability function (distribution) function of two random quantities		1
F _{YI}	FYIC	<i>(ice going vessels)</i> Components of the local ice force		N

F, f

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
F _y	FY, F0(2), F(2)	(solid body mechanics, loads) Force in direction of body axis y		N
F_{ZI}	FZIC	<i>(ice going vessels)</i> Components of the local ice force		Ν
F_z	FZ, F0(3), F(3)	(solid body mechanics, loads) Force in direction of body axis z		N
f		(uncertainty) Function	Functional relationship be- tween measurand Y and in- put quantities X_i on which Y depends, and between out- put estimate y and input esti- mates x_i on which y de- pends.	1
f	FR	(fundamental, time and fre- quency domain quantity, ships, seakeeping, environ- mental mechanics, wave, ships, basic quantities) Frequency	$2\pi\omega=1/T$	Hz
f	FREB	(ships, hull geometry, hydro- statics, stability, seakeeping, large amplitude motions, capsizing) Freeboard	From the freeboard mark- ings to the freeboard deck, according to official rules	m
f	FBP	(ships, propulsor geometry) Camber of a foil section		m
f	FM	<i>(ships, appendage geometry)</i> Camber of an aerofoil or a hydrofoil	Maximum separation of me- dian and nose-tail line	m
f	FC	(ships, hull resistance) Friction coefficient	Ratio of tangential force to normal force between two sliding bodies	1
fаа	FRAA	(planing, semi-displacement vessels) Lever of wind resistance R_{AA}	Distance between R_{AA} and centre of gravity (measured normal to R_{AA})	m
fар	FRAP	<i>(planing, semi-displacement vessels)</i> Lever of appendage drag <i>R</i> _{AP}	Distance between R_{AP} and centre of gravity (measured normal to R_{AP})	m
$f_{ m BL}$	CABL	(<i>ships, hull geometry</i>) Area coefficient for bulbous bow	$A_{\rm BL}$ / (L T)	1
<i>f</i> вт	CABT	<i>(ships, hull geometry)</i> Tay- lor sectional area coefficient for bulbous bow	$A_{ m BT}$ / $A_{ m X}$	1

F, f

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
<i>f</i> c	FC	(fundamental, time and fre- quency domain quantity) Basic frequency in repeating functions	1 / T _C	Hz
f _D	FD	(<i>ships, propulsor geometry</i>) Camber of duct profile		m
f _E	FE	(ships, seakeeping) Fre- quency of wave encounter	$1 / T_{\rm E}$	Hz
f _F	FRF	$(planing, semi-displacement vessels)$ Lever of frictional resistance $R_{\rm F}$	Distance between R_F and centre of gravity (measured normal to R_F)	m
fīD	CFRD	<i>(ice going vessels)</i> Coefficient of friction between surface of body and ice (dynamic)	Ratio of tangential force to normal force between two bodies (dynamic condition)	1
<i>f</i> ıs	CFRS	<i>(ice going vessels)</i> Coefficient of friction between surface of body and ice (static)	The same as above (static condition)	1
f_i	FS(I)	<i>(fluid mechanics, flow fields)</i> Mass specific force	Strength of force fields, usu- ally only gravity field g _i	m/s ²
fк	FRK	<i>(planing, semi-displacement vessels)</i> Lever of skeg or keel resistance <i>R</i> _K	Distance between $R_{\rm K}$ and centre of gravity (measured normal to $R_{\rm K}$)	m
fL	FML	<i>(fluid mechanics, lifting sur- faces)</i> Camber of lower side (general)		m
fр	FRPK	(environmental mechanics, waves) Spectral peak in fre- quency	Frequency at which the spectrum has its maximum	Hz
<i>f</i> _R	FRRC	(environmental mechanics, waves) Frequency resolution	$1/T_{\rm R}$	Hz
ſĸ	FDRR	(planing, semi-displacement vessels)Lever of augmented rudder drag $\Delta R_{\rm RP}$	Distance between $\Delta R_{\rm RP}$ and centre of gravity (measured normal to $\Delta R_{\rm RP}$)	m
fs	FS, FRSA	(fundamental, time and fre- quency domain quantity, en- vironmental mechanics, waves) Frequency of sam- pling, Sample frequency	1 / T _S period in repeating spectra	Hz
fs	FSL	(planing, semi-displacement vessels) Lever of axial pro- peller thrust	Distance between axial thrust and centre of gravity (measured normal to shaft line)	m
fт	FRT	(planing, semi-displacement vessels) Lever of total re- sistance $R_{\rm T}$	Distance between $R_{\rm T}$ and centre of gravity (measured normal to $R_{\rm T}$)	m

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
fт	ATR	(ships, hull geometry) Sec- tional area coefficient for transom stern	A_{T} / A_{X}	1
fu	FMU	(fluid mechanics, lifting sur- faces) Camber of upper side		m
fw	FW	(environmental mechanics, waves) Basic wave fre- quency	1 / T _W	Hz
fwi	FW(I)	<i>(environmental mechanics, waves)</i> Frequencies of har- monic components of a peri- odic wave	i f _W	Hz
f _x	XPD	(<i>fundamental, statistical</i>) Probability density of a ran- dom quantity	$d F_x / dx$	
fxy	<i>XY</i> PD	(fundamental, statistical) Joint probability density of two random quantities	$\partial^2 F_{xy} / (\partial x \partial y)$	
f_z		(ships, seakeeping) Natural frequency of heave	$1/T_z$	Hz
$f_{ heta}$		(ships, seakeeping) Natural frequency of pitch	$1/T_{ heta}$	Hz
f_{arphi}		(<i>ships, seakeeping</i>) Natural frequency of roll	$1 / T_{\varphi}$	Hz

ITTC Symbols	
Version 2017	

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
G		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Centre of gravity of a vessel		
$G^0 i$, G_i	G0(I)	(solid body mechanics, loads) Gravity or weight force in body coordinates!	$G_i = G^0{}_i = m^0{}_{ij} g_j$ $= mg_i$	N
$G^{1}{}_{i}$	G1(I)	(solid body mechanics, loads) Gravity or weight moment in body coordi- nates!	$G_{3+i} = G^{1}{}_{i} = \varepsilon_{ikj} x_k G^{0}{}_{j}$ $= m^{1}{}_{ij} g_j$	Nm
\overline{GG}_1	GGV	(seakeeping, large amplitude motions capsizing) Vertical stability lever caused by a weight shift or weight addi- tion	$\overline{KG}_1 = \overline{KG}_0 + \overline{GG}_1$	m
$\overline{GG}_{\mathrm{H}}$	GGH	(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Hori- zontal stability lever caused by a weight shift or weight addition		m
$\overline{GG_L}$	GGL	(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Longi- tudinal stability lever caused by a weight shift or weight addition		m
\overline{GG}_{V}	GG1	(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Vertical stability lever caused by a weight shift or weight addi- tion	$\overline{KG_1} = \overline{KG_0} + \overline{GG_1}$	m
GM	GM	(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Trans- verse metacentric height	Distance of centre of gravity to the metacentre $\overline{GM} = \overline{KM} - \overline{KG}$ (not corrected for free sur- face effect)	m
$\overline{GM}_{\rm EFF}$	GMEFF	(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Effec- tive transverse metacentric height	<u><i>GM</i></u> Corrected for free sur- face and/or free communica- tion effects	m

G, **g**

Version 2017

				-,8
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

$\overline{GM_L}$	GML	(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Longi- tudinal metacentric height	Distance from the centre of gravity G to the longitudinal metacentre M_L $\overline{GM_L} = \overline{KM_L} - \overline{KG}$	m
Gu	G(U)	(solid body mechanics, loads) Gravity or weight force, generalized, in body coordinates!	$G_u = m_{uv} g_v$	N
\overline{GZ}		(seakeeping, large amplitude motions capsizing) Arm of static stability corrected for free surfaces - IMO/table		m
\overline{GZ}	GZ	(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Right- ing arm or lever	$\overline{GZ} = \overline{AZ} - \overline{AG}_{\rm V} \sin \varphi - \overline{AG}_{\rm T} \cos \varphi$	m
\overline{GZ}_{MAX}	GZMAX	(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Maxi- mum righting arm or lever		m
Gz	GAP	<i>(ships, propulsor geometry)</i> Gap between the propeller blades	$2\pi r\sin(\varphi)/z$	m
8	G, GR	(ships, basic quantities) Ac- celeration of gravity	Weight force / mass, strength of the earth gravity field	m/s ²
g		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Centre of gravity of an added or re- moved weight (mass)		1
g^E	GMR	(<i>fundamental, statistical</i>) Expected value of a function of a random quantity	$E(g) = \int g(x) f_x(x) dx$ $x = -\infty \dots \infty$	
gi	G1(I)	(solid body mechanics, loads) Gravity field strength, in body coordinates!		m/s ²
g^M	GMR	(<i>fundamental, statistical</i>) Expected value of a function of a random quantity	$E(g) = \int g(x) f_x(x) dx$ $x = -\infty \dots \infty$	
g^{MR}	GMR	(<i>fundamental, statistical</i>) Expected value of a function of a random quantity	$E(g) = \int g(x) f_x(x) dx$ $x = -\infty \dots \infty$	

G, g

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
g^{MR}	GMR	(fundamental, statistical, stochastic) Mean of a func-	$M(g(t)) = \lim_{t \to -T/2} \frac{1}{T} \int g(t) dt$ $t = -T/2 \dots +T/2$	
g^{MS}	GMS	<i>(fundamental, statistical, stochastic)</i> Average or sample mean of a function of a random quantity	$I = -\infty \dots +\infty$ $A(g(t)) = 1/T \int g(t) dt$ $t = 0 \dots +T$	
gu	G(U)	<i>(solid body mechanics, loads)</i> Gravity field strength, generalized, in body coordinates	$g_i = g^1{}_i$ $g_{3+i} = 0$	m/s ²

G, <u>g</u>

Version 2017

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Ivaille	Explanation	Unit
U	UТ	(fluid mechanics, flow fields)	a/w = h + p/w + a/w	
7	пі	Total head	$e \neq w \equiv n + p/w + q/w$	m
Ч	нт	(ships, basic quantities)		m
1		Height		
		(fluid mechanics, boundary	o*	
4	HBL	<i>layers</i>) Boundary layer	δ^* / Θ	1
		shape parameter		
1		(sailing vessels) Side force		N
		(ships, hull resistance, water		
71	нп	<i>Jets)</i> Local total head at sta-		m
		(shing hull registance water		
		<i>iets</i>) Mean increase of total		
H ₃₅	H35	head across pump and stator		m
		or several pump stages		
		(ACV and SES) Height of		
HCG	HVCG	centre of gravity above mean	n	m
		water plane beneath craft		
			Minimum clearance of wet	
H _{DK}	HCLDK	(multi-null vessels) Deck	deck from water surface at	m
		clearance	rest	
		(environmental mechanics,	The vertical distance be-	
$H_{\rm d}$	HD	waves) Wave height by zero	tween a crest and a succes-	m
		down-crossing	sive trough.	
		(fluid mechanics, boundary		
$H_{\rm E}$	HQF	<i>layers</i>) Entrainment shape	$(\delta - \delta^*) / \Theta$	1
		parameter		
		(ACV and SES) Vertical		
$H_{ m H}$	HH	spacing between inner and	needs clarification	m
		tachmont points to structure		
		(shins, propulsor acometry)		
Н.,		(snips, propulsor geometry, water jets) Head between		m
ij		station <i>i</i> and <i>i</i>		111
		(ships, propulsor geometry)		+
$H_{\rm JS}$		water jets) Jet System Head		m
		(seakeeping, large amplitude	2	1
		<i>motions capsizing</i>) Heeling		
ΉL		lever (due to various rea-		
		sons) - IMO/HSC'2000		
		(environmental mechanics,		1
		waves) Significant wave		
H_{mo}	HMO	height based on zeroth mo-	$4 (m_0)^{1/2}$	m
		ment for narrow banded		

spectrum

Version 2017

$H_{ m N}$	HTNT	<i>(fluid mechanics, cavitation)</i> Net useful head of turbo-en- gines		m
$H_{\rm SK}$	HSK	(ACV and SES) Skirt depth		m
Hss	HSS	(<i>multi-hull vessels</i>) Strut submerged depth	Depth of strut from still wa- ter line to strut-hull intersec- tion	m
H_{TC}	HTC	(ships, propulsor geometry) Hull tip clearance	Distance between the propel- ler sweep circle and the hull	m
$H_{ m U}$	HTUS	<i>(fluid mechanics, cavitation)</i> Total head upstream of turbo-engines		m
$H_{ m u}$	HU	(environmental mechanics, waves) Wave height by zero up-crossing	The vertical distance be- tween a trough and a succes- sive crest	m
$H_{ m W}$	HW	(environmental mechanics, waves) Wave height	The vertical distance from wave crest to wave trough, or twice the wave amplitude of a harmonic wave. $\eta_{\rm C} - \eta_{\rm T}$	m
<i>H</i> _{W1/3}	H13D	(environmental mechanics, waves) Significant wave height	Average of the highest one third zero down-crossing wave heights	m
$H_{ m W1/3d}$	H13D	(environmental mechanics, waves) Zero down-crossing significant wave height	Average of the highest one third zero down-crossing wave heights	m
$H_{ m W1/3u}$	H13U	(environmental mechanics, waves) Zero up-crossing sig- nificant wave height	Average of the highest one third zero up-crossing wave heights	m
$H_{ m WV}$	HWV	<i>(environmental mechanics, waves)</i> Wave height estimated from visual observation		m
H_{σ}	HWDS	<i>(environmental mechanics, waves)</i> Estimate of significant wave height from sample deviation of wave elevation record		m
h	HS	<i>(fluid mechanics, flow fields)</i> Static pressure head	Δz_0 , z_0 -axis positive vertical up!	m
h	DE	(ships, basic quantities, ships, manoeuvrability) Depth, Water depth		m
h		(seakeeping, large amplitude motions capsizing) Maxi- mum tank height		m

H, h

Version 2017

			,
ITTC Con	nputer Name	Definition or Explanation	SI-
Symbol Sym	bol		Unit

h		(seakeeping, large amplitude motions capsizing) Vertical distance from the centre of A to the waterline		m
h_0	но	(ships, propulsor geometry) Immersion	The depth of submergence of the propeller measured vertically from the propeller centre to the free surface	m
h _{1A}		(ships, propulsor geometry, water jets) maximum height of cross sectional area of stream tube at station 1A		m
$h_{ m BS}$	HBS	(ACV and SES) Bow seal height	Distance from side wall keel to lower edge of bow seal	m
$h_{ m CE}$		(seakeeping, large amplitude motions capsizing) Height of centre of area of A _{SP} above waterline at SSM		m
h _{CG}	HVCG	<i>(hydrofoil boats)</i> Height of centre of gravity foil borne	Distance of centre of gravity above mean water surface	m
$h_{ m F}$	HFL	(hydrofoil boats) Flight height	Height of foil chord at foil borne mode above position at rest	m
h_{I}	HTIC	<i>(ice going vessels)</i> Thickness of ice		m
$h_{ m J}$	НЈ	(<i>ships, propulsor geometry,</i> <i>water jets</i>) Height of jet cen- treline above undisturbed water surface		m
h _K	HKE	(hydrofoil boats) Keel clear- ance	Distance between keel and mean water surface foil borne	m
$h_{ m LP}$		(seakeeping, large amplitude motions capsizing) Height of waterline above centre of area of immersed profile		m
$h_{ m M}$	DEME	(ships, manoeuvrability) Mean water depth		m
$h_{ m P}$	HSP	(planing, semi-displacement vessels) Wetted height of strut palms (flange mount- ing)		m
$h_{ m R}$	HRU	(planing, semi-displacement vessels) Wetted height of rudders		m

H, h
ITTC Symbols						
Version 2017			H , h			
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit		

h _{SN}	HTSN	<i>(ice going vessels)</i> Thickness of snow cover		m
$h_{ m SS}$	HSS	(ACV and SES) Stern seal height	Distance from side wall keel to lower edge of stern seal	m
$h_{ m R}$	HRU	(planing, semi-displacement vessels) Wetted height of rudders		m

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit
Ι	IM	(fundamental, time and fre- quency domain quantity) Im- aginary variable		1
Ι	ID	(fluid mechanics, flow fields) Induction factor	Ratio between velocities in- duced by helicoidal and by straight line vortices	1
Ι	I, IN	(ships, basic quantities) Mo- ment of inertia	Second order moment of a mass distribution	kg m ²
Ι	Ι	(sailing vessels) Fore trian- gle height		m
I ₁₂ I ₂₃ I ₃₁	I2(1,2) I2(2,3) I2(3,1)	(solid body mechanics, iner- tial and hydro properties) Real products of inertia in case of non-principal axes		kg m ²
<i>I^huv</i>	IH(U,V)	(solid body mechanics, iner- tial and hydro properties) Generalized hydrodynamic inertia	$\partial F_u^h / \partial \dot{\mathbf{V}}_v$	
Iij	IN(I,J)	(solid body mechanics, iner- tial and hydro properties) Second moments of mass, i.e. inertia distribution	Alias mass moments of iner- tia	kg m²
I _{AS}	ASI	(seakeeping, large amplitude motions capsizing) Attained subdivision index		1
IL	IL	(solid body mechanics, iner- tial and hydro properties) Longitudinal second mo- ment of water-plane area	About transverse axis through centre of floatation	m ⁴
Ι _T	IT	(solid body mechanics, iner- tial and hydro properties) Transverse second moment of water-plane area	About longitudinal axis through centre of floatation	m^4
$I_{\rm VR}$	IVR	(ships, hull resistance, water jets) Intake velocity ratio	$V_{I'}V$	1
I _{xy}	IXY	(solid body mechanics, iner- tial and hydro properties) Real products of inertia in case of non-principal axes		kg m ²
Iy, Iyy,	IY, IYY,	(solid body mechanics, iner- tial and hydro properties) Pitch moment of inertia around the principal axis v		kg m ²

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
I_{yz}	IYZ	(solid body mechanics, iner- tial and hydro properties) Real products of inertia in case of non-principal axes		kg m ²
I_z , I_{zz}	IZ, IZZ,	(solid body mechanics, iner- tial and hydro properties) Yaw moment of inertia around the principal axis z		kg m ²
I _{zx}	IZX	(solid body mechanics, iner- tial and hydro properties) Real products of inertia in case of non-principal axes		kg m ²
i	Ι	(fundamental, time and fre- quency domain quantity) Im- aginary unit	$\sqrt{-1}$	1
i _{EI}	ANENIN	(<i>multi-hull vessels</i>) Half an- gle of entrance at tunnel (in- ner) side	Angle of inner water line with reference to centre line of demihull	rad
i _{EO}	ANENOU	<i>(multi-hull vessels)</i> Half angle of entrance at outer side	Angle of outer water line with reference to centre line of demihull	rad
i _E	ANEN	(ships, hull geometry) Angle of entrance, half	Angle of waterline at the bow with reference to centre plane, neglecting local shape at stem	rad
i _G	RK	(ships, propulsor geometry) Rake ISO symbol: Rk	The distance between the propeller plane and the gen- erator line in the direction of the shaft axis. Aft displace- ment is positive rake.	m
i _R	ANRU	(ships, hull geometry) Angle of run, half	Angle of waterline at the stern with reference to the centre-plane, neglecting lo- cal shape of stern frame	rad
is	RAKS	(ships, propulsor geometry) Rake, skew-induced	The axial displacement of a blade section which occurs when the propeller is skewed. Aft displacement is positive rake	m
<i>i</i> T	RAKT	(ships, propulsor geometry) Rake, total	The axial displacement of the blade reference line from the propeller plane $i_G + i_S = c_S \sin \varphi$ Positive direction is aft.	m

I, i

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
J	JEI	(ships, propulsor perfor- mance) Propeller advance ratio	$V_{\rm A} / (D n)$	1
J	J	(<i>sailing vessels</i>) Fore trian- gle base		m
$J_{ m A}$	JA	(ships, propulsor perfor- mance) Apparent or hull ad- vance ratio	$V/(D n) = V_{\rm H}/(D n)$	1
$J_{ m H}$	JH	<i>(ships, propulsor perfor- mance)</i> Apparent or hull ad- vance ratio	$V/(D n) = V_{\rm H}/(D n)$	1
$J_{ m P}$	JP	(ships, propulsor perfor- mance) Propeller advance ratio for ducted propeller	$V_{\rm P}/(D n)$	1
$J_{\mathrm{P}Q}$	JPQ	(ships, propulsor perfor- mance) Advance ratio of propeller determined from torque identity		1
J _{PT}	JPT	(ships, propulsor perfor- mance) Advance ratio of propeller determined from thrust identity		1
J_Q	JQ	(ships, propulsor perfor- mance) Advance ratio of propeller determined from torque identity		1
J_T	JT	(ships, propulsor perfor- mance) Advance ratio of propeller determined from thrust identity		1
$J_{ m VR}$	JVR	(ships, hull resistance, water jets)) Jet velocity ratio	V _J /V	1
j	J	(fundamental, time and fre- quency domain quantity) In- teger values	-∞+∞	s

J, j

ITTC	Computer	Name	Definition or	SI-
Symbol Symbol		Name	Explanation	Unit
			1	1
		(ships, hydrostatics, stability		
K		seakeeping, large amplitude		
		motions capsizing) Keel ref-		
		erence		
		(ships, manoeuvrability, sea-		
		keeping, solid body mechan-		
Κ	MX	ics, loads) Roll moment on		Nm
		body, moment about body <i>x</i> -		
		axis		
		(ships, manoeuvrability, sea-		
Κ	KS	<i>keeping)</i> Gain factor in linear		1/s
		manoeuvring equation		
		(solid body mechanics,		
K	K	<i>loads</i>) Moment around body		Nm
		axis x		
		(ships, performance) Ship		
K_1	C1	model correlation factor for	$\eta_{\rm DS}$ / $\eta_{\rm DM}$	1
		propulsive efficiency		
		(ships, performance) Ship		
K_2	C2	model correlation factor for	$n_{\rm S} / n_{\rm M}$	1
		propeller rate revolution		
		(ships, hydrostatics, stability,		
		seakeeping, large amplitude	Distance from the assumed	
\overline{KA}	ZKA	motions capsizing) Assumed	centre of gravity A to the	m
		centre of gravity above	moulded base or keel K	
		moulded base or keel		
			Scale effect correction factor	
KADD	ΚΔΡ	(ships, performance) Ap-	for model appendage drag	1
MAPP		pendage correction factor	applied at the towing force in	1
			a self-propulsion test	
		(ships, hydrostatics, stability,		
		seakeeping, large amplitude	Distance from the centre of	
\overline{KB}	ZKB	<i>motions capsizing)</i> Centre of	buoyancy B to the moulded	m
		buoyancy above moulded	base or keel K	
		base or keel		
		(ships, hull resistance) R.E.	$(4 \pi)^{1/2} E_{r} = 2r$	
K^C	CIRCK	Froude's speed displacement	$(4 \pi)^{-} F V O I$	1
		coefficient	$(4\pi/g)^{12}V_{\rm K}/V^{10}$	
		(ships, unsteady propeller		
K_{Fi}	KF(I)	forces) Vibratory force	$F_i / (\rho n^2 D^4)$	1
		coefficients		
		(ships, unsteady propeller	According to definition for	
K _{Fu}	KF(U)	<i>forces</i>) Generalized vibratory	According to definitions of	1
		force coefficients	Λ_{Fi} and Λ_{Mi}	

Version 2017

)
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

KG	ZKG	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Centre of gravity above moulded base or keel	Distance from centre of grav- ity G to the moulded base or keel K	m
\overline{Kg}	ZKAG	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Vertical centre of gravity of added or removed weight above moulded base or keel	Distance from centre of grav- ity, g, to the moulded base or keel K	m
K_{H}		(ships, propulsor geometry, water jets) Head coefficient:	$\frac{gH}{n^2D^5}$	
KM	ZKM	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Trans- verse metacentre above moulded base or keel	Distance from the transverse metacentre M to the moulded base or keel K	m
K _{Mi}	KM(I)	(ships, unsteady propeller forces) Vibratory moment coefficients	$M_i / (\rho n^2 D^5)$	1
\overline{KM}_L	ZKML	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Longitu- dinal metacentre above moulded base or keel	Distance from the longitudi- nal metacentre M_L to the moulded base or keel K	m
K _P	КР	(ships, propulsor perfor- mance) Delivered power co- efficient	$P_{\rm D} / (\rho \ n^3 \ D^5) = 2 \ \pi \ K_Q$	1
K_p	KPR	(ships, unsteady propeller forces) Pressure coefficient	$p / (\rho n^2 D^2)$	1
KQ	KQ	(ships, propulsor perfor- mance, hull resistance, water jets)) Torque coefficient	$Q / (\rho n^2 D^5)$	1
K_{QJ}		(<i>ships, hull resistance, water jets</i>) Flow rate coefficient:	$\frac{Q_{\rm J}}{nD^3}$	1
<i>K</i> _{<i>Q</i>0}	KQ0	(ships, propulsor perfor- mance) Torque coefficient of propeller converted from be- hind to open water condition	$K_Q \eta_{\rm R}$	1
K _{QT}	KQT	(ships, propulsor perfor- mance) Torque coefficient of propeller determined from thrust coefficient identity		1
K _{QIA}	KQICMS	<i>(ice going vessels)</i> Average coefficient of torque in ice	Q_{IA} / ($\rho_{\mathrm{W}} n_{\mathrm{IA}}^2 D^5$)	1

K, k

Version 2017				K, k
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

K _{SC}	KSC	(ships, propulsor perfor- mance) Centrifugal spindle torque coefficient	$Q_{\rm SC}$ / ($ ho n^2 D^5$)	1
K _{SH}	KSH	(<i>ships, propulsor perfor-</i> <i>mance</i>) Hydrodynamic spin- dle torque coefficient	$Q_{ m SH}$ / ($ ho$ n^2 D^5)	1
K _R	KR	(ships, hull resistance) Re- sistance coefficient corre- sponding to K_Q , K_T	$R / (\rho D^4 n^2)$	1
K _T	KT	(ships, propulsor perfor- mance) Thrust coefficient	$T/(\rho n^2 D^4)$	1
K _{TD}	KTD	(<i>ships, propulsor perfor-</i> <i>mance</i>) Duct thrust coeffi- cient	$T_{\rm D}$ / ($ ho$ n^2 D^4)	1
K_{TIA}	KTICMS	<i>(ice going vessels)</i> Average coefficient of thrust in ice	$T_{\rm IA} / (\rho_{\rm W} n_{\rm IA}{}^2 D^4)$	1
K _{TP}	КТР	(ships, propulsor perfor- mance) Ducted propeller thrust coefficient	$T_{\rm P} / (\rho n^2 D^4)$	1
$K_{T\mathrm{T}}$	KTT	(ships, propulsor perfor- mance) Total thrust coeffi- cient for a ducted propeller unit	$K_{TP}+K_{TD}$	1
k		<i>(uncertainty)</i> Coverage fac- tor	For calculation of expanded k uncertainty $U = ku_c(y)$	1
k	НК	(fluid mechanics, flow pa- rameter) Roughness height or magnitude	Roughness height, usually in terms of some average	m
k	WN	(environmental mechanics, waves) Wave number	$2 \pi / L_{\rm W} = \omega^2 / g$	1/m
k	К	<i>(ships, hull resistance)</i> Three dimensional form factor on flat plate friction	$(C_{\rm V} - C_{\rm F0}) / C_{\rm F0}$	1
k	RDGX	(solid body mechanics, iner- tial and hydro properties) Roll radius of gyration around the principal axis x	$(I_{xx}/m)^{1/2}$	m
k		(seakeeping, large amplitude motions capsizing) Roll damping coefficient express- ing the effect of bilge keels		1
k _p		<i>(uncertainty)</i> Coverage factor for probability <i>p</i>	For calculation of expanded uncertainty $U_p = k_p u_c(y)$	1

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
k _P	КР	(ships, resistance and pro- pulsion, propulsor perfor- mance) Roughness height of Propeller blade surface		m
ks	SK	(fluid mechanics, flow pa- rameter) Sand roughness	Mean diameter of the equiva- lent sand grains covering a surface	- m
k _S	KHS	(ships, resistance and pro- pulsion, ship performance) Roughness height of Hull surface		m
k _x , k _{xx}	RDGX	(solid body mechanics, iner- tial and hydro properties) Roll radius of gyration around the principal axis x	$(I_{xx}/m)^{1/2}$	m
ky, kyy	RDGY	(solid body mechanics, iner- tial and hydro properties) Pitch radius of gyration around the principal axis y	$(I_{yy}/m)^{1/2}$	m
kz, kzz	RDGZ	(solid body mechanics, iner- tial and hydro properties) Yaw radius of gyration around the principal axis z	$(I_{zz}/m)^{1/2}$	m
$k(\theta)$	WDC	<i>(ships, hull resistance)</i> Wind direction coefficient	$C_{AA} C_{AA0}$	1

K, k

				/
ITTC	Computer	Nome	Definition or	SI-
Symbol	Symbol	maine	Explanation	Unit

L	L	(ships, hull geometry) Length of ship	Reference length of ship (generally length between the perpendiculars)	m
L	L, LE	(ships, basic quantities) Length		m
L	FF(3)	(ships, basic quantities) Lift (force)	Force perpendicular to trans- latory velocity	N
L		(seakeeping, large amplitude motions capsizing) Length of the vessel on the waterline in maximum load condition - IMO/IS		m
L_0	LF0	<i>(fluid mechanics, lifting sur- faces)</i> Lift force for angle of attack of zero	$C_{L0}A_{\rm FT} q$	N
L_0	LF0	<i>(hydrofoil boats)</i> Profile lift force for angle of attack of zero	$C_{L0}A_{ m FT} q$	N
$L_{\rm B}$	LB	(ACV and SES) Deformed bag contact length		m
L _b	LSB	(ships, manoeuvrability, sea- keeping) Static stability lever	N_v / Y_v	m
L _C	LC	(planing, semi-displacement vessels) Wetted chine length, underway		m
LC	LAC	(ACV and SES) Cushion length		m
L _{CB}	ХСВ	(ships, hydrostatics, stabil- ity) Longitudinal centre of buoyancy (LCB)	Longitudinal distance from reference point to the centre of buoyancy, B such as X _{MCF} from Midships	m
$L_{\rm CF}$	XCF	(ships, hydrostatics, stabil- ity) Longitudinal centre of flotation (LCF)	Longitudinal distance from reference point to the centre of flotation, F such as X _{MCF} from Midships	m
$L_{\rm CG}$	XCG	(ships, hydrostatics, stabil- ity) Longitudinal centre of gravity (LCG)	Longitudinal distance from a reference point to the centre of gravity, G such as X _{MCG} from Midships	m
$L_{\rm CH}$	LCH	(<i>multi-hull vessels</i>) Length of centre section of hull	Length of prismatic part of hull	m
L _{CS}	LCS	<i>(multi-hull vessels)</i> Length of centre section of strut	Length of prismatic part of strut	m
L _D	LD	(ships, propulsor geometry) Duct length		m

				/
ITTC	Computer	Nome	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

Lden	LDEN	(ships, propulsor geometry) Duct entry part length	Axial distance between lead- ing edge of duct and propel- ler plane	m
L _{DEX}	LDEX	(ships, propulsor geometry) Duct exit length	Axial distance between pro- peller plane and trailing edge of duct	m
L _d	LSR	(ships, manoeuvrability, sea- keeping) Damping stability lever	$(N_r - mux_G) / (Y_r - mu)$	m
$L_{\rm E}$	LEN	(ships, hull geometry) Length of entrance	From the forward perpendic- ular to the forward end of parallel middle body, or maximum section	m
$L_{\rm E}$	LACE	(ACV and SES) Effective length of cushion	$A_{\rm C} / B_{\rm C}$	m
$L_{ m EFF}$	LEFF	(sailing vessels) Effective length for Reynolds Number		m
$L_{ m F}$	LF	<i>(ships, appendage geometry)</i> Length of flap or wedge	Measured in direction paral- lel to keel	m
$L_{ m F}$	LF	<i>(hydrofoil boats)</i> Lift force on foil	$C_L A_{\rm FT} q$	Ν
$L_{ m FF}$	LFF	(hydrofoil boats) Lift force on front foil	$C_L A_{ m FF} q$	Ν
$L_{ m FR}$	LFR	<i>(hydrofoil boats)</i> Lift force on rear foil	$C_L A_{\rm FR} q$	Ν
$L_{ m FS}$	LFS	(ships, hull geometry) Frame spacing	used for structures	m
$L_{ m H}$	LH	<i>(multi-hull vessels)</i> Box length	Length of main deck	m
$L_{ m H}$	LH	(ACV and SES) Horizontal spacing between inner and outer side skirt hinges or at- tachment points to structure	needs clarification	m
$L_{ m HY}$		(sailing vessels) Hydrody- namic lift force		Ν
$L_{ m K}$	LK	(planing, semi-displacement vessels) Wetted keel length, underway		m
$L_{ m M}$	LM	(planing, semi-displacement vessels) Mean wetted length, underway	$(L_{\rm K} + L_{\rm C}) / 2$	m
$L_{\rm NH}$	LNH	(<i>multi-hull vessels</i>) Length of nose section of hull	Length of nose section of hull with variable diameter	m
L _{NS}	LNS	<i>(multi-hull vessels)</i> Length of nose section of strut	Length of nose section of strut with variable thickness	m

Version 2014

ITTCComputer SymbolDefinition or ExplanationSI- Unit)
	ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

L _{OA}	LOA	(ships, hull geometry) Length, overall		m
Los	LOS	(ships, hull geometry) Length, overall submerged		m
$L_{ m P}$	LP	<i>(ships, hull geometry)</i> Length of parallel middle body	Length of constant trans- verse section	m
L_p	SPL	(underwater noise) Sound pressure level	$\begin{vmatrix} L_p \\ = 10 \log_{10} \left(\frac{\bar{p}_{rms}^2}{p_{ref}^2} \right) dB, \ p_{ref} \\ = 1 \ \mu Pa \end{vmatrix}$	
L_{PB}	LPB	(ships, hull geometry) Length of Pod Main Body		m
L_{PBF}	LPBF	(ships, hull geometry) Length of Bottom Fin	Code length of bottom fin under pod main body	m
$L_{ m PP}$	LPP	<i>(ships, hull geometry)</i> Length between perpendiculars		m
$L_{ m PR}$	LPRC	<i>(planing, semi-displacement vessels)</i> Projected chine length	Length of chine projected in a plane parallel to keel	m
L _{PS}	LPS	(ships, hull geometry) Length of Upper Strut	Code length of strut between forward edge and aft edge	m
$L_{ m R}$	LRU	(ships, hull geometry) Length of run	From section of maximum area or after end of parallel middle body to waterline ter- mination or other designated point of the stern	m
Ls	LS	(<i>multi-hull vessels</i>) Strut length	Length of strut from leading to trailing edge	m
Ls	LS	(ACV and SES) Distance of leading skirt contact point out-board or outer hinge of attachment point to structure	needs clarification	m
L _s	SRNL	(underwater noise) Underwater sound radiated noise level at a reference dis- tance of 1m	L_{s} $= L_{p}$ $+ 20 \log_{10} \left[\frac{d}{d_{ref}} \right] dB, d_{ref}$ $= 1 m$	
$L_{\rm SB}$	LSB	(<i>planing, semi-displacement</i> <i>vessels</i>) Total length of shafts and bossings		m
L _{SH}	LSH	<i>(multi-hull vessels)</i> Length of submerged hull		m

L, l

Version 2014

				—
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

			I	1
$L_{\rm SS}$	LSS	(ships, hull geometry) Sta- tion spacing		m
L_{TO}	LT0	(hydrofoil boats) Lift force at take off	$C_{L m TO}A_{ m FT}q$	Ν
$L_{ m VHD}$	LVD	(planing, semi-displacement vessels) Vertical component of hydrodynamic lift		N
$L_{\rm VS}$	LVS	<i>(planing, semi-displacement vessels)</i> Hydrostatic lift	Due to buoyancy	Ν
$L_{ m W}$	LW	(environmental mechanics, waves) Wave length	The horizontal distance be- tween adjacent wave crests in the direction of advance	m
$L_{ m WV}$	LWV	<i>(environmental mechanics, waves)</i> Wave length estimated by visual observation	Measured in the direction of wave propagation	m
$L_{ m WL}$	LWL	(ships, hull geometry) Length of waterline		m
l	ХТА	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal trimming arm	$X_{ m CG}$ - $X_{ m CB}$	m
l		(seakeeping, large amplitude motions capsizing) Arm of dynamic stability corrected for free surfaces - IMO/table		m
l		(seakeeping, large amplitude motions capsizing) Maxi- mum tank length		m
l _b	LSB	(ships, manoeuvrability, sea- keeping) Static stability leven	N_{ν} / Y_{ν}	m
lc	LC	(fluid mechanics, cavitation) Cavity length	Streamwise dimension of a fully-developed cavitating region	m
l _{CP}	LCP	<i>(planing, semi-displacement vessels)</i> Lever of resultant of pressure forces, underway	Distance between centre of pressure and aft end of plan- ing surface	m
<i>l</i> _d	LSR	(ships, manoeuvrability, sea- keeping) Damping stability lever	$(N_r - mux_G) / (Y_r - mu)$	m
$l_{ m F}$	LEFF	<i>(hydrofoil boats)</i> Horizontal distance of centre of pres- sure of front foil to centre of gravity		m

L, l

Version 2014

				/
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

l _{FR}	LEFR	<i>(hydrofoil boats)</i> Horizontal distance between centres of pressure of front and rear foils	$l_{\rm F} + l_{ m R}$	m
$l_{ m h}$	LH	Hub length	The length of the hub, in- cluding any fore and aft shoulder	m
l _{ha}	LHA	Hub length, aft	Length of the hub taken from the propeller plane to the aft end of the hub includ- ing aft shoulder	m
$l_{ m hf}$	LHF	Hub length, fore	Length of the hub taken from the propeller plane to the fore end of the hub in- cluding fore shoulder	m
l _R	LERF	<i>(hydrofoil boats)</i> Horizontal distance of centre of pres- sure of rear foil to centre of gravity		m
lr	LHRD	(ships, manoeuvrability, turning circles) Loop height of $r-\delta$ curve for unstable ship		rad/s
ls		<i>(seakeeping, large amplitude motions capsizing)</i> Actual length of enclosed super-structure extending from side to side of the vessel		m
$l_{ m w}$		(seakeeping, large amplitude motions capsizing) Wind heeling lever		m
l_{δ}	LWRD	(ships, manoeuvrability, turning circles) Loop width of r - δ curve for unstable ship		rad

L, l

		7
ITTC Computer	Definition or	SI-
Symbol Symbol Name	Explanation	Unit

		1		
М	M1, F1	(ships, basic quantities) Mo-	First order moment of a	Nm
М	MO	(ships, basic quantities) Mo-		Ne
171	MO	mentum		18
		(fundamental, statistical,		
Μ	MR	stochastic) Expectation, pop-		
		ulation mean		
		(ships, hydrostatics, stabil-		
м		ity) (seakeeping, large am-	See subscripts for qualifica-	Nm
141		plitude motions capsizing)	tion	1 1111
		Metacentre of a vessel		
		(solid body mechanics,		
М,	М,	<i>loads)</i> Moment around body		
		axis y		
		(ships, manoeuvrability, sea-		
М	MY	keeping) Pitch moment on		Nm
171		body, moment about body y-		1 (111
		axis		
М	MSP	(hydrofoil boats) Vessel		Nm
		pitching moment		
M	MS	(hull geometry) Midships		
Ма	MN	(fluid mechanics, flow pa-	V/c	1
		<i>rameter</i>) Mach number		-
$M^{\mathrm{B}}{}_{i}$	MB(I)	(solid body mechanics,	$F^{S1}_{2}, F^{S1}_{3}_{3}$	Nm
		<i>loads)</i> Bending moment		
		(ships, hull geometry) R.E.		
M^{C}	CIRCM	Froude's length coefficient,	$L / V^{\prime 3}$	1
		or length-displacement ratio		
		(seakeeping, large amplitude		
$M_{\rm C}$		motions capsizing) Maxi-		Nm
		mum offset load moment		
		(seakeeping, large amplituae		
14		motions capsizing) Milli-		Nm
<i>IVI</i> _c		determined when account is		11111
		takan of rolling		
		(hydrofoil hogts) Load factor		
$M_{ m F}$	MLF	(<i>hydrojou bouis</i>) Load factor	$L_{\rm FF}$ / \varDelta	1
		(seakeening large amplitude		
		(seukeeping, iurge amplitude		
$M_{ m FS}$		face moment at any incline		Nm
		tion		
		(shing unstandy propallar		
M_i	M(I)	forces) Vibratory moment	i = 1, 2, 3	Nm
		<i>forces</i> , violatory moment		

Version 2017

 M_{TC}

 M_{TM}

MTC

MTM

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Ivanie	Explanation	Unit
$M_{ m L}$	MB(3), FS(6)	(<i>ships, seakeeping</i>) Wave excited lateral bending mo- ment	Alias horizontal!	Nm
\overline{M}_{is}		(ships, hull resistance, water jets) Momentum flux at sta- tion s in i direction	$\iint_{A_s} \rho u_i \left(u_j n_j \right) dA$	W
$M_{ m N}$	MB(2), FS(5)	(ships, seakeeping) Wave excited normal bending mo- ment	Alias vertical!	Nm
M, MR	MR	(<i>fundamental, statistical, stochastic</i>) Expectation, population mean		
M _R	MLR	(hydrofoil boats) Load factor of rear foil	$L_{ m FR}$ / Δ	1
M _R		(seakeeping, large amplitude motions capsizing) Heeling moment due to turning		Nm
M _S	MS	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Mo- ment of ship stability in gen- eral	$\Delta \overline{GZ}$ Other moments such as those of capsizing, heeling, etc. will be represented by $M_{\rm S}$ with additional sub- scripts as appropriate	Nm
MS	MS	(<i>fundamental, statistical, stochastic</i>) Average, sample mean		1
$M_{ m T}$	MT(1), FS(4)	(ships, seakeeping) Wave excited torsional moment		Nm
M ^T	MT, MB(1)	(solid body mechanics, loads) Twisting or torsional moment	F^{S1}	Nm

(ships, hydrostatics, stability, seakeeping, large ampli-

tude motions capsizing) Mo-

ment to change trim by one

(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing)

Moment to change trim by

 ΔC_{MTL}

centimetre

one meter

Nm/cm

Nm/m

ITTC Syr	nbols		
Version 2	017		
ITTC	Computer	Norma	Definition or

M.	m
TATe	

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
M _{uv}	MA(U,V)	(ships, unsteady propeller forces, solid body mechan- ics, inertial and hydro prop- erties) Generalized mass, i. e. generalized inertia tensor of a (rigid) body referred to a body fixed coordinate sys- tem	$egin{aligned} M_{ij} &= M^0{}_{ij} \ M_{i,\ 3+j} &= M^{1\mathrm{T}}{}_{ij} \ M_{3+i,\ j} &= M^1{}_{ij} \ M_{3+i,\ 3+j} &= M^2{}_{ij} \end{aligned}$	kg
$M_{ m W}$		<i>(seakeeping, large amplitude motions capsizing)</i> Maxi- mum heeling moment due to wind		Nm
$M_{ m v}$		(seakeeping, large amplitude motions capsizing) Dynami- cally applied heeling mo- ment due to wind pressure		Nm
$M_{ m x}$,	M(1),	(solid body mechanics, loads) Moment around body axis x		Nm
$M_{ m y}$,	M, M(2),	(solid body mechanics, loads) Moment around body axis y		Nm
$M_{ m z}$,	M(3)	(solid body mechanics, loads) Moment around body axis z		Nm
т	M, MA, MASS	(ships, basic quantities, solid body mechanics, inertial and hydro properties) Mass		kg
m	XACB	(ships, hydrostatics, stabil- ity) Longitudinal centre of floatation of added buoyant layer	Longitudinal distance from reference point to the centre of the added buoyant layer, b	m
m	SHIPMA	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Ship mass	W/g	kg
m	BLCK	(ships, hull resistance) Blockage parameter	Maximum transverse area of model ship divided by tank cross section area	1
m^{0}_{ij} , m_{ij}	M0(I,J), MA(I,J)	(solid body mechanics, iner- tial and hydro properties) Zeroth moments of mass, i.e. inertia distribution, mass tensor	$m_{ij} = m \; \delta_{ij}$	kg

Version 2017

V CI SIUII 2017				171, 111
ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

				r
		(solid body mechanics, iner-		
m ¹	M1(II)	tial and hydro properties)	Alias static moments of	ka m
m y	1/11(1,5)	First moments of mass, i.e.	mass	Kg III
		inertia distribution		
		(solid body mechanics, iner-		
m^2_{22} ,	M2(2,2),	tial and hydro properties)		$ka m^2$
<i>m</i> 55	MA(5,5)	Pitch moment of inertia		kg III
		around the principal axis y		
		(solid body mechanics, iner-		
m^2_{33} ,	M2(3,3),	tial and hydro properties)		$ka m^2$
<i>m</i> 66	MA(6,6)	Yaw moment of inertia		Kg III
		around the principal axis z		
		(solid body mechanics, iner-		
m ²	M2(II)	tial and hydro properties)	Alias mass moments of iner-	$ka m^2$
m_{ij} ,	IVI2(1,J),	Second moments of mass,	tia	kg III
		i.e. inertia distribution		
		(seakeeping, large amplitude		
$m_{\rm LCC}$		motions capsizing) Mass in		kg
		light craft condition		
		(seakeeping, large amplitude		
MIDO		motions capsizing) Mass in		kα
<i>m</i> LDC		loaded displacement condi-		кg
		tion according to		
		(seakeeping, large amplitude		
$m_{\rm MTL}$		motions capsizing) Maxi-		kg
		mum total load (mass)		
		(environmental mechanics,		
m_n	MN	waves) n-th moment of wave	$\int f^n S(f) df$	m^2/s^n
		power spectral density		
		(seakeeping, large amplitude		
mesc		motions capsizing) Mass in		ka
msse		standard sailing conditions		кs
		according to		
			$1/n \Sigma x_i$, $i = 1n$	
		(fundamental, statistical)	unbiased random estimate of	
m_x	XMS	Average or sample mean of	the expectation with	
		a random quantity	$x^{AE} = x^{E}$	
			$x^{\text{VSE}} = x^{\text{V}} / n$	

M, m

				/
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

Ν	FR, N	<i>(ships, basic quantities)</i> Frequency or rate of revolution	Alias RPS (RPM in some propulsor applications)	Hz
N		(uncertainty) Number of in- put quantities	Number of input quantities X_i on which the measurand Y depends	1
Ν	MZ	<i>(ships, manoeuvrability, sea- keeping)</i> Yaw moment on body, moment about body z- axis		Nm
N	N, M(3), F1(3), F(6)	(solid body mechanics, loads) Moment around body axis z		Nm
N _A	NAPP	(planing, semi-displacement vessels) Appendage lift force (normal to reference line)	Lift forces arising from ap- pendages inclined to flow, assumed to act normally to reference line	N
$N_{ m B}$	NBOT	(planing, semi-displacement vessels) Bottom normal force (normal to reference line)	Resultant of pressure and buoyant forces assumed act- ing normally to the reference line	N
$N_{ m P}$	NPR	(ships, propulsor geometry) Number of propellers		1
Npp	NPP	(planing, semi-displacement vessels) Propeller pressure force (normal to reference line)	Resultant of propeller pres- sure forces acting normally to the reference line	N
N _{PS}	NPS	(planing, semi-displacement vessels) Propeller suction force (normal to reference line)	Resultant of propeller suc- tion forces acting normally to the reference line	N
Nr	NR	(ships, manoeuvrability, sea- keeping) Derivative of yaw moment with respect to yaw velocity	$\partial N / \partial r$	Nms
N _{RP}	NRP	(planing, semi-displacement vessels) Rudder pressure force (normal to reference line)	Resultant of rudder pressure forces acting normally to the reference line	N
Nż	NRRT	(ships, manoeuvrability, sea- keeping) Derivative of yaw moment with respect to yaw acceleration	∂N/∂r	Nms ²
NVR		(ships, hull resistance, water jets) Nozzle velocity ratio:	$\frac{\overline{u_{6\xi}}}{U_0}$	1

Version 2017

	ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
--	----------------	--------------------	------	---------------------------	-------------

$N_{ u}$	NV	(ships, manoeuvrability, sea- keeping) Derivative of yaw moment with respect to	$\partial N / \partial v$	Ns
Ný	NVRT	(ships, manoeuvrability, sea- keeping) Derivative of yaw moment with respect to sway acceleration	$\partial N/\partial \dot{\mathbf{v}}$	Nms ²
N_{δ}	ND	(<i>ships, manoeuvrability, sea-</i> <i>keeping</i>) Derivative of yaw moment with respect to rud- der angle	$\partial N / \partial \delta$	Nm
n		Number of repeated observa- tions		1
n	FR, N	(ships, basic quantities, per- formance, propulsor perfor- mance) Frequency or rate of revolution	Alias RPS (RPM in some propulsor applications)	Hz
n		(ships, hull resistance, water jets) Impeller rotation rate		Hz
n _{AW}	NAW	(<i>ships, seakeeping</i>) Mean increased rate of revolution in waves		1/s²
n _i		(ships, hull resistance, water jets) Unit normal vector in <i>i</i> direction		1
n _{IA}	FRICMS	<i>(ice going vessels)</i> Average rate of propeller revolution in ice		Hz

N, n

Version 2017

				•,•
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
\overline{OG}		(seakeeping, large amplitude motions capsizing) Height of centre of gravity above wa- terline		m

0,0

Version 2017			P , p	
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

Р	P, PO	(ships, basic quantities) Power		W
Р	РТ	(fluid mechanics, boundary layers) Total pressure		Ра
Р	PITCH	(<i>ships, propulsor geometry</i>) Propeller pitch in general		m
Р	Р	<i>(sailing vessels)</i> Mainsail height	(sailing vessels) Mainsail height	
$P_{\rm AW}$	PAW	(ships, seakeeping) Mean power increased in waves		W
PB	РВ	<i>(ships, performance)</i> Brake Power delivered by prime mover		W
PD	PD	(fundamental, statistical, stochastic) Probability den- sity		1
PD	PD, PP	<i>(ships, performance)</i> Delivered power, propeller power	Qω	W
P _D		<i>(ships, hull resistance, water jets)</i> Delivered Power to pump impeller		W
P_{DI}	PDI	<i>(ice going vessels)</i> Delivered power at propeller in ice	$2 \pi Q_{\mathrm{IA}} n_{\mathrm{IA}}$	W
$P_{\rm E}$	PE, PR	<i>(ships, performance)</i> Effec- tive power, resistance power	R V	W
$P_{\rm E}$		(ships, hull resistance, water jets) Effective power:	$R_{ m TBH} U_0$	W
P _F	PF	(<i>fundamental, statistical, stochastic</i>) Probability function		1
$P_{\rm FCU}$	PFCU	(ACV and SES) Power of lift fan		W
$P_{\rm FSK}$	PFSK	(ACV and SES) Power of skirt fan		W
P_{I}	PI	(ships, performance) Indi- cated power	Determined from pressure measured by indicator	W
PJ	PJ	(ships, propulsor perfor- mance) Propeller jet power	$\eta_{\mathrm{TJ}} T V_{\mathrm{A}}$	W
$P_{ m JSE}$		<i>(ships, hull resistance, wa- ter jets)</i> Effective Jet Sys- tem Power	$Q_{ m J}H_{ m 1A7}$	W
P_m	PM	(<i>propulsion, propulsor</i>) Propeller mean pitch		m
P_{MB}	PMB	(propulsion, propulsor) Blade mean pitch		m

Version 2017

				/ 1
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
P _n	PN	<i>(ships, manoeuvrability, seakeeping)</i> P-number, heading change per unit rudder angle in one ship length		1
PP	PD, PP	<i>(ships, performance)</i> Delivered power, propeller power	. Qω	W
		(ships, hull resistance, wa-		

		length		
P_{P}	PD, PP	<i>(ships, performance)</i> Delivered power, propeller power	Qω	W
$P_{\rm PE}$		(ships, hull resistance, wa- ter jets) Pump effective power:	$Q_{\rm J}H_{35}$	W
P_R	PE, PR	<i>(ships, performance)</i> Effec- tive power, resistance power	R V	W
Ps	PS	(ships, performance) Shaft power	Power measured on the shaft	W
P_T	PTH	$(ships, performance)$ Thrust $T V_A$		W
$P_{T\rm E}$		(ships, hull resistance, water jets) Effective thrust power		W
$P_{ m V}$		<i>(seakeeping, large amplitude motions capsizing)</i> Wind pressure		Ра
р		(uncertainty) Probability	Level of confidence: $0 \le p \le 1.0$	1
р	Р	(solid body mechanics, rigid body motions) Rotational ve- locity around body axis x		rad/s
р	PR, ES	<i>(fluid mechanics, flow fields)</i> Pressure, density of static flow energy		Ра
р	PR	(fluid mechanics, boundary layers) Static pressure		Ра
р	PDR	(ships, propulsor geometry) Pitch ratio ISO Symbol: P/D	P / D	1
р	PR	(ships, unsteady propeller forces) Pressure		Ра
р	OX, P	<i>(ships, manoeuvrability)</i> Roll velocity, rotational ve- locity about body <i>x</i> -axis		1/s
p_0	РО	<i>(fluid mechanics, flow fields)</i> Ambient pressure in undis- turbed flow		Ра
p_0	PR0	(<i>ships, hull resistance, water</i> <i>jets</i>) Ambient pressure in un- disturbed flow		N/m²

P, p

Version 2017

				/ 1
ITTC	Computer	Nome	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

pА	PA	<i>(fluid mechanics, cavitation)</i> Ambient pressure		Ра
<i>p</i> _{AC}	РАСО	<i>(fluid mechanics, cavitation)</i> Collapse pressure	Absolute ambient pressure at which cavities collapse	Ра
<i>р</i> аі	PAIC	<i>(fluid mechanics, cavitation)</i> Critical pressure	Absolute ambient pressure at which cavitation inception takes place	Ра
<i>р</i> в	PBM	(ACV and SES) Mean bag pressure		Ра
$p_{\rm BS}$	PBS	(ACV and SES) Bow seal pressure	Pressure in the bow seal bag	Pa
pс	PC	<i>(fluid mechanics, cavitation)</i> Cavity pressure	Pressure within a steady or quasi-steady cavity	Pa
<i>р</i> сі	PCIN	(<i>fluid mechanics, cavitation</i>) Initial cavity pressure Sary to create a cavity		Pa
рсе	PCE	(ACV and SES) Mean effec- tive skirt pressure		Ра
<i>p</i> cu	PCU	(ACV and SES) Cushion pressure	Mean pressure in the cush- ion	Pa
$p_{ m FT}$	PFT	(ACV and SES) Fan total pressure		Ра
p_{LR}	PLR	(ACV and SES) Cushion pressure to length ratio	$P_{\rm CU}/L_{\rm C}$	Pa/m
p _s		(<i>ships, hull resistance, water</i> <i>jets</i>) Local static pressure at station s		Ра
<i>р</i> ѕк	PSK	(ACV and SES) Skirt pres- sure in general		Ра
pss	PSS	(ACV and SES) Stern seal pressure	Pressure in the stern seal bag	Ра
$p_{ m V}$	PV	<i>(fluid mechanics, cavitation)</i> Vapour pressure of water	At a given temperature!	Pa
<i>p</i>	PR	<i>(solid body mechanics, rigid body motions)</i> Rates of change of components of rotational velocity relative to body axes		rad/s ²
<i>p</i>	OXRT, PR	<i>(ships, manoeuvrability)</i> Roll acceleration, angular acceleration about body x- axis	dp / dt	1/s ²

P, p

Version 2017

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit
			*	
0	0	(ships, performance) Torque	$P_{\rm D}/\omega$	Nm
2		(fundamental, balances and		
0		system related) Quantity un-		$O^{\rm U}/{\rm s}$
£		der consideration		£ /S
	OF	(fluid mechanics flow fields)	Volume passing across a	2
Q	OFLOW	Rate of flow	control surface in time unit	m ³ /s
	QILOW		h	
0	OF	(fluid mechanics, boundary	h L dy	m^2/s
2	QI	layers) Entrainment	jo uy	111 / 5
		(shing hull register as water		
Q		(Snips, nuit resistance, water		Nm
		<i>Jets)</i> Imperier torque		
$Q_{\rm AW}$	QAW	(snips, seakeeping) Mean		Nm
		torque increased in waves		
$Q_{\rm BS}$	QBS	(ACV and SES) Bow seal air	Air flow rate to the bow seal	m^3/s
~ ~	-	flow rate		
		(ships, hull resistance, water		
$Q_{ m bl}$		<i>jets)</i> Volume flow rate inside		m^{3}/s
		boundary layer		
- C		(fundamental, balances and		all
Q^{C}	QCF	system related) Convective		$Q^{\rm U/s}$
		flux		
Ocu	OCU	(ACV and SES) Cushion air	Air flow rate to cushion	m^{3}/s
QUU	QCU	flow rate		III / 5
		(fundamental, balances and		
Q^{D}	QDF	system related) Diffusive		$Q^{\mathrm{U}/\mathrm{s}}$
		flux		
		(fundamental, balances and		
OF	OFI	system related) Total flux	Inward positive!	$O^{U/c}$
Q	QI'L	across the surface of the con-		Q /8
		trol volume		
	OED	(ships, manoeuvrability, sea-		Nices
$\mathcal{Q}_{\mathrm{FB}}$	QLD	keeping) Torque of bow fin		INIII
0	OEC	(ships, manoeuvrability, sea-		Nu
$Q_{\rm FS}$	QFS	<i>keeping</i>) Torque of stern fin		Nm
	ODAG	<i>(ice going vessels)</i> Average		NT
$\mathcal{Q}_{\mathrm{IA}}$	QIMS	torque in ice		mm
		(ships, hull resistance, water		
$Q_{\scriptscriptstyle \rm I}$		<i>jets</i>) Volume flow rate		m³/s
~,		through water jet system		
		(fundamental. balances and		
O^{M}	<i>O</i> DM	system related) Molecular		$O^{\rm U}/{\rm s}$
~	~	diffusion		
		(fundamental balances and		
D		system related) Production		
Q^{P}	QPN	of sources in the control vol-		$Q^{\rm U/s}$
		lime		
		61110		1

Q, q

Version 2017

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit
		(ships, manoeuvrability, sea-		
Q_{R}	QRU	keeping) Torque about rud-		Nm
		der stock		
			About spindle axis of con-	
0s	OSP	(ships, propulsor perfor-	trollable pitch propeller	Nm
23		<i>mance</i>) Spindle torque $Q_{\rm S} = Q_{\rm SC} + Q_{\rm SH}$	1 (111	
			positive if it increases pitch	
		(fundamental, balances and		
O^{S}	ORT	system related) Storage in	da / dt	$O^{\rm U}/{\rm s}$
~	2	the control volume, rate of		2
		change of the quantity stored		
0	00000	(ships, propulsor perfor-		Ът
$Q_{\rm SC}$	QSPC	<i>mance)</i> Centrifugal spindle		Nm
		torque		
0	OCDU	(ships, propulsor perfor-		NI
<i>Q</i> sн	QSPH	<i>mance</i>) Hydrodynamic spin-		Nm
		(ACV and SES) Storm cool oin		
Qss	QSS	(AC v ana SES) Stern sear an	Air flow rate to the stern seal	m ³ /s
		(ACV and SES) Total air vol		
Q_{T}	QT	(ACV und SES) Total all VOI-		m ³ /s
		(fundamental balances and		
O^{T}	ODT	system related) Turbulent		$O^{U/s}$
2	2D1	diffusion		2 / 5
2		(ACV and SES) Total air vol-		2.
$Q_{\rm TS}$	QTS	ume flow of skirt		m ³ /s
		(uncertainty) Random quan-		1
9		tity		1
_		<i>(uncertainty)</i> Arithmetic		1
q		mean or average		1
		(fundamental, balances and		
		system related) Quantity of		_
9	QQ	the quality under considera-		Q^{U}
		tion stored in a control vol-		
		ume		
7	UNO	(solid body mechanics,		N/m
1	×. 'X	<i>loads</i>) Load per unit length		- 1/ 111
		(solid body mechanics, rigid		
7	Q	body motions) Rotational		rad/s
		velocity around body axis y		
		(fluid mechanics, flow fields)		5
9	PD, EK	Dynamic pressure, density	$\rho V^2/2$	Pa
		of kinetic flow energy,		
		(ships, hull resistance) Dy-	$\rho V^2/2$	Ъ
q	PD, EK	namic pressure, density of	see 3.3.2	Pa
		kinetic flow energy,		

Q, **q**

Version 2017	Version 2017 Q, q				
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	
q	OY, Q	<i>(ships, manoeuvrability)</i> Pitch velocity, rotational velocity about body <i>y</i> -axis		1/s	
ġ	QR	Rates of change of compo- nents of rotational velocity relative to body axes		rad/s ²	
$q_{ m A}$	QA	(<i>ships, propulsor perfor-</i> <i>mance</i>) Dynamic pressure based on advance speed	$\rho V_{\rm A}^2/2$	Ра	
q_k		(<i>uncertainty</i>) <i>k</i> th observation of <i>q</i>	k^{th} independent repeated observation of randomly vary- ing quantity q	1	
$q_{ m R}$	PDWR, EKWR	(<i>ships, hull resistance</i>) Dy- namic pressure based on ap- parent wind	$ \rho V_{\rm WR}^2/2 $ see 3.4.2	Ра	
qs	QS	(<i>ships, propulsor perfor-</i> <i>mance</i>) Dynamic pressure based on section advance speed	$\rho V_{\rm S}^2/2$	Ра	
ġ	OYRT, QR	<i>(ships, manoeuvrability)</i> Pitch acceleration, angular acceleration about body <i>y</i> - axis	dq / dt	1/s ²	
ġ	QR	<i>(solid body mechanics, rigid body motions)</i> Rates of change of components of rotational velocity relative to body axes		rad/s ²	

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Ivanie	Explanation	Unit
		(fundamental, time and fre-		
R	R	quency domain quantity)	$exp(s T_s)$ Laurent transform	
		Complex variable		
ת	D DE	(ships, basic quantities) Re-	Force opposing translatory	NT
ĸ	K, KE	sistance (force)	velocity	IN
מ	DD	(ships, basic quantities) Ra-		
ĸ	KD	dius		111
D	מרות	(ships, propulsor geometry)		m
Λ	KDP	Propeller radius		111
		(shing hull registered)	Incremental resistance to be	
D.	DΛ	(<i>snips, null resistance</i>)	added to the smooth ship re-	N
ΛA	KA	lowance	sistance to complete the	1
		lowance	model-ship prediction	
D	D Λ Λ	(ships, hull resistance) Air or		N
NAA	KAA	wind resistance		1
R . DD	PAP	(ships, hull resistance) Ap-		N
NAPP	KAI	pendage resistance		19
RAR RAR	(ships, hull resistance)		N	
NAR	KAK	Roughness resistance		1
R _{box}	RASK	(ACV and SES) Intake mo-	$a \in O_{\text{TR}} V$	N
MASK		mentum resistance of skirt		
		(ships, seakeeping, sailing		
$R_{\rm AW}$	RAW	vessels) Mean added re-		Ν
		sistance in waves		
RAT	RAT	(ACV and SES) Total aero-	$R_M + R_0$	N
MAI		dynamic resistance		1
		(ships, hull resistance) Re-	$R_{\rm TM}[(1+k) C_{\rm FMC} + C_{\rm R}] /$	
		sistance corrected for differ-	$[(1+k) C_{\rm FM} + C_{\rm R}]$	
$R_{\rm C}$	RC	ence in temperature between	where C_{FMC} is the frictional	Ν
		resistance and self-propul-	coefficient at the temperature	
		sion tests	of the self-propulsion test	
		(ships, manoeuvrability,		
$R_{\rm C}$	RCS	turning circles) Steady turn-		m
		ing radius		
Re	RN	(fluid mechanics, flow pa-	VL/v	1
		<i>rameter</i>) Reynolds number		-
		(fluid mechanics, flow pa-	$C = \sqrt{V^2 + (0.7\pi nD)^2}$	
$Re_{0.7}$	RN07	<i>rameter</i>) Propeller Reynolds	$Re_{0.7} = \frac{c_{0.7}\sqrt{r_A + (0.77012)}}{r_A + (0.77012)}$	1
		number at 0.7 R	V	
		(fluid mechanics, boundary		
Re_{δ^*}	RDELS	<i>layers</i>) Reynolds number	$U_{\infty} \delta^* / v$ or $U_{\alpha} \delta^* / v$	1
- •	~	based on displacement thick-		
		ness		

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
		(fluid mechanics, boundar	y	

$Re_{ heta}$	RTHETA	A $\begin{pmatrix} (fluid mechanics, boundary \\ layers) \text{ Reynolds number} \\ based on momentum thick- \\ ness \end{pmatrix} U_{\infty} \Theta / v \text{ or } U_{e} \Theta / v$		1
R _F	RF	<i>(ships, hull resistance)</i> Frictional resistance of a body	Due to fluid friction on the surface of the body	N
$R_{ m F0}$	RF0	(ships, hull resistance) Fric- tional resistance of a flat plate		Ν
$R_{ m FINT}$	RFINT	(multi-hull vessels) Fric- tional resistance interference $R_{\text{FMH}} - \Sigma R_{\text{F}}$ correction		N
$R_{ m FMH}$	RFMH	FMH (multi-hull vessels) Fric- tional resistance of multi- hull vessel		Ν
$R_{ m FU}$		<i>(sailing vessels)</i> Friction re- sistance (upright)		N
R _H	RH $(ACV and SES)$ Hydrody- namic resistance $R_{W} + R_{WET}$		$R_{ m W}+R_{ m WET}$	N
R _H	RH	<i>(fluid mechanics, flow pa- rameter)</i> Hydraulic radius Area of section divided by wetted perimeter		m
R _H	RTUHA	<i>(sailing vessels)</i> Resistance increase due to heel (with zero side force)		N
R_{I}		<i>(sailing vessels)</i> Resistance increase due to side (induced resistance)		Ν
RI	RI	<i>(ice going vessels)</i> Net ice resistance	R _{IT} - R _{IW}	N
R _{IT}	RIT	<i>(ice going vessels)</i> Total resistance in ice	Ship towing resistance in ice	Ν
$R_{\rm IW}$	RIW	<i>(ice going vessels)</i> Hydrody- namic resistance in presence of ice	Total water resistance of ship in ice	Ν
R _k	RAKG	(ships, propulsor geometry) Rake	The displacement from the propeller plane to the gener- ator line in the direction of the shaft axis. Aft displace- ment is positive rake.	m
R _K	RKEEL	(planing, semi-displacement vessels) Keel drag		Ν
R_M	RM	(ACV and SES) Intake mo- mentum resistance in general	$\rho_{\rm A} Q_{\rm T} V_{\rm A}$	N
<i>R_{MCU}</i>	RMCU	(ACV and SES) Intake mo- mentum resistance of cush- ion	$ ho_{ m A} Q_{ m CU} V_{ m A}$	Ν

				, -
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

		(shing hull pagistan as) Drog	Due to the normal stragges	
R_P	RP	(snips, nui resisiance) Fies-	over the surface of a body	Ν
		(planing sami displacement	Drag due to inlet and outlet	
$R_{\rm PAR}$	RPAR	(planing, semi-displacement	openings	Ν
		(planing semi-displacement		
R _{DC}	RSP	(pranting, semi-displacement		N
NPS	K51	of spray drag		1
		(shing hull resistance) Vis-	Due to normal stress related	
R_{PV}	RPV	(snips, nui resistance) vis-	to viscosity and turbulence	Ν
		(fundamental statistical	to viscosity and turbulence	
RR	RR	stochastic) Population corre-		
		lation		
		(shins hull resistance) Re-		
$R_{\rm R}$	RR	siduary resistance	$R_{\rm T}$ - $R_{\rm F}$ or $R_{\rm T}$ - $R_{\rm F0}$	Ν
		(shins hull resistance) Re-		
RDDU	RRBH	siduary resistance of the bare		Ν
ТКВП	RRDIT	hull		11
		(multi-hull vessels) Residu-		
$R_{\rm PI}$	RRINT	ary resistance interference	$R_{\rm PMH} - \Sigma R_{\rm P}$	Ν
TKI		correction		1,
		(multi-hull vessels) Residu-		
Rrmh	RRMH	ary resistance correction of	RTMH - REMH	Ν
100111		multi-hull		
n		(sailing vessels) Residuary), T
$R_{\rm RU}$		resistance (upright)		N
D	DC	(ships, hull resistance) Spray		NT
KS	KS	resistance	Due to generation of spray	IN
חת	DC	(fundamental, statistical, sto-		
KS	KS	<i>chastic</i>) Sample correlation		
		(ships, hydrostatics, stability,		
ת	DCI	seakeeping, large amplitude		1
KSI	KSI	motions capsizing) Required		1
		subdivision index		
D	рт	(planing, semi-displacement	Total towad resistance	N
ΛŢ	K1	vessels) Total resistance	Total towed resistance	19
		(ships, hull resistance, water		
R_{TBH}	RTBH	<i>jets)</i> Total resistance of bare		Ν
		hull		
		(multi-hull vessels) Total re-		
R_{TI}	RTINT	sistance interference correc-	R_{TMH} - ΣR_{T}	Ν
		tion		
RTMH	RTMH	(multi-hull vessels) Total re-		Ν
* • 1 IVIT1		sistance of multi-hull vessel		± 1
RTI	RTI	(sailing vessels) Total re-		Ν
		sistance (upright)		11

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit
מ	DTUU	(sailing vessels) Total re-		NT
$\kappa_{\mathrm{T}\varphi}$	RIUH	sistance when heeled	$K_{\rm TU} + K_{\varphi}$	IN
D	DU	(ships, propulsor perfor-	Resistance of a podded drive	NT
$R_{\rm U}$	RU	<i>mance</i>) Pod unit resistance	unit	N
		(ships, unsteady propeller	u = 16	N
R_{μ}	$\mathbf{R}(\mathbf{U})$	<i>forces</i>) Generalized vibra-	u = 1, 2, 3: force	N
	(-)	tory bearing reaction	$\mu = 4, 5, 6$: moment	Nm
		(ships hull resistance) Total		
$R_{ m V}$	RV	viscous resistance	$R_{ m F}+R_{P m V}$	Ν
		(planing semi-displacement		
Ruc	RSV	(planing, semi displacement	CE Swe de	Ν
1145		of spray drag	CF 5w5 45	1
		(shing hull resistance) Wave	Due to formation of surface	
$R_{ m W}$	RW	(snips, nuit resistance) wave		Ν
		(shing hull resistance) Weye	Associated with the break	
$R_{\rm WB}$	RWB	(snips, nuil resistance) wave	Associated with the break	Ν
		breaking resistance	down of the bow wave	
R _{WET}	RWET	(ACV and SES) Resistance		Ν
		due to wetting		
$R_{\rm WP}$	RWP	(ships, hull resistance) Wave		Ν
		pattern resistance		
			$x(t)x(t+\tau)^{\rm E} = R_{xx}(\tau)$	
		(fundamental, statistical,	$R_{xx}(\tau) = R_{xx}(-\tau)$	0 00
R_{yy}	XXRR	stochastic) Auto-correlation	if x is ergodic:	xx^{R} , xx^{RR} ,
		of a stationary stochastic	$R_{xx}(\tau) = x(t)x(t+\tau)^{MK}$	R_{xx}
		process	$R_{xx}(\tau) = \int S_{xx}(\omega) \cos(\omega \tau) d\tau$	
			$ au=0\\ \infty$	
		(fundamental, statistical)		
R_{xx}	XXMR	Auto-correlation of a ran-	$x x^{\mathrm{E}}$	
		dom quantity		
		(fundamental, statistical,	$x(t)y(t+\tau)^{\rm E}=R_{xy}(\tau)$	
מ		stochastic) Cross-correlation	$R_{yx}(\tau) = R_{xy}(-\tau)$	R D
\mathbf{K}_{xy}	AIKK	of two stationary stochastic	if x, y are ergodic:	xy , κ_{xy}
		processes	$R_{xy}(\tau) = x(t)y(t+\tau)^{MR}$	
		(fundamental, statistical)		
R_{xy}	<i>XY</i> MR	Cross-correlation of two ran-	$x y^E$	
2		dom quantities		
D	DDI	(planing, semi-displacement		NT
R_{π}	RPI	vessels) Induced drag	$g \rho V tg \tau$	N
		(sailing vessels) Resistance		
R_{a}	RTUHA	increase due to heel (with		Ν
φ		zero side force)		
		(solid body mechanics rigid		
r	R	body motions) Rotational ve-		rad/s
ľ		locity around body axis 7		100/0
		(shing hasic quantities) Po		
r	RD	dins		m
		uluo		1

				, _
ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

r	LR	(ships, propulsor geometry) Blade section radius		m
r	OZ, R	(ships, manoeuvrability) Yaw velocity, rotational ve- locity about body z-axis		1/s
$r(x_i, x_j)$		<i>(uncertainty)</i> Estimated correlation coefficient	$r(x_i, x_j) = u(x_i, x_j)/(u(x_i) u(x_j))$	1
r	R	(ships, unsteady propeller forces) Cylindrical coordi- nates	Cylindrical system with origin O and longitudinal <i>x</i> - axis as defined before; angu- lar a-(attitude)-coordinate, zero at 12 o'clock position, positive clockwise looking forward, <i>r</i> distance measured from the <i>x</i> -axis	m
r		(seakeeping, large amplitude motions capsizing) Effective wave slope coefficient		1
r _C	OZCI	(ships, manoeuvrability, turning circles) Steady turn- ing rate		1/s
r _C ′	OZCINO	(ships, manoeuvrability, turning circles) Non-dimen- sional steady turning rate	$r_{\rm C} L_{\rm PP} / U_{\rm C}$ or $2 L_{\rm PP} / D_{\rm C}$	m
$r_{ m h}$	RH	(ships, propulsor geometry) Hub radius		m
ŕ	RR	<i>(solid body mechanics, rigid body motions)</i> Rates of change of components of ro-tational velocity relative to body axes		rad/s ²
ŕ	OZRT, RR	(<i>ships, manoeuvrability</i>) Yaw acceleration, angular acceleration about body <i>z</i> - axis	dr / dt	1/s ²

Version 2017

version 20.	1			N , N
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

S	S, AWS	(<i>ships, hull geometry</i>) Area of wetted surface		m ²
S	S	(ships, hull resistance) Wet- ted surface area, underway	$S_{\rm BH} + S_{\rm APP}$	m ²
<i>S</i> ₀	S0	<i>(ships, hull resistance)</i> Wet- ted surface area, at rest	$S_{\rm BH0} + S_{\rm APP0}$	m ²
S^{o}_{ij}	SM0(I,J)	Zero th order moment of a scalar quantity	$\int \delta_{ij} ds = \delta_{ij} S$	
S^{I}_{ij}	SM1(I,J)	(<i>fundamental. coordinate</i> <i>and space related</i>) First or- der moment of a scalar quan- tity, formerly static moments of a scalar distribution	∫ _{Eikj} x _k ds	
S^2_{ij}	SM2(I,J)	(fundamental. coordinate and space related) Second moment of a scalar quantity, formerly moments of inertia of a scalar distribution	∫ε _{kli} x _l ε _{jkm} x _m ds	
SA	SRA	(ships, propulsor perfor- mance) Apparent slip ratio	1 - V / (n P)	1
SA	AS	(sailing vessels) Sail area in general	(P E + I J) / 2	m ²
$S_{ m APP}$	SAP	<i>(ships, hull resistance)</i> Appendage wetted surface area, underway		m^2
$S_{\rm APP0}$	SAP0	(<i>ships, hull resistance</i>) Appendage wetted surface area, at rest		m ²
S _{BH}	SBH	<i>(ships, hull resistance)</i> Bare Hull wetted surface area, un- derway		m ²
$S_{ m BH0}$	SBH0	<i>(ships, hull resistance)</i> Bare Hull wetted surface area, at rest		m ²
S ^C	CIRCS	(ships, hull geometry, hull resistance) R.E. Froude's wetted surface area coeffi- cient	$S/\nabla^{2/3}$	1
S _C	SC	(sailing vessels) Wetted sur- face area of canoe body		m ²
S _H	THL	(fluid mechanics, flow fields) Total head loss		m
S _{H0}	SSH0	(ACV and SES) Wetted area of side hulls at rest off cush- ion	Total wetted area of side walls under way on cushion	m ²

Version 2017

				·-) ·-
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

	1			1
S_1	SAIC	(environmental mechanics,	Weight of salt per unit	1
		<i>ice)</i> Salinity of ice	weight of ice	
$S_{i}(f)$	FISE	(environmental mechanics,		
$S_i(f),$ $S_i(\omega)$	EISC	waves) Incident wave power		m ² /Hz
$S_i(\omega)$	LISC	spectral density		
C	C V	(sailing vessels) Wetted sur-		2
$S_{\rm K}$	SK	face area of keel		m-
$S_n(f), S_{nn}(f),$	EWSF.	(ships, seakeeping) Wave el-		2
$S_n(\omega), S_{nn}(\omega)$	EWSC	evation auto spectral density		m²s
		(environmental mechanics		
$S_{\eta}(f)$,	EWSF,	wayes) Waye power spectral		m^2/Hz
$S_{\eta}(\omega)$	EWSC	density		
		(ships_propulsor_perfor_		
$S_{\rm R}$	SRR	(ships, propulsor perjor mance) Real slip ratio	$1 - V_A / (n P)$	1
		(sailing vessels) Wetted sur-		
S _R	SR	(suring vessels) welled sur-		m²
$S_r(f)$,	ERSF,	(environmental mechanics,		
$S_r(\omega)$	ERSC	waves) Reflected wave		m ⁻ /HZ
		power spectral density		
-		(planing, semi-displacement	Wetted area between design	2
$S_{\rm S}$	SWS	<i>vessels)</i> Area wetted by	line or stagnation line and	m^2
		spray	spray edge	
		(ACV and SES) Wetted area	Total wetted area of side	
$S_{ m SHC}$	SSHC	of side hulls under way on	walls under way on cushion	m^2
		cushion	wans under way on cushon	
		(ACV and SES) Wetted area	Total wattad area of side	
$S_{ m SH}$	SSH	of side hulls under way off	Total wetted area of side	m^2
		cushion	walls under way off cushion	
C.	GNI	(fluid mechanics, flow pa-		1
St	SN	<i>rameter</i>) Strouhal number	$fL \neq V$	1
		(seakeeping, large amplitude		
		<i>motions capsizing</i>) Actual		
STIX	STIX	stability index value accord-		1
		ing to		
		(soakooning large amplitude		
TIV	STIVD	(seukeeping, iurge umplilude		1
STIA	STIAK	stability index value and		1
		stability index value, see		
		(junaamental. coorainate	$\sum_{ij}^{ij} = \sum_{ij}^{ij} T$	
S_{uv}	S(U,V)	and space related) General-	$\sum_{i, 3+j} \sum_{j=1}^{j} \sum_{i=1}^{j} \sum_{j=1}^{j} \sum_{i=$	
		ized moment of a scalar	$S_{3+i, j} = S_{ij}^{\prime}$	
		quantity distributed in space	$S_{3+i, 3+j} = S_{ij}^{2}$	
Sw	SAWA	(environmental mechanics,	Weight of dissolved salt per	1
~ **	~~~	<i>ice)</i> Salinity of water	unit weight of saline water	1
		(planing, semi-displacement	Area bounded by stagnation	
$S_{\rm WB}$	SWB	<i>vessels)</i> Wetted bottom area,	line, chines or water surface	m^2
		underway	underway and transom	

Version 2017

				/
ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

$S_{ m WBK}$	SWBK	Wetted surface area of bilge keels		m ²
Swhp	SWHP	(planing, semi-displacement vessels) Wetted area under- way of planing hull	Principal wetted area bounded by trailing edge, chines and spray root line	m ²
Swhe	SWHE	(planing, semi-displacement vessels) Wetted hull area, underway	Total wetted surface of hull underway, including spray area and wetted side area, w/o wetted transom area	m ²
$S_{ m WHS}$	SWSH	(planing, semi-displacement vessels) Area of wetted sides	Wetted area of the hull side above the chine or the design water line	m ²
Sws	SWS	(planing, semi-displacement vessels) Area wetted by spray	Wetted area between design line or stagnation line and spray edge	m ²
S_{xx}	<i>XX</i> SR	(<i>fundamental, statistical, stochastic</i>) Power spectrum or autospectral power density of a stochastic process	xx ^{RRSR}	
S _{xy}	<i>XY</i> SR	<i>(fundamental, statistical, stochastic)</i> Cross-power spectrum of two stationary stochastic processes	xy ^{RRSR}	
Sr (m u)	\$27FT	(environmental mechanics		
$S_{\zeta}(\omega,\mu)$	S2ZET S2TET	(current of mensional		1
etc	etc	spectral density		1
$S_{\rho}(f,\theta)$ $S_{\zeta}(\omega,\mu)$	STHETA	<i>(environmental mechanics, waves)</i> Directional spectral density		m²/Hz/ rad
S	S	(fundamental. coordinate and space related) Any sca- lar quantity distributed, maybe singularly, in space	Ĵds	
S	S	<i>(fundamental, time and fre- quency domain quantity)</i> Complex variable	$a + 2\pi i f$ Laplace transform	1/s
S	SP	(<i>ships, basic quantities</i>) Dis- tance along path		m
S		(seakeeping, large amplitude motions capsizing) Wave steepness		1
SF	SPF	(<i>ships, manoeuvrability,</i> <i>stopping man.</i>) Distance along track, track reach		m

Version 2017

				·-) ·-
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

S _{ij}	ST(I,J)	(fluid mechanics, flow fields) Total stress tensor	Density of total diffusive momentum flux due to mo- lecular and turbulent ex- change	Ра
s ^V _{ij}	SV(I,J)	<i>(fluid mechanics, flow fields)</i> Viscous stress		Ра
Sp		<i>(uncertainty)</i> Pooled experi- mental standard deviation	Positive square root of s_p^2	
s _p ²		<i>(uncertainty)</i> Pooled esti- mate of variance		1
$s^2(\overline{q})$		(<i>uncertainty</i>) Experimental variance of the mean	$s^{2}(\overline{q}) = s^{2}(q_{k})/n$; estimated variance obtained from a Type A evaluation	1
$s(\overline{q})$		<i>(uncertainty)</i> Experimental standard deviation of the mean	Positive square root of $s^2(\overline{q})$	1
$s^2(q_k)$		<i>(uncertainty)</i> Experimental variance from repeated observations		1
$s(q_k)$		<i>(uncertainty)</i> Experimental standard deviation of repeated observations	Positive square root of $s^2(q_k)$	1
s^{R}_{ij}	SR(I,J)	Turbulent or Reynolds stress	$\rho v_i v_j^{CR}$	Pa
$s^2(\overline{X}_i)$		(<i>uncertainty</i>) Experimental variance of input mean	From mean \overline{X}_i , determined from <i>n</i> independent repeated observations $X_{i,k}$, estimated variance obtained from a Type A evaluation.	1
$s(\overline{X}_i)$		<i>(uncertainty)</i> Standard deviation of input mean	Positive square root of $s^2(\overline{X}_1)$	1
$s(\overline{q},\overline{r})$		<i>(uncertainty)</i> Estimate of co- variance of means		1
$s(\overline{X}_i,\overline{X}_j)$		<i>(uncertainty)</i> Estimate of co- variance of input means		1
SV	SINKV	(ships, performance) Sink- age, dynamic	Change of draft, fore and aft, divided by length	1
S _X	XDS	(<i>fundamental, statistical</i>) Sample deviation of a ran- dom quantity	$x^{VS \ 1/2}$, unbiased random estimate of the standard deviation	1

ITTC Symbols		
Version 2017		

ITTC	Computer	Namo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

Т	Т	(ships, hull geometry, sea- keeping, large amplitude motions capsizing) Draught,		m
T	ТС	moulded, of ship hull (ships, basic quantities, ships, seakeeping) Period, Wave period	Duration of a cycle of a re- peating or periodic, not nec- essarily harmonic process	s
Т	TIC	<i>(ships, manoeuvrability, sea- keeping)</i> Time constant of the 1st order manoeuvring equation		s
Т	TH	(ships, propulsor perfor- mance) Propeller thrust		N
Т	YHA	<i>(seakeeping, large amplitude motions capsizing)</i> Equivalent transverse heeling arm	Heeling moment∕⊿	m
T_{01}	T 1	<i>(environmental mechanics, waves)</i> Average period from zeroth and first moment	m_0/m_1	s
<i>T</i> ₀₂	T2	<i>(environmental mechanics, waves)</i> Average period from zeroth and second moment	$(m_0/m_2)^{1/2}$	s
T_1	TIC1	(<i>ships, manoeuvrability, sea-</i> <i>keeping</i>) First time constant of manoeuvring equation		s
<i>T</i> _{1/3d}	T13D	Significant wave period	By downcrossing analysis	S
<i>T</i> _{1/3u}	T13U	Significant wave period	By upcrossing analysis	S
T_2	TIC2	(ships, manoeuvrability, sea- keeping) Second time con- stant of manoeuvring equa- tion		s
<i>T</i> ₃	TIC3	(ships, manoeuvrability, sea- keeping) Third time constant of manoeuvring equation		s
T _A	TA, TAP	(ships, hull geometry) Draught at aft perpendicular		m
T _{AD}	TAD, TAPD	<i>(ships, hull geometry)</i> De- sign draught at aft perpen- dicular		m
T _{AW}	TAW	(ships, seakeeping) Mean thrust increase in waves		N
T ^C	CIRCT	(ships, hull geometry) R.E. Froude's draught coefficient	$T/\nabla^{1/3}$	1
T _C	ТС	(fundamental, time and fre- quency domain quantity) Pe- riod of cycle	$1 / f_{\rm C}$ duration of cycles in peri- odic, repeating processes	s
Version 2017

				_ , •
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

r				
$T_{\rm C}$	TC0	(ACV and SES) Cushion thrust		Ν
T _C	TCAN	(<i>sailing vessels</i>) Draught of canoe body		m
T _D	THDU	(ships, propulsor perfor- mance) Duct thrust		Ν
$T_{\rm DP}$	THDP	<i>(ships, propulsor perfor- mance)</i> Ducted propeller thrust		N
$T_{ m DT}$	THDT	<i>(ships, propulsor perfor- mance)</i> Total thrust of a ducted propeller unit		N
T _d	TD	(environmental mechanics, waves) Wave periods by zero down-crossing	Time elapsing between two successive downward cross- ings of zero in a record	S
$T_{\rm E}$	TE	(ships, seakeeping) Wave encounter period		s
$T_{\rm EFF}$	TEFF	(sailing vessels) Effective draught	$F_{\rm H}$ / ($ ho V_{\rm B}^2 R$) ⁵	m
$T_{ m F}$	TF, TFP	(ships, hull geometry) Draught at forward perpen- dicular		m
$T_{ m F}$	TFO	(hydrofoil boats) Foil im- mersion	Distance between foil chord and mean water surface	m
$T_{\rm FD}$	TFPD	(ships, hull geometry) De- sign draught at forward per- pendicular		m
$T_{\rm FD}$	TFD	<i>(hydrofoil boats)</i> Depth of submergence of apex of a dihedral foil	Distance between foil apex and mean water surface	m
$T_{ m FM}$	TFOM	(hydrofoil boats) Mean depth of foil submergence		m
$T_{ m H}$	THUL	(ships, hull geometry) Draught of the hull	Maximum draught of the hull without keel or skeg	m
Th	TN	(fluid mechanics, cavitation, fluid mechanics, flow pa- rameter) Thoma number Cavitation number	$(H_{\rm U} - p_{\rm V} / w) / H_{\rm N} (p_{\rm A} - p_{\rm V})/q$	1
T _{IA}	TIMS	<i>(ice going vessels)</i> Average total thrust in ice		Ν
T _{ij}	T(I,J)	(fundamental. coordinate and space related) Tensor in space referred to an orthogo- nal system of Cartesian co- ordinates fixed in the body	$T_{ij}{}^s + T_{ij}{}^a$	

T.t

Version 2017

			—		
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	

$T_{ij}^{ m A}$	TAS(I,J)	(fundamental. coordinate and space related) Anti- symmetric part of a tensor	(<i>T_{ij}</i> - <i>T_{ji}</i>) / 2	
T _{ij} S	TSY(I,J)	<i>(fundamental. coordinate and space related)</i> Symmetric part of a tensor	(<i>T_{ij}</i> + <i>T_{ji}</i>) / 2	
$T_{ij}{}^{\mathrm{T}}$	TTR(I,J)	(fundamental. coordinate and space related) Trans- posed tensor	T_{ji}	
T _{ij} v _j		(fundamental. coordinate and space related) Tensor product	$\Sigma T_{ij} v_j$	
T _{jx}	ТЈХ	Jet thrust (can be measured directly in bollard pull con- dition)		N
TL		(seakeeping, large amplitude motions capsizing) Turning lever		1
T_{M}	TM, TMS	(ships, hull geometry) Draught at midship	$(T_{\rm A} + T_{\rm F}) / 2$ for rigid bodies with straight keel	m
$T_{\rm MD}$	TMD, TMSD	(ships, hull geometry) De- sign draught at midship	$(T_{AD} + T_{FD}) / 2$ for rigid bodies	m
T _{net}		(<i>ships, hull resistance, water jets</i>) Net thrust exerted by the jet system on the hull		Ν
T_P	TP	(environmental mechanics, waves) Period with maxi- mum energy	$2\pi f_P$	
T _{PBS}	TPBS	Bottom Thickness of Strut		m
T _R	TR	(environmental mechanics, waves) Duration of record	$1/f_{\rm R}$	s
T _{rt}	TRT	(environmental mechanics, waves) Return period	The average interval in years between times that a given design wave is exceeded	
Ts	TS	(fundamental, time and fre- quency domain quantity, en- vironmental mechanics, waves) Sample interval, Pe- riod of sampling	$1/f_{\rm S}$, time between two successive samples, Duration between samples	s
TT	TTR	(ships, hull geometry) Im- mersion of transom	Vertical depth of trailing edge of boat at keel below water surface level	m
T_{U}	TU	(ships, propulsor perfor- mance) Pod unit thrust, ,	Pod unit resistance sub- tracted from the propeller thrust	Ν

Version 2017

				_, -
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

		(environmental mechanics,	Time elapsing between two	
Tu	TU	waves) Wave periods by	successive upward crossings	s
		zero up-crossing	of zero in a record	
		(aminonmental mechanics	Time between the passage of	
$T_{ m W}$	TW	(environmental mechanics,	two successive wave crests	S
		waves) Basic wave period	past a fixed point. $1/f_W$	
		(environmental mechanics,		
Ture	TWV	waves) Wave period esti-		C
IWV	I W V	mated from visual observa-		5
		tion		
		(ships, propulsor perfor-		
T_{xP}	TXP	mance) Propeller Thrust		Ν
		along shaft axis		
		(ships, propulsor perfor-		
$T_{\rm orb}$	тур	mance) Propeller normal		N
1 ур	1 1 1	force in y direction in pro-		14
		peller axis		
T_{τ}	TNHE	(ships, seakeeping) Natural		s
12		period of heave		5
		(ships, propulsor perfor-		
T_{rD}	TZP	<i>mance</i>) Propeller normal		Ν
I ZP	121	force in <i>z</i> direction in propel-		- •
		ler axis		
$T_{ heta}$	TNPI	(ships, seakeeping) Natural		s
- 0		period of pitch		5
T_{α}	TNRO	(ships, seakeeping) Natural		s
-ψ		period of roll		-
		(fundamental, time and fre-		
t	TI	quency domain quantity,	$-\infty \dots +\infty$	S
		ships, basic quantities) Time		
t	TE	(ships, basic quantities)		К
		Temperature		
			The intercept of the tangent	
t	TT	(ships, hull geometry) Taylor	to the sectional area curve at	1
		tangent of the area curve	the bow on the midship ordi-	
			nate	
t	TM	(ships, propulsor geometry)		m
		Blade section thickness		
		(ships, appendage geometry)	Measured normal to mean	
t	TMX	Maximum thickness of an	line	m
		aeroioii or a hydrofoil		
,	3711 4	(ships, hydrostatics, stabil-		
t	YHA	<i>ity)</i> Equivalent transverse	Heeling moment //	m
		neeling arm		
t	THDF	(ships, performance) Thrust	$(T - R_{\mathrm{T}}) / T$	1
		deduction fraction	· · · ·	

T, t

ITTC Symbols					
Version 20	T , t				
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	

t		(ships, hull resistance, water jets) Thrust deduction frac- tion	$(1-t) = \frac{R_{\text{TBH}}}{T_{\text{net}}}$	1
$t_p(v)$		(uncertainty) Inverse Stu- dent t	Student <i>t</i> -distribution for <i>v</i> degrees of freedom corre- sponding to a given proba- bility <i>p</i>	1
$t_p(v_{\rm eff})$		<i>(uncertainty)</i> Inverse Stu- dent <i>t</i> for effective degrees of freedom	Student <i>t</i> -distribution for v_{eff} degrees of freedom corre- sponding to a given proba- bility <i>p</i> in calculation of ex- panded uncertainty U_p	1
t ₁₈₀	TI180	(ships, manoeuvrability, turning circles) Time to reach 180 degree change of heading		s
t _A	TEAI	<i>(environmental mechanics, ice)</i> Temperature of air		°C
ta	TIA	<i>(ships, manoeuvrability, zig- zag man)</i> Initial turning time		s
t _{c1}	TIC1	(ships, manoeuvrability, zig- zag man) First time to check yaw (starboard)		s
t _{c2}	TIC2	(ships, manoeuvrability, zig- zag man) Second time to check yaw (port)		S
t _D	TD	(ships, propulsor geometry) Thickness of duct profile		m
t _d	DURATN	<i>(environmental mechanics, wind)</i> Wind duration		s
t _F	TIF	(ships, manoeuvrability, stopping man.) Stopping time		s
<i>t</i> _{hc}	TCHC	<i>(ships, manoeuvrability, zig- zag man)</i> Period of changes in heading		s
tI	TEIC	<i>(environmental mechanics, ice)</i> Local temperature of ice		°C
tj	TI(J)	(fundamental, time and fre- quency domain quantity) Sample time instances	j T _S	
t _{KL}	TRIM	(seakeeping, large amplitude motions capsizing ships, hy- drostatics, stability) Static trim	$T_{\rm A}$ - $T_{\rm F}$ - $d_{\rm KL}$	

Version 2017

	<i>_,</i>			-, •
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
t _r	TIR	(ships, manoeuvrability, zig- zag man) Reach time		S
t _s	TRIM	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Static trim	$T_{ m A}$ - $T_{ m F}$ - $d_{ m KL}$	m
t _S	TSTR	(<i>multi-hull vessels</i>) Maxi- mum thickness of strut		m
t_V	TV	(ships, performance) Run- ning trim		m
t _W	TEWA	<i>(environmental mechanics, ice)</i> Temperature of water		°C

T, t

Version 2017

				/
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

U	U, UN	(ships, basic quantities) Undisturbed velocity of a		m/s
U		Expanded uncertainty	Expanded uncertainty of out- put estimate <i>y</i> that defines an interval $Y = y \pm U$ having a high level of confidence, equal to coverage factor <i>k</i> times the combined standard uncertainty $u_c(y)$ of <i>y</i> : $U = k$ $u_c(y)$	
\overline{U}_0		(<i>ships, hull resistance, water</i> <i>jets</i>) Free stream velocity		m/s
U_{10}	U10M	<i>(environmental mechanics, wind)</i> Reference mean wind speed at elevation 10 meters above sea surface	$U_{10} = (10/z)^{1/7} U_z^A$	m/s
UA	UA	(ships, propulsor perfor- mance) Axial velocity in- duced by propeller		m/s
UA	USHEAR	<i>(environmental mechanics, wind)</i> Wind shear velocity	$C_{10}^{1/2} U_{10}$ or $0.71 U_{10}^{1.23}$	m/s
$U_{ m AD}$	UADU	(<i>ships, propulsor perfor-</i> <i>mance</i>) Axial velocity in- duced by duct of ducted pro- peller		m/s
$U_{ m AP}$	UAP	<i>(ships, propulsor perfor- mance)</i> Axial velocity in- duced by propeller of ducted propeller		m/s
Uc	UC	(ships, manoeuvrability, turning circles) Speed in steady turn		m/s
$U_{ m e}$	UE	(fluid mechanics, boundary layers) Velocity at the edge of the boundary layer at $y=\delta_{995}$		m/s
U_{I}	UNIN	(fluid mechanics, cavitation) Critical velocity	Free stream velocity at which cavitation inception takes place	m/s
Ui	UIN	(fluid mechanics, boundary layers) Instantaneous veloc- ity		m/s
$U_{ m m}$	UMR	<i>(fluid mechanics, boundary layers)</i> Time mean of veloc- ity in boundary layer		m/s

U, u

ITTC Symbols					
Version 20)17			U, u	
ITTC	Computer	Nama	Definition or	SI-	
Symbol	Symbol	Iname	Explanation	Unit	

Symbol	Symbol	Name	Explanation	Unit
			Expanded uncertainty of out- put estimate y that defines an	
U_p		Expanded uncertainty associated to confidence level <i>p</i>	interval $Y = y \pm U_p$ having a high level of confidence p , equal to coverage factor k_p times the combined standard uncertainty $u_c(y)$ of y : $U_p = k_p u_c(y)$	
$U_{ m R}$	UR	(ships, propulsor perfor- mance) Radial velocity in- duced by propeller		m/s
$U_{ m RP}$	URP	(ships, propulsor perfor- mance) Radial velocity in- duced by propeller of ducted propeller		m/s
$U_{ m RD}$	URDU	(ships, propulsor perfor- mance) Radial velocity in- duced by duct of ducted pro- peller		m/s
U_{T}	UT	(ships, propulsor perfor- mance) Tangential velocity induced by propeller		m/s
$U_{ m TD}$	UTDU	(ships, propulsor perfor- mance) Tangential velocity induced by duct of ducted propeller		m/s
$U_{ m TP}$	UTP	(ships, propulsor perfor- mance) Tangential velocity induced by propeller of ducted propeller		m/s
$U_z^{ m A}$	UZA	 (environmental mechanics, wind) Average wind speed at elevation z above the sea surface 	$(U_z + u_{zi})^{A}$ $U_z^{A} = (z/10)^{1/7} U_{10} \text{ or}$ $U_z^{A} = U_{10} + U_A \ln(z/10)$	m/s
U_{∞}	UFS	(fluid mechanics, boundary layers) Free-stream velocity far from the surface		m/s
и	U, VX, V1(1), V(1)	 (solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis x 		m/s
u	U	(<i>fluid mechanics, flow fields</i>) Velocity component in di- rection of <i>x</i> axis		m/s

Version 2017

			•, •
ITTC Computer	Name	Definition or	SI-
Symbol Symbol		Explanation	Unit

r	-			1
и	UFL	<i>(fluid mechanics, boundary layers)</i> Velocity fluctuations in boundary layer		m/s
и	UX, U	(<i>ships, manoeuvrability</i>) Surge velocity, linear veloc- ity along body <i>x</i> axis		m/s
и	U	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis x		m/s
<i>U</i> 7 <i>φ</i>	UJFI	(ships, hull resistance, water jets) Local tangential veloc- ity at station 7		m/s
$u_{\rm c}^2(y)$		<i>(uncertainty)</i> Combined variance	Combined variance associ- ated with output estimate y	1
$u_{\rm c}(y)$		(uncertainty) Combined standard uncertainty	Positive square root of $u_c^2(y)$	1
$u_c(y)/ y $		Relative combined standard uncertainty of output esti- mate y		
$u_{cA}(y)$		<i>(uncertainty)</i> Combined standard uncertainty from Type A	From Type A evaluations alone	1
$u_{\rm cB}(y)$		<i>(uncertainty)</i> Combined standard uncertainty from Type B	From Type B evaluations alone	1
<i>u</i> _c (y _i)		(uncertainty) Combined standard uncertainty	Combined standard uncer- tainty of output estimate y_i when two or more measur- ands or output quantities are determined in the same measurement	1
u_i, v_i	U(I), V(I)	(<i>basic quantity</i>) Any vector quantities		
$u_i v_i$	UVPS	<i>(basic quantity)</i> Scalar prod- uct	$u_i v_i$	
$u_i v_j$	UVPD(I,J)	<i>(basic quantity)</i> Diadic product	<i>u</i> _i <i>v</i> _j	
u×v	UVPV(I)	<i>(basic quantity)</i> Vector prod- uct	EijkUjVk	
$u_i^2(y)$		<i>(uncertainty)</i> Component of combined variance	$u_i^2(y) \equiv [c_i u(x_i)]^2$	1
$_1u_i(y)$		<i>(uncertainty)</i> Component of combined standard un- certainty	$u_i(y) \equiv \left c_i \right u(x_i)$	1

U, u

Version 2017

				/
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

u ^s	UFLS	<i>(fluid mechanics, boundary layers)</i> Root mean square value of velocity fluctua-tions		m/s
$u^2(x_i)$		<i>(uncertainty)</i> Estimated variance	Associated with input esti- mate x_i that estimates input quantity X_i	1
$u(x_i)$		<i>(uncertainty)</i> Standard deviation	Positive square root of $u^2(x_i)$	1
$u(x_i,x_j)$		<i>(uncertainty)</i> Estimated covariance		1
$u(x_i)/ x_i $		<i>(uncertainty)</i> Relative standard uncertainty		1
$u(x_i, x_j)/ x_i $		Estimated relative covari- ance	Estimated relative covari- ance associated with input estimates x_i and x_j	
u_z , u_{zi}	UFLUCT	<i>(environmental mechanics, wind)</i> Turbulent wind fluc- tuations		m/s
<i>U</i> _τ	UTAU	<i>(fluid mechanics, boundary layers)</i> Shear (friction) velocity	$(\tau / ho)^{1/2}$	m/s
ù	UR	(solid body mechanics, rigid body motions) Rates of change of components of lin- ear velocity relative to body axes		m/s ²
ù	UXRT, UR	<i>(ships, manoeuvrability)</i> Surge acceleration, linear ac- celeration along body <i>x</i> -axis	du / dt	m/s ²
<i>u</i> ⁺	UPLUS	(fluid mechanics, boundary layers)	U/u_{τ}	1
u×v	UVPV(I)	(fundamental. coordinate and space related) Vector product	$\mathcal{E}_{ijk}\boldsymbol{u}_j\boldsymbol{v}_k$	
U*	USHEAR	(environmental mechanics, wind) Wind shear velocity	$C_{10}^{1/2} U_{10}$ or $0.71 U_{10}^{1.23}$	m/s
$[u(x_i)/ x_i]^2$		Estimated relative variance	Estimated relative variance associated with input estimate x_i	
$[u_c(y)//y]^2$		Relative combined vari- ance	Relative combined vari- ance associated with out- put estimate y	

U, u

Version 2017

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
V	VA	(fluid mechanics, flow fields, sailing vessels) Velocity of a body	$V = v_i v_i^{1/2}$	m/s
V	VO	<i>(ships, basic quantities)</i> Volume		m ³
V	DISPVOL	(ships, hull geometry) Dis- placement volume	$\Delta / (\rho g) = \nabla_{\rm BH} + \nabla_{\rm AP}$	m ³
V	V	(ships, hull resistance, ma- noeuvrability, sailing ves- sels) Linear velocity of origin in body axis, Speed of the model or the ship		m/s
V		<i>(seakeeping, large amplitude motions capsizing)</i> Tank to- tal capacity		m ³
V^0	V0, OMN	(ships, basic quantities) Rotational velocity	2 <i>π n</i>	rad/s
V^{0}_{i}	<i>V</i> 0(I), <i>V</i> (I)	(<i>fundamental. coordinate</i> <i>and space related</i>) Zeroth order moments of a vector quantity distributed in space, referred to an orthogonal system of Cartesian coordi- nates fixed in the body	∫dvi	
V_0	V0	(ships, manoeuvrability) Approach speed		m/s
V_0	V0	<i>(fluid mechanics, flow fields)</i> Velocity of undisturbed flow		m/s
V_0		(seakeeping, large amplitude motions capsizing) Speed of craft in the turn - IMO/HSC'2000 Service speed - IMO/IS		m/s
V^1	V, V1	(<i>ships, basic quantities</i>) Lin- ear or translatory velocity of a body	ds / dt	m/s
$V^{1}{}_{i}$	V1(I)	(fundamental. coordinate and space related) First or- der moments of a vector dis- tribution	$\int \varepsilon_{ijk} x_j dv_k$	
VA	VA	(ships, manoeuvrability) Approach speed		m/s
VA	VA	<i>(ships, performance, propul- sor performance)</i> Advance speed of propeller	Equivalent propeller open water speed based on thrust or torque identity	m/s

Version 2017

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

				-
$V_{ m BM}$	VBM	<i>(planing, semi-displacement vessels)</i> Mean bottom veloc- ity	Mean velocity over bottom of the hull	m/s
$V_{ m F}$	VF	(ships, manoeuvrability) Flow or current velocity		m/s
VI	VI	(fluid mechanics, lifting sur- faces) Induced velocity		m/s
Vi	V(I)	(ships, unsteady propeller forces) Velocity field of the wake	<i>i</i> = 1, 2, 3	m/s
Vi	V0(I),V(I)	<i>(fundamental. coordinate and space related)</i> Zeroth order moments of a vector quantity distributed in space, referred to an orthogonal system of Cartesian coordinates fixed in the body	∫dv _i	
Vĸ	VKN	(ships, hull resistance) Speed in knots		
$V_{ m L}$	VOLS	<i>(fluid mechanics, cavitation)</i> Volume loss	W _L / w	m ³
V _{mc}	VMC	<i>(sailing vessels)</i> Velocity made good on course		m/s
$V_{ m mg}$	VMG	(<i>sailing vessels</i>) Velocity made good to windward (contrary to wind direction)		m/s
$V_{ m P}$	VP	<i>(ships, propulsor perfor- mance)</i> Mean axial velocity at propeller plane of ducted propeller		m/s
Vs	VS	(ships, propulsor perfor- mance) Section advance speed at 0.7 R	$(V_{\rm A}^2 + (0.7 \ R \ \omega)^2)^{1/2}$	m/s
$V_{ m SP}$	VSP	(planing, semi-displacement vessels) Spray velocity	Relative velocity between hull and spray in direction of the spray	m/s
V_{T}	VT	(fluid mechanics, lifting sur- faces) Resultant velocity of flow approaching a hydrofoil	Taking vortex induced ve- locities into account	m/s
V _{tw}	VWABS	<i>(sailing vessels)</i> True wind velocity		m/s
V_{u}	V(URT)	(ships, manoeuvrability) Generalized velocity		m/s
И́ и	V(URT)	(ships, manoeuvrability) Generalized acceleration		m/s ²

Version 2017

				• • • •
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

		(fundamental. coordinate	$V_i = V_i^{0}$	
$V_{\rm u}$	V(U)	and space related)	$V_{2,1} = V_1$	
		Generalized vector	5+1 1	
		(ships, hull resistance, ma-		
		noeuvrability, environmental		
Van	WWDEI	mechanics, wind, sailing		m/s
VWR	V VV KLL	vessels)		111/8
		Relative wind velocity, ap-		
		parent wind velocity		
		(ships, manoeuvrability, en-		
$V_{\rm WT}$	VWABS	vironmental mechanics,		m/s
		wind) True wind velocity		
		(ships, manoeuvrability)		
v	UY, V	Sway velocity, linear veloc-		m/s
	,	ity along body <i>y</i> -axis		
		(solid body mechanics, rigid		
		body motions) Translatory		,
v	V	velocity in the direction of		m/s
		body axis v		
		(seakeeping, large amplitude		
v		<i>motions cansizing</i>) Tank to-		m ³
		tal capacity		
		(fluid mechanics flow fields)		
v	V	Velocity component in di-		m/s
		rection of v axis		
		(solid body mechanics, rigid		
v^{0}_{1}	P, OMX,	body motions) Rotational ve-		rad/s
· 1	V0(1), V(4)	locity around body axis x		10000
		(solid body mechanics rigid		
v^0	Q, OMY,	body motions) Rotational ve-		rad/s
v <u>2</u>	V0(2), V(5)	locity around body axis y		144/5
		(solid body mechanics rigid		
v_{2}^{0}	R, OMZ,	body motions) Rotational ve-		rad/s
V S	V0(3), V(6)	locity around body axis 7		144/5
		(solid body mechanics, rigid		
v^1	U, VX,	body motions) Translatory		m/s
· 1	V1(1), V(1)	velocity in the direction of		
		body axis x		
		(solid body machanics rigid		
	V VV	hady mations) Translatory		
v^1_2	$\mathbf{v}, \mathbf{v} \mathbf{I},$ $\mathbf{V} \mathbf{I} (2) \mathbf{V} (2)$	volocity in the direction of		m/s
	$v_{1(2)}, v_{(2)}$	body avia y		
		body axis y		

Version 2017

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Ivanie	Explanation	Unit
		(solid body mechanics, rigid		
1	W, VZ,	body motions) Translatory		
<i>V</i> ² 3	V1(3), V(3)	velocity in the direction of		m/s
		body axis z		
		(solid body mechanics, rigid		
	U, VX,	body motions) Translatory		
v_1	V1(1), V(1)	velocity in the direction of		m/s
		body axis x		
		(fluid mechanics, flow fields)		
<i>V</i> 1	VX. V1	Velocity component in di-		m/s
	· · · · ·	rection of x, y, z axes		
		(solid body mechanics, rigid		
		body motions) Translatory		
<i>V</i> 2	V1(2), V(2)	velocity in the direction of		m/s
		body axis v		
		(fluid mechanics flow fields)		
<i>v</i> ₂	VY. V2	Velocity component in di-		m/s
	. 1, . 2	rection of $x_1 y_2 z$ axes		111, 5
		(solid body mechanics rigid		
		hody motions) Translatory		
<i>V</i> 3	V1(3), V(3)	velocity in the direction of		m/s
		body axis 7		
		(fluid mechanics flow fields)		
		(fluid mechanics, flow fields)		
<i>V</i> 3	VZ, V3	Velocity component in di-		m/s
		rection of $x_1 y_2 z$ axes		
		(solid body mechanics, rigid		
v_A	V0(1), V(4)	<i>body motions</i>) Rotational ve-		rad/s
74	•••(1)	locity around body axis x		iuu, s
		(solid body mechanics rigid		
V5	Q, OMY,	hody motions) Rotational		rad/s
<i>v</i> J	V0(2), V(5)	velocity around body axis y		144/5
		(solid body mechanics rigid		
Ve	R, OMZ,	body motions) Rotational ve-		rad/s
10	V0(3), V(6)	locity around body axis z		144/5
		(environmental mechanics	Volume of gas pores per unit	
VA	POAI	<i>ice</i>) Relative volume of air	volume of ice	1
		(environmental mechanics	Volume of liquid phase per	
$v_{\rm B}$	POBR	<i>ice</i>) Relative volume of brine	unit volume of ice	1
		(environmental mechanics		
\mathcal{V}_0	POIC	<i>ice</i>) Total porosity of ice	$v_0 = v_{\rm A} + v_{\rm B}$	1
		(fluid mechanics flow fields)		
Vi	V(I)	Velocity		m/s
1	1	v chochty		

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
Vu	V(U)	<i>(solid body mechanics, rigid body motions)</i> Components of generalized velocity or motion relative to body axes	$v_i = v_i^1 v_{3+i} = v_i^0 v_i^0$	m/s rad/s
vy	VY, V2	<i>(fluid mechanics, flow fields)</i> Velocity component in di- rection of <i>x</i> , <i>y</i> , <i>z</i> axes		m/s
VW		<i>(seakeeping, large amplitude motions capsizing)</i> Wind speed used in calculation		m/s
V _x	VX,	<i>(solid body mechanics, rigid body motions)</i> Translatory velocity in the direction of body axis <i>x</i>		m/s
Vy	V, VY, V1(2), V(2)	<i>(solid body mechanics, rigid body motions)</i> Translatory velocity in the direction of body axis y		m/s
V _z	W, VZ, V1(3), V(3)	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis z		m/s
u×v	UVPV(I)	(<i>fundamental. coordinate</i> <i>and space related</i>) Vector product	$\varepsilon_{ijk}u_jv_k$	
<i>v</i>	VR	<i>(solid body mechanics, rigid body motions)</i> Rates of change of components of linear velocity relative to body axes		m/s ²
<i>v</i>	UYRT, VR	(<i>ships, manoeuvrability</i>) Sway acceleration, linear ac- celeration along body <i>y</i> -axis	dv / dt	m/s ²

Version 2017

V CI SION 201	. /			••••••
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

r				1
		(ships, basic quantities)		
W	WT	Weight (force), gravity force		Ν
		acting on a body		
		(ships, hydrostatics, stabil-		
W	SHIPWT	ity, seakeeping, large ampli-	mo	Ν
,,	SIII WI	tude motions capsizing) Ship	<i></i> 8	1
		weight		
We	WN	(fluid mechanics, flow pa-	$V^2 L / \kappa$	1
WC .	****	<i>rameter</i>) Weber number		1
$W_{\rm E}$	WTF	(hydrofoil boats) Weight of		Ν
WT	***	foil		1
		(fluid mechanics cavitation)	Weight of material eroded	
$W_{\rm L}$	WTLS	Weight loss	from a specimen during a	N/s
			specified time	
		(ships, basic quantities, fluid		
w,	WD	mechanics, flow parameter)	$dW/dV = \alpha \sigma$	N/m^3
**	WD	Weight density, formerly		1 1/111
		specific weight		
		(solid body mechanics,		
W	WPUL	<i>loads</i>) Weight per unit	dW/dx_1	N/m
		length		
		(solid body mechanics, rigid		
142	W	body motions) Translatory		m/s
VV	**	velocity in the direction of		111/ 5
		body axis z		
		(fluid mechanics, flow fields)		
W	W	Velocity component in direc-		m/s
		tion of z axis		
w,	WFT	(ships, performance) Taylor	$(V - V_{\Lambda}) / V$	1
**	**1 1	wake fraction in general		1
		(ships, manoeuvrability)		
W	UZ, W	Heave velocity, linear veloc-		m/s
		ity along body <i>z</i> -axis		
		(fluid mechanics, flow fields)		
W	VZ, V3	Velocity component in di-		m/s
		rection of <i>x</i> , <i>y</i> , <i>z</i> axes		
		(ships, hull resistance, water		
W_1		<i>jets)</i> Geometric intake width		m
		at station 1		
		(ships, hull resistance, water		
W.		<i>jets)</i> Width of capture area		m
''IA		measured over hull surface		111
		at station 1A		
WE	WFF	(ships, performance) Froude	$(V - V_{\Lambda}) / V_{\Lambda}$	1
VV F	4411	wake fraction		1

W. w

Version 2017

				,
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

wQ	WFTQ	(ships, performance) Torque wake fraction	Propeller speed V_A determined from torque identity	1
WT	WFTT	(<i>ships, performance</i>) Thrust wake fraction	Propeller speed, V_A , determined from thrust identity	1
ŵ	UZRT, WR	(solid body mechanics, rigid body motions, ships, ma- noeuvrability) Heave accel- eration, linear acceleration along body z-axis	dw / dt	m/s ²

W, w

Version 2017

				,
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

X		(fundamental, time and fre- quency domain quantity) Real "valued" function		
X	Х	(solid body mechanics, loads) Force in direction of body axis x		N
X	X	(ships, unsteady propeller forces) Cylindrical coordi- nates	Cylindrical system with origin O and longitudinal <i>x</i> - axis as defined before; angu- lar a-(attitude)-coordinate , zero at 12 o'clock position, positive clockwise looking forward, <i>r</i> distance meas- ured from the <i>x</i> -axis	m
X	FX	(ships, manoeuvrability, sea- keeping) Surge force on body, force along body x- axis		N
X		<i>(sailing vessels)</i> Compo- nents of resultant force along designated axis		N
X_1		(seakeeping, large amplitude motions capsizing) Roll damping coefficients		1
X_2		(seakeeping, large amplitude motions capsizing) Roll damping coefficients		1
$X_{ m CB}$	ХСВ	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of buoy- ancy (L _{CB})	Longitudinal distance from reference point to the centre of buoyancy, B such as X _{MCF} from Midships	m
$X_{ m CF}$	XCF	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of flota- tion (L _{CF})	Longitudinal distance from reference point to the centre of flotation, F such as X_{MCF} from Midships	m
X _{CG}	XCG	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of grav- ity (L _{CG})	Longitudinal distance from a reference point to the centre of gravity, G such as X _{MCG} from Midships	m
$X_{ m F}$	FDIM	(<i>environmental mechanics, wind</i>) Dimensionless Fetch	gF/U_{19}^2	

Version 2017

				7
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

X _H	ХН	(ACV and SES) Horizontal spacing between inner and outer side skirt hinges or at- tachment points to structure	needs clarification	m
$X_{ m R}$	XRU	(ships, manoeuvrability, sea- keeping) Longitudinal rud- der force		Ν
Xs	XS	(ACV and SES) Distance of leading skirt contact point out-board or outer hinge of attachment point to structure	needs clarification	m
X _i		<i>i</i> th input quantity	i^{th} input quantity on which measurand Y depends NOTE X <i>i</i> may be the phys- ical quantity or the random variable	
$X_{i,k}$		k^{th} independent repeated observation of X_i		
X _u	XU	(ships, manoeuvrability, sea- keeping) Derivative of surge force with respect to surge velocity	ðX / ðu	Ns/m
X ù	XURT	(ships, manoeuvrability, sea- keeping) Derivative of surge force with respect to surge acceleration	∂X / ∂ù	Ns ² /m
X.		Estimate of the value of input quantity X_i	Estimate of the value of in- put quantity X_i equal to the arithmetic mean or average of <i>n</i> independent repeated observation $X_{i,k}$ of X_i	
x	Х	(fundamental. coordinate and space related) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
x	X, Y	(fundamental, statistical, stochastic) Stationary sto- chastic process	$x(\zeta,t), y(\zeta,t)$	
x	x	(fundamental, time and fre- quency domain quantity) Values of real quantities	x(t)	
x	XLO	(ships, performance) Load fraction in power prediction	$\eta_{\rm D} P_{\rm D}/P_{\rm E}$ - 1	1

ITTC Symbols					
Version 20	17			X, x	
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	

x	X	(ships, unsteady propeller forces) Cylindrical coordi- nates	Cylindrical system with origin O and longitudinal <i>x</i> - axis as defined before; angu- lar a-(attitude)-coordinate , zero at 12 o'clock position, positive clockwise looking forward, r distance measured from the <i>x</i> -axis	m
x	X	(ships, unsteady propeller forces) Cartesian coordi- nates	Origin O coinciding with the centre of the propeller. The longitudinal <i>x</i> -axis coincides with the shaft axis, positive forward; the trans-verse <i>y</i> - axis, positive to port; the third, <i>z</i> -axis, positive upward	m
x	Χ, Υ	(fundamental, statistical) Random quantities	<i>x</i> (ζ), <i>y</i> (ζ)	
<i>x</i> 0	X0	(fundamental. coordinate and space related) Space axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the space	m
<i>x</i> 01	X0(1)	(fundamental. coordinate and space related) Space axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the space	m
<i>x</i> ₀₂	X0(2)	(fundamental. coordinate and space related) Space axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the space	m
<i>x</i> 03	X0(3)	(fundamental. coordinate and space related) Space axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the space	m
<i>X</i> 090	X090	(ships, manoeuvrability, turning circles) Advance at 90° change of heading		m
<i>x</i> ₀₁₈₀	X0180	(ships, manoeuvrability, turning circles) Advance at 180° change of heading		m
X0F	X0F	(ships, manoeuvrability, stopping man.) Head reach		m
$x_{0\max}$	XMX	(ships, manoeuvrability, turning circles) Maximum advance		m

Version 2017

				,
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

-			1	1
<i>x</i> ₁	X(1)	(fundamental. coordinate and space related) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
<i>x</i> ₂	X(2)	(fundamental. coordinate and space related) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
<i>x</i> ₃	X(3)	(fundamental. coordinate and space related) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
x ^A	XA	(fundamental, time and fre- quency domain quantity) Analytic function	$X^{\mathrm{A}}(t) = X(t) + iX^{\mathrm{H}}(t)$	
x ^A	XMS	(<i>fundamental, statistical</i>) Average or sample mean of a random quantity	$1/n \Sigma x_i$, $i = 1n$ unbiased random estimate of the expectation with $x^{AE} = x^E$ $x^{VSE} = x^V / n$	
x _B	XBDR	<i>(ships, propulsor geometry)</i> Boss to diameter ratio	$d_{ m h}$ / D	
ХCB	XACB	(ships, hydrostatics, sea- keeping, large amplitude motions capsizing) Longitudinal centre of float- ation of added buoyant layer	Longitudinal distance from reference point to the centre of the added buoyant layer, <i>b</i> such as <i>x_{MCb}</i> from Mid- ships	m
<i>x</i> _{CF}	XACF	(ships, hydrostatics, sea- keeping, large amplitude motions capsizing) Longitudinal centre of flota- tion of added buoyant layer	Longitudinal distance from reference point to the centre of flotation of the added buoyant layer, f such as x_{MCf} from Midships	m
XCG	XACG	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of grav- ity of added weight (mass)	Longitudinal distance from reference to the centre of gravity, g , of an added or re- moved weight (mass) such as x_{MCg} from Midships	m
x ^D	XDR	(<i>fundamental, statistical</i>) Standard deviation of a ran- dom quantity	x ^{VR 1/2}	
x _D		(seakeeping, large amplitude motions capsizing) Distance of down flooding opening from end of boat		m

Version 2017

				,
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

x ^{DF}	XDF	(fundamental, time and fre- quency domain quantity) Fourier transform of ampled function	$X^{\text{DF}}(f) = \sum x_j \exp(-i2\pi f j T_{\text{S}})$ i.e. periodically repeating= $X(0)/2 + f_{\text{S}} \sum X^F(f + j f_{\text{S}})$ sample theorem: aliasing!	
x ^{DL}	XDL	(fundamental, time and fre- quency domain quantity) Laurent transform Sampled function	$X^{\rm DL}(s) = \Sigma x_j \exp(-sjT_{\rm S})$	
x ^{DR}	XDR	(<i>fundamental, statistical</i>) Standard deviation of a ran- dom quantity	x ^{VR 1/2}	
x ^{DS}	XDS	(<i>fundamental, statistical</i>) Sample deviation of a ran- dom quantity	$x^{VS \frac{1}{2}}$, unbiased random estimate of the standard deviation	
x^E	XMR	(<i>fundamental, statistical</i>) Expectation or population mean of a random quantity	E(x)	
x _F	XF	(fundamental. coordinate and space related) Flow axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
x ^F	XFT	(fundamental, time and fre- quency domain quantity) Fourier transform	$X^{F}(f) = \int X(t) \exp(-i2\pi ft) dt$ inverse form: $= \int X^{F}(f) \exp(-i2\pi ft) dt$ if $X(t) = 0$ and $a = 0$ then $X^{F}(f) = X^{L}(f)$	
x _{F1}	XF(1)	(fundamental. coordinate and space related) Flow axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
XF2	XF(2)	(fundamental. coordinate and space related) Flow axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
<i>x</i> _{F3}	XF(3)	(fundamental. coordinate and space related) Flow axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
$x^{\mathrm{F}_{j}}$	XFT(J)	(fundamental, time and fre- quency domain quantity) Fourier transform of peri- odic function	$\frac{1}{T_{\rm C}} \frac{[X(t)\exp(-i2\pi jt/T_{\rm C})dt]}{t=0T_{\rm C}}$ $X^{\rm F} = \sum x^{\rm F}_{j}\delta(f-j/T_{\rm C})$ inverse form: $X(t) = \sum x^{\rm F}_{j}\exp(-i2\pi fjT_{\rm C})$	

Version 2017 X, X				
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
x ^H	XHT	<i>(fundamental, time and fre- quency domain quantity)</i> Hilbert transform	$X^{\rm H}(t) = 1/\pi \int X(\tau)/(t-\tau)d\tau$	
x ^{HF}	XHF	<i>(fundamental, time and fre- quency domain quantity)</i> Fourier transform of Hilbert transform	$X^{\text{HF}}(f) = X^{\text{F}}(f)(-i \operatorname{sgn} f)$ $(1/t)^{F} = -i \operatorname{sgn} f$	
Xi	X(I), Y(I)	(<i>fundamental, statistical</i>) Samples of random quanti- ties	$i = 1 \dots n$ n : sample size	
Xi	X(I)	<i>(ships, seakeeping)</i> Absolute displacement of the ship at the reference point	i = 1, 2, 3 :surge, sway, and heave respectively	m
Xi		Estimate of input quantity X_i	Estimate of input quantity X_i NOTE when x_i is deter- mined from the arithmetic mean or average of <i>n</i> inde- pendent repeated observa- tion $x_i = \overline{X_i}$	
Xj	X(J)	<i>(fundamental, time and fre- quency domain quantity)</i> Variables for samples values of real quantities	$x(t_j) = \int x(t)\delta(t - t_j)dt$	
x ^L	XLT	(<i>fundamental, time and fre- quency domain quantity</i>) La- place transform	$X^{L}(s) = \int X(t) \exp(-st) dt$ if $X(t<0) = 0$ then $= (X(t)\exp(-at))^{F}$	
x ^M	XMR	(<i>fundamental, statistical</i>) Expectation or population mean of a random quantity	E(x)	
$(x^m)^E$	<i>X</i> mMR	(<i>fundamental, statistical</i>) m-th moment of a random	$(x^m)^E$	

quantity (fundamental, statistical) x^{MR} Expectation or population XMR E(x)mean of a random quantity $1/n \Sigma x_i, i = 1...n$ unbiased random estimate of (fundamental, statistical) x^{MS} Average or sample mean of the expectation with $x^{AE} = x^{E}$ XMS a random quantity $x^{VSE} = x^{V/n}$ (fundamental, statistical) x^{PD} XPD Probability density of a ran $d F_x / dx$ dom quantity (fundamental, statistical) x^{PF} Probability function (distri-XPF 1 bution) of a random quantity

Version 2017

ITTCComputer SymbolDefinition or ExplanationSI- Unit					,
5	ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

	1			1
		(ships, propulsor geometry)	Distance of propeller centre	
ХP	XP	Longitudinal propeller posi-	forward of the after perpen-	m
		tion	dicular	
D		(fundamental, time and fre-		
X ^R	XRT	quency domain quantity)	$X^{\rm R}(r) = \sum x_j r^{-j} = X^{\rm DL}$	
		Laurent transform		
		(ships, manoeuvrability)		
$x_{\rm R}$	XRU	Longitudinal position of rud-		m
		der axis		
		(fundamental, time and fre-	$X^{S}(f) = X^{F}(f)(1 + \operatorname{son} f)$	
rS	XS	quency domain quantity)	$= X^{AF}$	
л	210	Single-sided complex spec-	ie = 0 for $f < 0$	
		tra		
		(fundamental, time and fre-		
r ^S .	XS(I)	quency domain quantity)	$X^{\mathrm{F}}_{j}(1+\mathrm{sgn}j)$	
<i>x</i>	215(5)	Single-sided complex Fou-	line spectra	
		rier series		
		(ships, seakeeping) General-	u = 1 6 surge sway heave	m
x_u	X(U)	ized displacement of a ship	roll pitch vaw	rad
		at the reference point	ion, piten, yaw	Tuu
17		(fundamental, statistical)		
x^{v}	XVR, XXVR	Variance of a random quan- $x^{2} - x^{2}$		
		tity		
VD		(fundamental, statistical)		
x^{VK}	XVR, XXVR	Variance of a random quan-	$x^{2E} - x^{E2}$	
		tity		
		(fundamental. statistical)	$1/(n-1) \Sigma (x_i - x^A)^2$	
x^{VS}	XVS. XXVS	Sample variance of a ran-	i = 1n	
	,	dom quantity	unbiased random estimate of	
			the variance $x^{VSE} = x^{V}$	
		(fundamental, statistical,		
xx^{C}	XXCR	stochastic) Auto-covariance	$(x(t) - x^{E})(x(t + \tau) - x^{E})^{E}$	
		of a stationary stochastic		
		process		
		(fundamental, statistical,		
xx ^{CR}	XXCR	stochastic) Auto-covariance	$(x(t) - x^{E})(x(t + \tau) - x^{E})^{E}$	
		of a stationary stochastic		
		process		
MR		(fundamental, statistical)	F	
XX	XXMR	Auto-correlation of a ran-		
		dom quantity		
D		(fundamental, statistical)	F	
XX ^К	XXMR	Auto-correlation of a ran-	$x x^{L}$	
		dom quantity		

Version 2017

Version 2017				X, x
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

xx ^{RR}	<i>XX</i> RR	(fundamental, statistical, stochastic) Auto-correlation of a stationary stochastic process	$x(t)x(t + \tau)^{E} = R_{xx}(\tau)$ $R_{xx}(\tau) = R_{xx}(-\tau)$ if x is ergodic: $R_{xx}(\tau) = x(t)x(t + \tau)^{MR}$ $R_{xx}(\tau) = \int S_{xx}(\omega)\cos(\omega\tau)d\tau$ $\tau = 0 \dots \infty$	
xx ^S	XXSR	(<i>fundamental, statistical, stochastic</i>) Power spectrum or autospectral power density of a stochastic process	xx ^{RRSR}	
xx ^{VR}	XVR, XXVR	(<i>fundamental, statistical</i>) Variance of a random quan- tity	$x^{2E} - x^{E2}$	
xx^{VS}	XVS, XXVS	(fundamental, statistical) Sample variance of a ran- dom quantity	$\frac{1}{(n-1)} \sum (x_i - x^A)^2$ i = 1n unbiased random estimate of the variance $x^{VSE} = x^V$	
xy ^C	<i>XY</i> CR	(fundamental, statistical, stochastic) Cross-covariance of two stationary stochastic processes	$(x(t) - x^{E})(y(t + \tau) - y^{E})^{E}$	
xy ^{CR}	<i>XY</i> CR	(<i>fundamental, statistical, stochastic</i>) Cross-covariance of two stationary stochastic processes	$(x(t) - x^{E})(y(t + \tau) - y^{E})^{E}$	
xy ^{MR}	<i>XY</i> MR	(<i>fundamental, statistical</i>) Cross-correlation of two ran- dom quantities	$x y^E$	
xy ^{PD}	<i>XY</i> PD	(<i>fundamental, statistical</i>) Joint probability density of two random quantities	$\partial^2 F_{xy}/(\partial x \partial y)$	
xy ^{PF}	<i>XY</i> PF	(<i>fundamental, statistical</i>) Joint probability function (distribution) function of two random quantities		1
xy ^R	<i>XY</i> MR	(<i>fundamental, statistical</i>) Cross-correlation of two ran- dom quantities	$x y^E$	
xy ^R	XYRR	(fundamental, statistical, stochastic) Cross-correlation of two stationary stochastic processes	$x(t)y(t + \tau)^{E} = R_{xy}(\tau)$ $R_{yx}(\tau) = R_{xy}(-\tau)$ if x, y are ergodic: $R_{xy}(\tau) = x(t)y(t + \tau)^{MR}$	
xy ^S	<i>XY</i> SR	(<i>fundamental, statistical, stochastic</i>) Cross-power spectrum of two stationary stochastic processes	XY ^{RRSR}	

Version 2017

Version 2017				X, x
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

xy^V	<i>XY</i> VR	(<i>fundamental, statistical</i>) Variance of two random quantities	$x y^E - x^E y^E$	
$xy^{V\!\mathrm{R}}$	<i>XY</i> VR	(<i>fundamental, statistical</i>) Variance of two random quantities	$x y^E - x^E y^E$	

Version 2017

ITTC	Computer	N7	Definition or	SI-
Symbol	Symbol Symbol Name		Explanation	Unit
			1	
		(solid body mechanics		
		loads ships manoeuvrabil-		
Y	FY	ity seakeeping) Sway force		Ν
1		force in direction of body		1,
		axis v		
		(sailing vessels) Compo-		
Y		nents of resultant force along		Ν
1		designated axis		1,
		A measurand Estimated rel-		
		ative uncertainty of standard		
Y		uncertainty $u(x_i)$ of inputs		
		estimate r:		
		(ships hydrostatics stabil-		
		ity seakeening large ampli-	Lateral distance from a refer-	
Ycc	YCG	tude motions cansizing) I at-	ence point to the centre of	m
100	100	eral displacement of centre	gravity G	111
		of gravity (Y_{CG})		
		(ships manoeuvrability sea-		
		(<i>snips</i> , <i>manocuvruotiny</i> , sea <i>keeping</i>) Derivative of sway		
Y_r	YR	force with respect to yaw ye-	$\partial Y / \partial r$	Ns
		locity	yaw ve	
		(ships manoeuvrability sea-		
Y _D	YRU	(<i>snips</i> , <i>manoeuvrability</i> , sea <i>keeping</i>) Transverse rudder		Ν
¹ K	inc	force		1,
		(ships_manoeuvrability_sea-		
		<i>keeping</i>) Derivative of sway		2
Y _r	YRRT	force with respect to yaw ac-	$\partial Y / \partial \dot{r}$	Ns ²
		celeration		
		(ships, manoeuvrability, sea-		
		<i>keeping</i>) Derivative of sway		/
Y_{v}	YV	force with respect to sway	$\partial Y / \partial v$	Ns/m
		velocity		
		(ships, manoeuvrability, sea-		
		<i>keeping</i>) Derivative of sway	~ /	N 21
$Y_{\dot{v}}$	YVRT	force with respect to sway	$\partial Y / \partial v$	Ns²/m
		acceleration		
		(ships, seakeeping) Ampli-		
W ()		tude of frequency response	$z_a(\omega) / \zeta_a(\omega)$ or	1
$Y_z(\omega)$		function for translatory mo-	$z_a(\omega) / \eta_a(\omega)$	1
		tions		
		(ships, manoeuvrability, sea-		
**	V.D	<i>keeping</i>) Derivative of swav		N.T.
Y_{δ}	YD	force with respect to rudder	OY / ∂	IN
		angle		

Y, y

Version 2017

YOMX

transfer

(ships, manoeuvrability, zig-zag manoeuvre) Maximum

transverse deviation

y0max

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
Bymbol	5		Explanation	Omt
$Y_{ heta\zeta}(\omega)$		(<i>ships, seakeeping</i>) Ampli- tude of frequency response function for rotary motions	$\Theta_a(\omega) / \zeta_a(\omega)$ or $\Theta_a(\omega) / (\omega^2 / (g\zeta_a(\omega)))$	1
У	Χ, Υ	(fundamental, statistical, stochastic) Stationary sto- chastic process	$x(\zeta,t), y(\zeta,t)$	
у	X, Y	(<i>fundamental, statistical</i>) Random quantities	<i>x</i> (ζ), <i>y</i> (ζ)	
у	Y	(ships, unsteady propeller forces) Cartesian coordinates	Origin O coinciding with the centre of the propeller. The longitudinal <i>x</i> -axis coincides with the shaft axis, positive forward; the trans-verse <i>y</i> - axis, positive to port; the third, <i>z</i> -axis, positive upward	m
У	X, X(1) Y, X(2) Z, X(3)	(fundamental. coordinate and space related) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
у		Estimated of measurand <i>Y</i> or Result of a measurement or Output estimate		
уо	X0, X0(1) Y0, X0(2) Z0, X0(3)	(fundamental. coordinate and space related) Space axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the space	m
<i>Y</i> 090	Y090	(<i>ships, manoeuvrability,</i> <i>turning circles</i>) Transfer at 90° change of heading		m
<i>y</i> 0180	Y0180	(ships, manoeuvrability, turning circles) Tactical di- ameter (transfer at 180° change of heading)		m
У0F	Y0F	(ships, manoeuvrability, stopping manoeuvre) Lateral deviation		m
Y0max	Y0MX	(ships, manoeuvrability, turning circles) Maximum		m

m

Version 2017

				-,,
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

УСG	YCG	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Lat- eral displacement of centre of gravity (Y _{CG})	Lateral distance from a refer- ence point to the centre of gravity, G	m
ур		<i>(seakeeping, large amplitude motions capsizing)</i> Distance of down flooding opening from gunwale		m
ур'		<i>(seakeeping, large amplitude motions capsizing)</i> Distance of down flooding opening off centreline		m
УF	YF	(fundamental. coordinate and space related) Flow axes and corresponding Cartesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
<i>Yi</i>	Y(I)	<i>(fundamental, statistical)</i> Samples of random quanti- ties	i = 1 n where n : sample size	
<i>Yi</i>		Estimate of measurand Y_i	Estimate of measurand Y_i when two or more measur- ands are determined in the same measurement	
УР	YP	(ships, propulsor geometry) Lateral propeller position	Transverse distance of wing propeller centre from middle line	m
<i>y</i> ⁺	YPLUS	(fluid mechanics, boundary layers) Non-dimensional distance from the wall	$y u_{\tau} / v$	1

Y, y

Version 2017

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
			1	
		(solid body mechanics,		
Ζ	Z, FZ,	<i>loads)</i> Force in direction of		Nm
		body axis z		
Z	NPB	(ships, propulsor geometry)		1
2		Number of propeller blades		-
		(ships, hydrostatics, stabil-		
Z	ZRA	<i>ity</i>) Intersection of righting		
		arm with line of action of		
		the centre of buoyancy		
		(ships, manoeuvrability, sea-		
Ζ	FZ	<i>keeping</i>) Heave force on		Ν
		body, force along body z -		
		axis		
7		(sailing vessels) Compo-		NT
Z		nents of resultant force		N
		along designated axis		
		(seakeeping, large amplitude		
7		<i>motions capsizing)</i> intersec-		
L	ZKA	tion of righting arm with line		
		of action of the centre of		
		buoyancy		
		(seakeeping, large amplitude		
		distance from the contro of		
7		A to the centre of the under		m
L		A to the centre of the under-		111
		mately to a point at one half		
		the draught - IMO/IS		
		(seakeening large amplitude		
		(seakeeping, targe amplitude motions cansizing) Vertical		
Ζ		distance from the centre of		m
		A to the waterline		
		(sailing vessels) Height of		
-	705	centre of effort of sails		
Z _{CE}	ZCE	above waterline in vertical		m
		centre plane		
		(ACV and SES) Vertical		
7	711	spacing between inner and	nanda algrifiaction	
Z_{H}	ZH	outer side skirt hinges or at-	needs clarification	m
		tachment points to structure		
		(fundamental. coordinate	Dight hand orthogonal ave	
7	7	and space related) Body	tem of coordinates fixed in	m
4.		axes and corresponding Car-	the body	
1		tesian coordinates	uic oouy	

Z, z

Version 2017

				,_
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

z	Ζ	(fundamental, time and fre- quency domain quantity) Complex variable		
z	ZSURF	(environmental mechanics, wind) Height above the sea surface in meters		m
z	NPB	(ships, propulsor geome- try)Number of propeller blades		1
Ζ.	Z	(ships, unsteady propeller forces) Cartesian coordi- nates	Origin O coinciding with the centre of the propeller. The longitudinal <i>x</i> -axis coincides with the shaft axis, positive forward; the trans-verse <i>y</i> - axis, positive to port; the third, <i>z</i> -axis, positive upward	m
20	Z0	(fundamental. coordinate and space related) Space axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the space,	m
Z.6		(ships, hull resistance, water jets) Vertical distance of nozzle centre relative to un- disturbed surface		m
z ^a	ZAM	(fundamental, time and fre- quency domain quantity) Amplitude	$\operatorname{mod}(z) = \operatorname{sqrt}(z^{r^2} + z^{i^2})$	m
z ^c	ZRE	(fundamental, time and fre- quency domain quantity) Real or cosine component	$z^c = \operatorname{real}(z) = z^a \cos(z^p)$	
ZD		(seakeeping, large amplitude motions capsizing) Height above waterline of down flooding opening		m
ZF	ZF	(fundamental. coordinate and space related) Flow axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
z ⁱ	ZIM	(fundamental, time and fre- quency domain quantity) Im- aginary or sine component	$\operatorname{imag}(z) = z^a \sin(z^p) = z^s$	
z ⁱ	ZCJ	(fundamental, time and fre- quency domain quantity) Conjugate	$z^r - iz^i$	

Z, z

Version 2017

	L), L
Definition or Explanation	SI- Unit
	Definition or Explanation

z^l	ZLG	(fundamental, time and fre- quency domain quantity) (Phase) Lag	$-z^p$	
z ^p	ZPH	(fundamental, time and fre- quency domain quantity) Phase	$\operatorname{arc}(z) = \operatorname{arctg}(z^i / z^r)$	
ZP	ZP	(ships, propulsor geometry) Vertical propeller position	Height of propeller centre above base line	m
z ^r	ZRE	(fundamental, time and fre- quency domain quantity) Real or cosine component	$\operatorname{real}(z) = z^a \cos(z^p) = z^c$	1
z ^s	ZIM	(fundamental, time and fre- quency domain quantity) Im- aginary or sine component	$z^s = imag(z) = z^a \sin(z^p)$	1
<i>Z.S</i>	ZS	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Mean static sinkage	$(z_{\rm SF}+z_{\rm SA})/2$	m
ZSA	ZSA	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Static sinkage at AP	Caused by loading	m
ZSF	ZSF	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Static sinkage at FP	Caused by loading	m
ZV	ZV	(<i>ships, performance</i>) Run- ning sinkage of model or ship		m
ZVA	ZVA	(ships, hull resistance) Run- ning sinkage at AP		m
Ζ <i>V</i> F	ZVF	(<i>ships, hull resistance</i>) Run- ning sinkage at FP		m
ZVM	ZVM	(ships, hull resistance) Mean running sinkage	(zvF + zvA) / 2	m

ITTC Symbols				
Version 20	17			Α, α
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

α	АА	(solid body mechanics, rigid body motions) Angular ac- celeration	$d\omega/dt$	rad/s ²
α	AT ALFA	(solid body mechanics, rigid body motions) Angle of at- tack	The angle of the longitudinal body axis from the projec- tion into the principal plane of symmetry of the velocity of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the y-axis	rad
α	AA, ALFA	<i>(fluid mechanics, lifting sur- faces)</i> Angle of attack or in- cidence	Angle between the direction of undisturbed relative flow and the chord line	rad
α	GC	<i>(fluid mechanics, cavitation)</i> Gas content	Actual amount of solved and undissolved gas in a liquid	ppm
α	AAPI	(ships, manoeuvrability) Pitch angle	Angle of attack in pitch on the hull	rad
α_0	AAZL ALF0	(fluid mechanics, lifting sur- faces) Angle of zero lift	Angle of attack or incidence at zero lift	rad
α _B	ALFSL	(planing, semi-displacement vessels) Angle of stagnation line	Angle between projected keel and stagnation line in a plane normal to centre plane and parallel to reference line	rad
$\alpha_{\rm BAR}$	ALFBAR	(planing, semi-displacement vessels) Barrel flow angle	Angle between barrel axis and assumed flow lines	rad
α_c	ALFTW	<i>(hydrofoil boats)</i> Geometric angle of twist		rad
αD	AD	(ships, propulsor geometry) Duct profile-shaft axis angle	Angle between nose-tail line of duct profile and propeller shaft	rad
$lpha_{ m EFF}$	AAEF, ALFE	(<i>fluid mechanics, lifting sur- faces</i>) Effective angle of attack or incidence	The angle of attack relative to the chord line including the effect of induced veloci- ties	rad
$\alpha_{ m FB}$	ANFB	(<i>ships, appendage geometry</i>) Bow fin angle		rad
α _{FS}	ANFS	(<i>ships, appendage geometry</i>) Stern fin angle		rad
α _G	AAGE, ALFG	(<i>fluid mechanics, lifting sur- faces</i>) Geometric angle of attack or incidence	The angle of attack relative to the chord line neglecting the effect of induced veloci- ties	rad

Version 2017

				,	
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	_

$\alpha_{ m H}$	AAHY, ALFI	(<i>fluid mechanics, lifting sur- faces</i>) Hydrodynamic angle of attack	In relation to the position at zero lift	rad
αι	AAID, ALFS	(fluid mechanics, lifting sur- faces) Ideal angle of attack	For thin airfoil or hydrofoil, angle of attack for which the streamlines are tangent to the mean line at the leading edge. This condition is usu- ally referred to as "shock- free" entry or "smooth"	rad
$\alpha_{\rm IND}$	ALFIND	<i>(hydrofoil boats)</i> Downwash or induced angle		rad
$\alpha_{ m M}$	ALFM	<i>(hydrofoil boats)</i> Angle of attack of mean lift coefficient for foils with twist		rad
αs	GS	(<i>fluid mechanics, cavitation</i>) Gas content of saturated liq- uid	Maximum amount of gas solved in a liquid at a given temperature	ppm
$a_{\rm s}$	GR	<i>(fluid mechanics, cavitation)</i> Gas content ratio	α / α_S	1
$\alpha_{\rm s}$	AFS	<i>(hydrofoil boats)</i> Angle of attack for which flow separation (stall) occurs		rad
α_{TO}	ATO	(hydrofoil boats) Incidence angle at take-off speed		rad

Α,α

Version 2017

				/
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

β	DR BET	(solid body mechanics, rigid body motions) Angle of drift or side-slip	The angle to the principal plane of symmetry from the velocity vector of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the <i>z</i> -axis	rad
β	BETE	<i>(fluid mechanics, boundary layers)</i> Equilibrium parameter	$\delta^* / (au_w dp / dx)$	1
β	BETD	(planing, semi-displacement vessels) Deadrise angle of planing bottom	Angle between a straight line approximating body section and the intersection between basis plane and section plane	rad
β	APSF	(ships, performance) Ap- pendage scale effect factor	Ship appendage resistance divided by model append- age resistance	1
β	AADR	(ships, manoeuvrability) Drift angle	Angle of attack in yaw on the hull	rad
β	BETB	(ships, propulsor perfor- mance) Advance angle of a propeller blade section	$\operatorname{arctg}\left(V_{\mathrm{A}}/R\omega\right)$	rad
$\beta_{ m C}$	DRCI	(ships, manoeuvrability, turning circles) Drift angle at steady turning		rad
β _D	BD	(ships, propulsor geometry) Diffuser angle of duct	Angle between inner duct tail line and propeller shaft	rad
β_{I}	BETI	(ships, propulsor, perfor- mance) Hydrodynamic flow angle of a propeller blade section	Flow angle taking into ac- count induced velocity	rad
$\beta_{ m L}$	BETAL	(sailing vessels) leeway an- gle		rad
$\beta_{ m M}$	BETM	<i>(planing, semi-displacement vessels)</i> Deadrise angle at midship section		rad
βτ	BETT	(planing, semi-displacement vessels) Dead rise angle at transom		rad
$eta_{ ext{WA}}$	BETWA	<i>(environmental mechanics, wind, sailing vessels)</i> apparent wind angle (relative to boat course)		rad

Β,β

Version 2017

Version 2017	,			Β,β
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

$eta_{ m wr}$	ANWIRL	(ships, manoeuvrability) Angle of attack of relative wind		rad
$eta_{ m WT}$	BETWT	(environmental mechanics, wind, sailing vessels) True wind angle (relative to ves- sel course)		rad
β^*	BETS	(ships, propulsor perfor- mance) Effective advance angle	$\operatorname{arctg}\left(V_{\mathrm{A}}\right)\left(0.7\ R\ \omega\right)$	rad

ITTC Symbols					
Version 201	17			Γ, γ	
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	

Г	CC	<i>(fluid mechanics, flow fields)</i> Circulation	$\int V ds$ along a closed line	m ² /s
Г	VD	<i>(fluid mechanics, flow fields)</i> Vortex density	Strength per length or per area of vortex distribution	m/s
$\Gamma^{\rm n}$	CN	<i>(fluid mechanics, flow fields)</i> Normalized circulation	$\Gamma / (\pi D V)$ π is frequently omitted	1
γ	MR	(ships, basic quantities) Rel- ative mass or weight, in English speaking called spe- cific gravity	Mass density of a substance divided by mass density of distilled water at 4°C	1
γ	RO GAMR	(solid body mechanics, rigid body motions) Projected an- gle of roll or heel	The angular displacement about the x_0 axis of the prin- cipal plane of symmetry from the vertical, positive in the positive sense of rotation about the x_0 axis	rad
γ	ANSW	(fluid mechanics, lifting sur- faces) Sweep angle		rad
Version 2017

)
ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

Δ	DISPF	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Displacement (buoyant) force	gρV	N
$\varDelta_{ m APP}$	DISPFAP	<i>(ships, hull geometry)</i> Displacement force (buoyancy) of appendages	$g ho abla_{ m AP}$	Ν
⊿вн	DISPFBH	(<i>ships, hull geometry</i>) Dis- placement force (buoyancy) of bare hull	$g ho V_{ m BH}$	Ν
$\Delta C_{\rm F}$	DELCF	(ships, hull resistance) Roughness allowance		1
⊿c	DFCAN	(sailing vessels) Displace- ment force (weight) of ca- noe body		N
⊿ĸ	DFK	<i>(sailing vessels)</i> Displace- ment force (weight) of keel		N
ΔM	DMF	Change of momentum flux		N
$\Delta \overline{M}_x$		(ships, hull resistance, water jets) Change in Momentum Flux in x direction		N
Δ_m	DISPM	(ships, hull geometry, hy- drostatics, stability, sea- keeping, large amplitude motions capsizing) Dis- placement mass	ρ∇	kg
$\Delta_{\rm R}$	DFR	(sailing vessels) Displace- ment force (weight) of rud- der		Ν
Δ_U	UDEF	(fluid mechanics, boundary layers) Velocity defect in boundary layer	$(U_{e^{-}} U) / u_{\tau}$	1
⊿w	DELW	<i>(ships, performance)</i> Ship- model correlation factor for wake fraction	WT,M - WT,S	1
Дwc	DELWC	<i>(ships, performance)</i> Ship- model correlation factor with respect to <i>w</i> _{<i>T</i>,S} method formula of ITTC 1978 method		1
δ	DELTT	<i>(fluid mechanics, lifting sur- faces)</i> Thickness ratio of foil section (general)	<i>t / c</i>	1

Δ, δ

Version 2017

ITTCComputer SymbolDefinition or ExplanationSI- Unit					_, =
-	ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

δ	ADCT	(ships, propulsor perfor- mance) Taylor's advance coefficient	$n D / V_A$ with <i>n</i> in revs/min, <i>D</i> in feet, V_A in kn	1
δ	D	(<i>ships, hydrostatics, stabil-</i> <i>ity</i>) Finite increment in	Prefix to other symbol	1
δ		(seakeeping, large ampli- tude motions capsizing) Tank block coefficient		1
δ	ANCS	<i>(ships, manoeuvrability)</i> Angle of a control surface, rudder angle, helm angle		rad
δ	ANRU	(ships, manoeuvrability) Rudder angle, helm angle		rad
δ_0	ANRU0	(ships, manoeuvrability) Neutral rudder angle		rad
δ_1	DELS	(fluid mechanics, boundary layers) Displacement thick- ness of boundary layer	$\int (U_{\rm e}-U) / U_{\rm e} dy$	m
δ995	DEL	(fluid mechanics, boundary layers) Thickness of a boundary layer at U=0.995U _e		m
$\delta B_{\rm C}$	DBCV	(ACV and SES) Increase in cushion beam due to water contact		m
$\delta_{ m FB}$	ANFB	(ships, manoeuvrability) Bow fin angle		rad
$\delta_{ m B}$	DELTB	<i>(fluid mechanics, lifting sur- faces)</i> Thickness ratio of trailing edge of struts	$t_{\rm B} / c_{\rm S}$	1
$\delta_{ m C}$	НС	(fluid mechanics, cavitation) Cavity height or thickness	Maximum height of a fully- developed cavity, normal to the surface and the stream-wise direction of the cavity	m
δ_{ij}	DEL(I,J)	(fundamental. coordinate and space related) Delta operator	+1: ij = 11, 22, 33 0: if otherwise	
$\delta_{ m EFF}$	ANRUEF	(<i>ships, manoeuvrability</i>) Effective rudder inflow an- gle		rad
$\delta_{ m F}$	DELTF	<i>(fluid mechanics, lifting sur- faces)</i> Camber ratio of mean line (general)	f / c	1

Δ, δ

				,
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

$\delta_{ m F}$	DELFS	(ships, appendage geometry) Flap angle (general)	Angle between the planing surface of a flap and the bottom before the leading edge	rad
$\delta_{ m FB}$	ANFB	Bow fin angle		rad
$\delta_{ m FL}$	DLTFL	<i>(fluid mechanics, lifting sur- faces)</i> Angle of flap deflection		rad
$\delta_{ ext{FR}}$	ANFR	(ships, appendage geometry) Flanking rudder angle		rad
$\delta_{ ext{FRin}}$	ANFRIN	(ships, appendage geometry) Assembly angle of flanking rudders	Initial angle set up during the assembly as zero angle of flanking rudders	rad
$\delta_{ m FS}$	ANFS	(ships, manoeuvrability) Stern fin angle		rad
δ_{I}	ELIC	<i>(environmental mechanics, ice)</i> Deflection of ice sheet	Vertical elevation of ice surface	m
$\delta_{\rm L}$	DELTL	(fluid mechanics, lifting sur- faces) Camber ratio of lower side of foil	f_L / c	1
δ_λ	DLAM	<i>(special craft, geometry and levers)</i> Dimensionless in- crease in total friction area	Effective increase in friction area length-beam ratio due to spray contribution to drag	1
$\delta_{ m max}$	ANRUMX	(ships, manoeuvrability, zig- zag manoeuvre) Maximum value of rudder angle		rad
$\delta_{ m R}$	ANRU	(ships, appendage geometry, manoeuvrability) Rudder angle		rad
$\delta_{ m RO}$	ANRUOR	(ships, manoeuvrability) Rudder angle, ordered		rad
$\delta_{ m RF}$	ANRF	(ships, appendage geometry) Rudder-flap angle		rad
$\delta_{ m S}$	DELTS	(fluid mechanics, lifting sur- faces) Thickness ratio of strut	$t_{\rm S} / c_{\rm S}$	1
$\delta_{ m STH}$	DELTT	<i>(fluid mechanics, lifting sur- faces)</i> Theoretical thickness ratio of section	$t_{\rm S} / c_{\rm STH}$	1
$\delta_{ m s}$	ANSL	(fluid mechanics, lifting sur- faces) Slat deflection angle		rad

Version 2017

				_, •
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

$\delta t_{\rm KL}$	DTR	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Change in static trim		m
$\delta_{ m U}$	DELTU	(fluid mechanics, lifting sur- faces) Camber ratio of upper side	f_u / c	1
δ_u	DP(U)	(ships, unsteady propeller forces) Generalized vibrato- ry displacement	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	M m rad
$\delta_{ m W}$	DELWG	(ships, appendage geometry) Wedge angle	Angle between the planing surface of a wedge and the bottom before the leading edge	rad
δ_{λ}	DLAM	<i>(planing, semi-displacement vessels)</i> Dimensionless increase in total friction area	Effective increase in friction area length-beam ratio due to spray contribution to drag	1
δ^{*}	DELS	<i>(fluid mechanics, boundary layers)</i> Displacement thickness of boundary layer	$\int (U_{\rm e}-U) / U_{\rm e} dy$	m
δ^{**}	ENTH	(fluid mechanics, boundary layers) Energy thickness	$\int (U/U_{\rm e}) (1 - U^2/U_{\rm e}^2) dy$	m
δ _u	DPVL(U)	(ships, unsteady propeller forces) Generalized vibrato- ry velocity	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m/s m/s rad/s
ö _u	DPAC(U)	(ships, unsteady propeller forces) Generalized vibrato- ry acceleration	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m/s^2 m/s^2 rad/s^2

Δ, δ

				,
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

Е	EPSLD	(fluid mechanics, lifting surfaces) Lift-Drag ratio	L/D	1
ε	EPSG	<i>(ships, hull resistance)</i> Resistance-displacement ratio in general	R / A	1
ε	PSIBP	(ships, propulsor geometry) Propeller axis angle measured to body fixed coordinates	Angle between reference line and propeller shaft axis	rad
<i>Е</i> F	EPSLDF	(hydrofoil boats) Lift/ Drag ratio of foil	L/D	1
εi	EWPH(I)	Phases of harmonic components of a periodic wave	$\eta^{ ext{FSp}}$	rad
Eijk	EPS(I,J,K)	(fundamental. coordinate and space related) Epsilon operator	+1 : $ijk = 123, 231, 312$ - 1 : $ijk = 321, 213, 132$ 0 : if otherwise	
£I	STIC	(environmental mechanics, ice) Ice strain	Elongation per unit length	1
ε _R	EPSR	<i>(ships, hull resistance)</i> Residuary resistance- displacement ratio	$R_{\rm R}$ / Δ	1
£sн	EPSSH	(planing, semi-displacement vessels) Shaft angle	Angle between shaft line and reference line (positive, shaft inclined downwards)	rad
ε _{wL}	EPSWL	<i>(planing, semi-displacement vessels)</i> Wetted length factor	$L_{\rm M}$ / $L_{\rm WL}$	1
EWS	EPSWS	(planing, semi-displacement vessels, ACV and SES) Wetted surface area factor, wetted surface factor	S / S ₀ , S _{SHC} / S _{SH0}	1
έı	STRTIC	(environmental mechanics, ice) Ice strain rate	$\partial \epsilon / \partial \tau$	1/s

Version 202	17			Ζ, ζ
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

ζ		(<i>fundamental, statistical, stochastic</i>) Outcome of a random "experiment"		
ζ	DW	(environmental mechanics, waves) Instantaneous wave depression	<i>z</i> -axis positive vertical down, zero at mean water level	m
ζ ₁₃	ZETA13	(<i>ships</i> , <i>hull resistance</i> , <i>water jets</i>) Inlet duct loss coefficient:	$\frac{E_{3}-E_{1}}{\frac{1}{2}\rho U_{0}^{2}}$	1
557	ZETA57	(ships, hull resistance, water jets) Nozzle duct loss coefficient:	$\frac{E_7 - E_5}{\frac{1}{2}\rho u_{e6}^{-2}}$	1
ζA	WAMP	(environmental mechanics, waves) Wave amplitude	Radius of orbital motion of a surface wave particle	m
ζc	ZETAC	(ACV and SES) Height of cushion generated wave above mean water plane at leading edge side of the skirt		m
ζ _{ij}		(ships, hull resistance, water jets) Energy loss coefficient between station <i>i</i> and <i>j</i>		1

ITTC Symbols					
Version 20)17			Η, η	
ITTC	Computer	Name	Definition or	SI-	
Symbol	Symbol	Indiffe	Explanation	Unit	

η	EW	(ships, hull resistance, envi- ronmental mechanics, waves) Instantaneous wave eleva- tion at a given location	<i>z</i> -axis positive vertical up, zero at mean water level;	m
η	EF, ETA	(ships, basic quantities) Ef- ficiency	Ratio of powers	
η_0		(ships, hull resistance, water jets) Free stream efficiency:	$\eta_{\mathrm{P}}\eta_{\mathrm{duct}}\eta_{\mathrm{I}}$	1
$\eta_{ m APP}$	ETAAP	(ships, performance) Ap- pendage efficiency	$P_{\rm Ew0APP} / P_{\rm EwAPP}, R_{\rm TBH} / R_{\rm T}$	1
$\eta^{a}{}_{i}$	EWAM(I)	<i>(environmental mechanics, waves)</i> Amplitudes of har- monic components of a peri- odic wave	η^{FSa}	m
$\eta_{ m B}$	ETAB, EFTP	(ships, performance) Propel- ler efficiency behind ship	$P_{\rm T}/P_{\rm D} = T V_{\rm A}/(Q \omega)$	1
ηс	EC	<i>(environmental mechanics, waves)</i> Maximum of elevations of wave crests in a record		m
$\eta_{\rm D}$	ETAD, EFRP	(ships, performance, hull re- sistance, water jets) Propul- sive efficiency or quasi-pro- pulsive coefficient	$P_{\rm E}/P_{\rm D} = P_{\rm R}/P_{\rm P}$	1
$\eta_{ ext{duct}}$		(ships, hull resistance, water jets) Ducting efficiency:	$\frac{P_{\rm JSE}}{P_{\rm PE}}$	1
$\eta_{ m eI}$		(ships, hull resistance, water jets) Energy interaction effi- ciency:	$\frac{P_{\rm JSE0}}{P_{\rm JSE}}$	1
$\eta_{ m G}$	ETAG, EFGP	(ships, performance, basic quantities) Gearing effi- ciency		1
$\eta_{ m H}$	ETAH, EFRT	(ships, performance) Hull efficiency	$P_{\rm E} / P_{\rm T} = P_{\rm R} / P_{\rm T}$ = (1 - t) / (1 - w)	1
η_{I}	EFID	(ships, propulsor perfor- mance) Ideal propeller effi- ciency	Efficiency in non-viscous fluid	1
η_{I}		(ships, hull resistance, water jets) Ideal efficiency, equiv- alent to jet efficiency in free stream conditions	$\frac{P_{\text{TE0}}}{P_{\text{JSE0}}}$	1
$\eta_{ m ID}$	EFDIC	<i>(ice going vessels)</i> Propulsive efficiency in ice	$R_{\mathrm{IT}} V / (2 \pi n_{\mathrm{IA}} Q_{\mathrm{IA}})$	1

ITTC Symbols						
Version 201	17			Η, η		
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit		

$\eta_{ m ICE}$	ERIC	<i>(ice going vessels)</i> Relative	η _{ID} / η _D	1
$\eta_{ ext{INT}}$		<i>(ships, hull resistance, wa- ter jets)</i> Total interaction ef- ficiency:	$\frac{\eta_{\rm eI}}{\eta_{\rm mI}}(1-t)$	1
$\eta_{ m inst}$	ETAIN	(ships, hull resistance, wa- ter jets) Installation effi- ciency to account for the distorted flow delivered by the jet intake to the pump		1
$\eta_{ m jet}$		<i>(ships, hull resistance, water jets)</i> Momentum or jet efficiency:	$\frac{P_{\rm TE}}{P_{\rm JSE}}$	1
η _{JP}	EFJP	(ships, propulsor perfor- mance) Propeller pump or hydraulic efficiency	$P_{\rm J}/P_{\rm D}=P_{\rm J}/P_{\rm P}$	1
η _{ЈР0}	ZET0, EFJP0	<i>(ships, propulsor perfor- mance)</i> Propeller pump efficiency at zero advance speed, alias static thrust coefficient	$T/(\rho \pi/2)^{1/3}/(P_{\rm D}D)^{2/3}$	1
$\eta_{ m JS}$		(ships, hull resistance, water jets) Jet system efficiency:	$\frac{P_{\rm JSE}}{P_{\rm D}}$	1
$\eta_{ m M}$	ETAM	Mechanical efficiency of transmission between engine and propeller	$P_{\rm D}/P_{\rm B}$	1
$\eta_{ m mI}$		(ships, hull resistance, water jets) Momentum interaction efficiency:	$\frac{T_{\rm net0}}{T_{\rm net}}$	1
ηο	ETAO, EFTPO	(ships, propulsor perfor- mance, performance) Pro- peller efficiency in open wa- ter	$P_{\rm T} / P_{\rm D} = T V_{\rm A} / (Q \omega)$ all quantities measured in open water tests	1
$\eta_{ m P}$	ETAP	<i>(ships, performance)</i> Propulsive efficiency coefficient	$P_{\rm E}/P_{\rm B}$	1
$\eta_{ ext{P}}$	ETAP	(ships, hull resistance, water jets) Pump efficiency	$\frac{P_{\rm PE}}{P_{\rm D}}$	1
$\eta_{_{ m P0}}$		(ships, hull resistance, water jets) Pump efficiency from a pump loop test		1

ITTC Symbols					
Version 20)17			Η, η	
ITTC	Computer	Nomo	Definition or	SI-	
Symbol	Symbol Name	Name	Explanation	Unit	

$\eta^p{}_i$, $arepsilon_i$	EWPH(I)	<i>(environmental mechanics, waves)</i> Phases of harmonic components of a periodic wave	η^{FSp}	rad
$\eta_{ m R}$	ETAR, EFR0	(ships, performance) Rela- tive rotative efficiency	$\eta_{\rm B}$ / η_0	1
ηs	ETAS, EFPS	(ships, performance) Shafting efficiency	$P_{\rm D}/P_{\rm S} = P_{\rm P}/P_{\rm S}$	1
$\eta_{ m T}$	ET	(environmental mechanics, waves) Wave trough depression	Negative values!	m
ητ	ET	<i>(environmental mechanics, waves)</i> Elevations of wave troughs in a record	Negative values!	m
ηтј	EFTJ	<i>(ships, propulsor perfor- mance)</i> Propeller jet effi- ciency	$2 / (1 + (1 + C_{Th})^{1/2})$	1
$\eta_{ ext{TP0}}$	ETA0, EFTP0	(ships, propulsor perfor- mance) Propeller efficiency in open water	$P_{\rm T} / P_{\rm D} = T V_{\rm A} / (Q \omega)$ all quantities measured in open water tests	1

Version 2017

)
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

Θ	THETA	(fluid mechanics, boundary layers) Momentum thickness	$\int (U/U_e) (1 - U/U_e) dy$	m
θ	X(5), TR, TETP	<i>(solid body mechanics, rigid body motions)</i> Angle of pitch or trim	Positive in the positive sense of rotation about the y-axis	rad
θ	CWD	(environmental mechanics, waves) Component wave di- rection		rad
θ	PI	(ships, manoeuvrability) Pitch angle		rad
θ	RAKA	(ships, propulsor geometry) Angle of rake		rad
$ heta_0$	TRIMS	(planing, semi-displacement vessels) Static trim angle	Angle between ship design waterline and actual water line at rest (positive bow up) $\tan^{-1}((z_{SF} - z_{SA}) / L)$	rad
$ heta_{ m B}$	TETB	(ACV and SES) Bag contact deformation angle		rad
$ heta_{ m C}$		(seakeeping, large amplitude motions capsizing) Capsiz- ing angle under the action of a gust of wind IMO/IS		rad
$ heta_{ m D}$	TRIMV	(ships, hull resistance, plan- ing, semi-displacement ves- sels) Running (dynamic) trim angle	Angle between actual water line at rest and running water line (positive bow up) $\tan^{-1}((z_{VF} - z_{VA}) / L)$	rad
$ heta_{ m DH}$	DIHED	(hydrofoil boats) Dihedral angle		rad
$ heta_{ m DWL}$	TRIMDWL	(<i>planing</i> , <i>semi-displacement</i> <i>vessels</i>) Running trim angle based on design waterline	Angle between design water- line and running waterline (positive bow up)	rad
$ heta_{ m EXT}$	TEMX	(ships, propulsor geometry) Skew angle extent	The difference between maximum and minimum lo- cal skew angle	rad
$ heta_{ m F}$	TETF	(ACV and SES) Finger outer face angle		rad
$ heta_{ m f}$	HEELANGF	(seakeeping, large amplitude motions capsizing) Heel an- gle at flooding		rad
$ heta_{ m m}$	MWD THETAMOX	(environmental mechanics, waves) Mean or dominant wave direction		rad
$\theta_{\rm n}$		(ships, hull resistance, water jets) Jet angle relative to the		rad

Θ, θ

Version 2017

				,
ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

		horizontal at the nozzle (sta-		
		tion 6)		
θs	TRIMS	(ships, hydrostatics, stabil- ity, planing, semi-displace- ment vessels, seakeeping, large amplitude motions capsizing) Static trim angle	Angle between ship design waterline and actual water line at rest (positive bow up) $\tan^{-1}((z_{SF} - z_{SA}) / L)$	rad
$ heta_{ m s}$	TETS	(ships, propulsor geometry) Skew angle	The angular displacement about the shaft axis of the reference point of any blade section relative to the gener- ator line measured in the plane of rotation. It is posi- tive when opposite to the di- rection of ahead rotation	rad
$ heta_V$	TRIMV	(ships, hull resistance, plan- ing, semi-displacement ves- sels) Running (dynamic) trim angle	Angle between actual water line at rest and running water line (positive bow up) $\tan^{-1}((z_{VF} - z_{VA}) / L)$	rad
$ heta_{ m W}$	TETW	(ACV and SES) Slope of mean water plane for surface level beneath cushion pe- riphery		rad
$ heta_{ m W}$	TETWI	(environmental mechanics, wind) Wind direction		rad
$ heta^*$	ENTH	(fluid mechanics, boundary layers) Energy thickness	$\int (U/Ue) (1 - U^2/U_e^2) dy$	m

Θ, θ

ITTC Symbols					
Version 20	17			Ι, ι	
ITTC	Computer	Nomo	Definition or	SI-	
Symbol	Symbol	Iname	Explanation	Unit	

	Commutan	 	
Version 2017			
ITTC Symbo	ls		

Version 2017			К, к	
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

Κ	К	<i>(fluid mechanics, boundary layers)</i> von Karman constant	0.41	1
κ	СК	(fluid mechanics, flow pa- rameter) Kinematic capillar- ity	σ/ρ	m ³ /s ²
κ	WN	(environmental mechanics, waves) Wave number	$2 \pi / L_{\rm W} = \omega^2 / g$	1/m
κ _S	KS	(ships, propulsor perfor- mance) Roughness height of propeller blade surface		m

ITTCComputer SymbolDefinition or Explanation	SI- Unit

Л	AS	(fluid mechanics, lifting sur- faces) Aspect ratio	b^2 / A	1
Λ	PRGR	<i>(fluid mechanics, boundary layers)</i> Pressure gradient parameter	δ_{995} / (v dU_e / dx)	1
Л		Tuning factor	$\begin{split} \Lambda_{z} &= \frac{\omega_{E}}{\omega_{z}} \Lambda_{\theta} = \frac{\omega_{E}}{\omega_{\theta}} \Lambda_{\phi} = \frac{\omega_{E}}{\omega_{\phi}} \\ \Lambda_{z} &= \frac{\omega_{E}}{\omega_{z}} \Lambda_{\theta} = \frac{\omega_{E}}{\omega_{\theta}} \Lambda_{\phi} = \frac{\omega_{E}}{\omega_{\phi}} \\ \text{or} \\ T_{z} & T & T \end{split}$	1
			$\Lambda_{z} = \frac{-z}{T_{E}} \Lambda_{\theta} = \frac{-\theta}{T_{E}} \Lambda_{\phi} = \frac{-\varphi}{T_{E}}$	
$\Lambda_{ m FR}$	ASRF	(ships, appendage geometry) Flanking rudder aspect ratio		1
$\Lambda_{ m R}$	ASRU	<i>(ships, appendage geometry, manoeuvrability)</i> Rudder aspect ratio	b^2/A , $b_{\mathrm{R}}^2/A_{\mathrm{R}}$, $b_{\mathrm{R}}^2/A_{\mathrm{RT}}$	1
λ	ТА	(fluid mechanics, lifting sur- faces) Taper ratio	$c_{\rm t}$ / $c_{\rm r}$	1
λ	SC	(ships, basic quantities, ships, hull geometry) Scale ratio, Linear scale of ship model	Ship dimension divided by corresponding model dimen- sion $\lambda = L_S / L_M = B_S / B_M$ $= T_S / T_M$	1
λ	ADR	(ships, propulsor perfor- mance) Advance ratio of a propeller	$V_{\rm A}/(n\ D)/\pi=J/\pi$	1
$\lambda_{ m d}$	LD	(environmental mechanics, waves) Wave length by zero down-crossing	The horizontal distance be- tween adjacent down cross- ing in the direction of ad- vance	m
λfr	TAFR	(ships, appendage geometry) Flanking rudder taper		1
λ_{R}	TARU	(ships, appendage geometry) Rudder taper	<i>c</i> _R / <i>c</i> _T	1
$\lambda_{ m u}$	LU	(environmental mechanics, waves) Wave length by zero up-crossing	The horizontal distance be- tween adjacent up crossing in the direction of advance	m
λw	LW	(environmental mechanics, waves) Wave length	The horizontal distance be- tween adjacent wave crests in the direction of advance	m
λw	LAMS	(<i>planing, semi-displacement</i> <i>vessels</i>) Mean wetted length- beam ratio	$L_{\rm M}$ / ($B_{\rm LCG}$)	1

ITTC Symbols				
Version 20	17			Μ, μ
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

-				
μ	VI	(fluid mechanics, flow pa- rameter) Viscosity		kg/ms
μ	CWD	(environmental mechanics, waves) Component wave di- rection		rad
μ	PMVO	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Vol- umetric permeability	The ratio of the volume of flooding water in a compart- ment to the total volume of the compartment	1
μ		(ships, seakeeping) Wave encounter angle	Angle between ship positive x axis and positive direction of waves (long crested) or dominant wave direction (short crested)	rad
$\mu_{\scriptscriptstyle \mathrm{I}}$	POIIC	(environmental mechanics, ice) Poisson's ratio of ice		1
μ_p		Expectation or mean of the probability distribution	Expectation or mean of the probability distribution of random-varying quantity <i>q</i>	
μ_{x}	XMR	(<i>fundamental, statistical</i>) Expectation or population mean of a random quantity	E(x)	
μ	WD	Wave direction	The angle between the direc- tion of a component wave and the x_0 axis	rad

ITTC Symbols				
Version 20	017			N, v
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

v	VK	<i>(fluid mechanics, flow pa- rameter)</i> Kinematic viscos- ity	μ/ρ	m ² /s
v		Degrees of freedom (gen- eral)		
Veff		Effective degrees of freedom	Effective degrees of freedom of $u_c(y)$ used to obtain $t_p(v_{eff})$ for calculating expanded un- certainty U_p	
vi		(rigid body motion) Degrees of freedom	Degrees of freedom, or ef- fective degrees of freedom of standard uncertainty u(xi) of input estimate xi	
v ⁰ 1 , v4	V0(1), V(4)	<i>(rigid body motion)</i> Rota- tional velocity around body axis x		rad/s
v ⁰ ₂ , v ₅	V0(2), V(5)	(<i>rigid body motion</i>) Rota- tional velocity around body axis y		rad/s
v ⁰ 3, v ₆	V0(3), V(6)	(<i>rigid body motion</i>) Rota- tional velocity around body axis z		rad/s
<i>v</i> ¹ ₁ , <i>v</i> ₁	V1(1), V(1)	(<i>rigid body motion</i>) Transla- tory velocity in the direction of body axis x		m/s
v, v_y, v_{12}, v_2	V, VY, V1(2), V(2)	<i>(rigid body motion)</i> Transla- tory velocity in the direction of body axis y		m/s
$v_z v_{3}^1$, v_3	VZ, V1(3), V(3)	(<i>rigid body motion</i>) Transla- tory velocity in the direction of body axis z		m/s
v_i	V(I)	Any vector quantities		T

ITTC Symbols				
Version 2017				Ξ, ξ
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

	l

ITTC Symbols				
Version 20	17			O , 0
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

		1
		1

ITTC Symbols					
Version 201	17			Π, π	
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	

	π	PI	Circular constant	3.1415926535	1
--	---	----	-------------------	--------------	---

ITTC Symbols					
Version 201	.7			Ρ, ρ	
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	

ρ	DN, RHO	(fluid mechanics, flow pa- rameter, ships, basic quanti- ties, seakeeping, large am- plitude motions capsizing, hull resistance, water jets) Mass density of fluid	dm / dV	kg/m ³
$ ho_0$	RHO0	(ships, basic quantities, sail- ing vessels) water density for reference water temperature and salt content		kg/m3
$ ho_{ m A}$	DNA, RHOA	(Ships, basic quantities, ACV and SES, seakeeping, large amplitude motions capsiz- ing) Mass density of air	Mass of air per unit volume	kg/m ³
$ ho_{\mathrm{I}}$	DNIC	(environmental mechanics, ice) Mass density of ice	Mass of ice per unit volume	kg/m ³
$ ho_{ m SN}$	DNSN	(environmental mechanics, ice) Mass density of snow	Mass of snow per unit vol- ume	kg/m ³
$ ho_{ m W}$	DNWA	(environmental mechanics, ice) Mass density of water		kg/m ³
ρ_{Δ}	DNWI	(environmental mechanics, ice) Density difference	$ ho_{arDelta}= ho_{ m W}$ - $ ho_{ m I}$	kg/m ³

ITTC Sym	ITTC Symbols					
Version 20	17			Σ, σ		
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit		

σ	СА	(fluid mechanics, flow parameter) Capillarity	Surface tension per unit length	kg/s ²
σ	CNPC	<i>(fluid mechanics, cavitation)</i> Cavitation number	$(p_{\rm A} - p_{\rm C}) / q$	1
σ	SN, SIGS	(ships, basic quantities) Normal stress		Ра
σ	FC	(environmental mechanics, waves) Circular wave frequency	$2 \pi f_{\rm W} = 2 \pi / T_{\rm W}$	rad/s
σ		Standard deviation of a probability distribution	Standard deviation of a probability distribution, equal to the positive square root of σ^2	
$\sigma_{ m CI}$	SCIC	<i>(environmental mechanics, ice)</i> Compressive strength of ice		Ра
$\sigma_{ m FI}$	SFIC	(environmental mechanics, ice) Flexural strength of ice		Ра
σι	CNPI	<i>(fluid mechanics, cavitation)</i> Inception cavitation number		1
$\sigma_{ m TI}$	SNIC	(environmental mechanics, ice) Tensile strength of ice		Ра
$\sigma_{ m V}$	CNPV	<i>(fluid mechanics, cavitation)</i> Vapour cavitation number	$(p_{\rm A} - p_{\rm V}) / q$	1
σ_x	<i>X</i> DR	(<i>fundamental, statistical</i>) Standard deviation of a random quantity	x ^{VR 1/2}	
$\sigma_{ heta}$	DIRSF SIGMAOX	(environmental mechanics, waves) Directional spreading function	$S(f,\theta) = S(f)D_{X}(f,\theta) \text{ where}$ $\int_{0}^{2\pi} D_{X}(f,\theta)d\theta = 1$	rad
$\sigma(\overline{q})$		Standard deviation of \overline{q}	Standard deviation of \overline{q} , equal to the positive root of $\sigma^2(\overline{q})$	
$\sigma \left[s(\overline{q}) \right]$		Standard deviation of experimental standard deviation $s(\overline{q})$ of \overline{q} , equal to the positive square root of $\sigma^2 \left[s(\overline{q}) \right]$		

σ^2	Variance of a probability	Variance of a probability distribution of (for example) a randomly-variing quantity q , estimated by $s^2(q_k)$
$\sigma^2ig(\overline{q}ig)$	Variance of \overline{q}	Variance of \overline{q} , equal to σ^2 / n , estimated by $s^2(\overline{q}) = \frac{s^2(q_k)}{n}$
$\sigma^2 \left[s(\overline{q}) \right]$	Variance of experimental standard deviation $s(\overline{q})$ of \overline{q}	

				,
ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

τ	TICV	(fundamental, statistical, stochastic) Covariance or correlation time		s
τ	ST, TAU	(ships, basic quantities) Tan- gential stress		Ра
τ	TMR	(ships, propulsor perfor- mance) Ratio between pro- peller thrust and total thrust of ducted propeller	$T_{ m P}$ / $T_{ m T}$	1
$ au_{ m B}$		(ships, propulsor geometry) Blade thickness ratio	t_0 / D	1
τ	TRIMDWL	(special craft, Planing and Semi-Displacement Vessels) Running trim angle based on design waterline	Angle between design water- line and running waterline (positive bow up)	deg
$ au_{ m DWL}$	TAUDWL	(planing, semi-displacement vessels) Reference line angle	Angle between the reference line and the design waterline	rad
τ _R	TAUR	(<i>planing, semi-displacement</i> <i>vessels</i>) Angle of attack rela- tive to the reference line	Angle between the reference line and the running water- line	rad
$ au_{ m SI}$	STIC	(environmental mechanics, ice) Shear strength of ice		Pa
τ _w	LSF, TAUW	(ships, hull resistance, fluid mechanics, flow fields) Local skin friction, Wall shear stress	$\mu (\partial U / \partial y)_{y=0}$	Ра

Version 2017	Υ, υ
ITTC SymbolComputer SymbolNameDefinition or Explanation	SI- Unit

ITTC Sym	ITTC Symbols					
Version 20)17			Φ, φ		
ITTC	Computer	Nomo	Definition or	SI-		
Symbol	Symbol	Inallie	Explanation	Unit		

F				
	LIEEL ANC	(searceping, targe amplitude		rod
1	HEELANG	motions cupsizing) neer an-		Tau
Σ	X(4), RO,	(solid body mechanics, rigid	Positive in the positive sense	1
F	PHIR	body motions) Angle of roll,	of rotation about the x-axis	rad
		heel or list		
F	HEELANG	(ships, hydrostatics, stabil-		rad
1	TILLE IN CO	<i>ity</i>) Heel angle		Tuu
F	RO	(ships, manoeuvrability)		rad
1	Ro	Roll angle		Tuu
		(seakeeping, large amplitude		
		motions capsizing) Heel an-		rad
		gle during offset load tests		
		(seakeeping, large amplitude		
		motions capsizing) Maxi-		rad
'MT)		mum permitted heel angle		rad
		during		
		(seakeeping, large amplitude		
		motions capsizing) Maxi-		1
EQ)		mum permitted heel angle		rad
		during		
		(seakeeping, large amplitude		
		motions capsizing) Actual		1
		down flooding angle accord-		rad
		ing to		
		(seakeeping, large amplitude		
REO)		<i>motions capsizing</i>) Required		rad
-0		down flooding angle, see		
		(seakeeping, large amplitude		
		motions capsizing) Down		1
		flooding angle to non-quick		rad
		draining cockpits		
		(seakeeping, large amplitude		
		<i>motions capsizing</i>) Down		
1		flooding angle to any main		rad
		access hatchway		
		(ships, hydrostatics, stability		
		seakeening large amplitude		
F	HEELANGF	<i>motions capsizing</i>) Heel an-		rad
		gle at flooding		
		(seakeeping, large amplitude		
		<i>motions capsizing</i>) Angle of		
MAX		heel at which maximum		rad
		righting moment occurs		
H REQ) I I MAX	HEELANG RO HEELANG HEELANG	ity) Heel angle (ships, manoeuvrability) Roll angle (seakeeping, large amplitude motions capsizing) Heel an- gle during offset load tests (seakeeping, large amplitude motions capsizing) Maxi- mum permitted heel angle during (seakeeping, large amplitude motions capsizing) Maxi- mum permitted heel angle during (seakeeping, large amplitude motions capsizing) Actual down flooding angle accord- ing to (seakeeping, large amplitude motions capsizing) Required down flooding angle, see (seakeeping, large amplitude motions capsizing) Required down flooding angle, see (seakeeping, large amplitude motions capsizing) Down flooding angle to non-quick draining cockpits (seakeeping, large amplitude motions capsizing) Down flooding angle to any main access hatchway (ships, hydrostatics, stability seakeeping, large amplitude motions capsizing) Heel an- gle at flooding (seakeeping, large amplitude motions capsizing) Angle of heel at which maximum righting moment occurs		rad rad rad rad rad rad rad rad rad rad

ITTC Symbols					
Version 20	17			Φ, φ	
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	

$\phi_{ m m}$		Heel angle corresponding to the maximum of the statical		rad
		stability curve		
		(seakeeping, large amplitude		
$\phi_{\rm R}$		motions capsizing) Assumed		rad
,		roll angle in a seaway		
		(ships, hydrostatics, stabil-		
Øvs	HEELANGV	<i>ity</i>) Heel angle for vanishing		rad
,		stability		
		(seakeeping, large amplitude		
$\phi_{ m W}$		<i>motions capsizing</i>) Heel an-		rad
,		gle due to calculation wind		
		(ships, propulsor geometry)		
φ	PHIP	Pitch angle of screw propel-	$\operatorname{arctg}\left(P / (2 \pi R)\right)$	rad
		ler		
	DO	(fluid mechanics, flow fields)		
arphi	PO	Potential function		m ⁻ /s
		(ships, propulsor geometry)		
$\varphi_{ m F}$	PHIF	Pitch angle of screw propel-		rad
		ler measured to the face line		
		(alaning gami dianlagament	Angle between stagnation	
$\varphi_{ m SP}$	PHISP	(planing, semi-alsplacement	line and keel (measured in	rad
		vesseis) spray angle	plane of bottom)	

ITTC Symbols					
Version 20	17			Χ, χ	
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	

χ YX Yaw angle	rad	

ITTC Sym	ITTC Symbols						
Version 20	017			Ψ, ψ			
ITTC	Computer	Nomo	Definition or	SI-			
Symbol	Symbol	Iname	Explanation	Unit			

ψ	X(6), YA, PSIY	(solid body mechanics, rigid body motions, ships, ma- noeuvrability) Angle of yaw, heading or course	Positive in the positive sense of rotation about the z-axis	rad
ψ	SF	(fluid mechanics, flow fields) Stream function	$\psi = \text{const}$ is the equation of a stream surface	m ³ /s
Ψ_0	YAOR	(ships, manoeuvrability) Original course		rad
W 01	PSI01	(ships, manoeuvrability, zig- zag man) First overshoot angle		rad
Ψ02	PSI02	(ships, manoeuvrability, Zig- zag man) Second overshoot angle		rad
ψ^{aP}	PSIAP	(ships, propulsor geometry) Propeller axis angle meas- ured to space fixed coordi- nates	Angle between horizontal plane and propeller shaft axis	rad
$\psi^{ m bP}$	PSIBP	(ships, propulsor geometry) Propeller axis angle meas- ured to body fixed coordi- nates	Angle between reference line and propeller shaft axis	rad
Ψc	COCU	(ships, manoeuvrability) Course of current velocity		rad
ψs	PSIS	(ships, manoeuvrability, zig- zag man) Switching value of course angle		rad
ΨWA	COWIAB	(<i>ships, manoeuvrability</i>) Absolute wind direction		rad
Ψwr	COWIRL	(ships, manoeuvrability) Relative wind direction		rad

Version 2017

ITTCComputer SymbolDefinition or ExplanationSI- Unit

ω	FC, OMF	(ships, basic quantities) Cir- cular frequency	2 π f	1/s
ω	V0, OMN	(ships, basic quantities) Ro- tational velocity	2 π n	rad/s
ω	V0P	(ships, propulsor perfor- mance) Propeller rotational velocity	2 π n	1/s
$\omega_{ m E}$	FE	<i>(environmental mechanics, waves)</i> Circular wave frequency of encounter	$2 \pi f_{\rm E} = 2 \pi / T_{\rm E}$	rad/s
$\omega_{ m W}$	FC	(environmental mechanics, waves) Circular wave fre- quency	$2\pi f_{\rm W} = 2\pi / T_{\rm W}$	rad/s
ω_x	P, OMX, V0(1), V(4)	(solid body mechanics, rigid body motions) Rotational ve- locity around body axis x		rad/s
ω_y	Q, OMY, V0(2), V(5)	(solid body mechanics, rigid body motions) Rotational velocity around body axis y		rad/s
ω_z	R, OMZ, V0(3), V(6)	(solid body mechanics, rigid body motions) Rotational ve- locity around body axis z		rad/s

Ω, ω

Version 2017

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
-			-	

∇	DISPVOL	(<i>ships, hull geometry, hydro-statics, stability,</i>) Displacement volume	$\Delta / (\rho g) = \nabla_{\rm BH} + \nabla_{\rm AP}$	m ³
$V_{ m APP}$	DISPVAP	(<i>ships, hull geometry</i>) Dis- placement volume of ap- pendages	$\varDelta_{ m AP}$ / ($ ho$ g)	m ³
$V_{ m BH}$	DISPVBH	(<i>ships, hull geometry</i>) Dis- placement volume of bare hull	⊿ _{вн} / (ρ g)	m ³
$\nabla_{\rm C}$	DVCAN	<i>(sailing vessels)</i> Displaced volume of canoe body		m ³
$V_{ m F}$	DISVF	(hydrofoil boats) Foil dis- placement volume		m ³
$V_{ m fw}$	DISVOLFW	<i>(ships, hydrostatics, stabil- ity)</i> Displacement volume of flooded water	$\Delta f_w / (ho g)$	m ³
$V_{\rm K}$	DVK	<i>(sailing vessels)</i> Displaced volume of keel		m ³
$V_{\rm R}$	DVR	<i>(sailing vessels)</i> Displaced volume of rudder		m ³

 ∇

Version 2017		Identifiers (Subscript		
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit

_	(ships hydrostatics stabil-	
0	<i>ity</i>) Initial	
	(ships, hydrostatics, stabil-	
A	ity) attained	
2	(ships, hydrostatics, stabil-	
a	<i>ity</i>) apparent	
AB	(ships, hull geometry) After	
	body	
AP	(ships, hull geometry) After	
	perpendicular	
APP	(snips, nuil geometry) Ap-	
	(shing hydrostatics stabil	
att	(<i>snips, nyurosiancs, siabu-</i> <i>ity</i>) attained	
	(shins hull geometry) Bare	
BH	hull	
	(ships, appendage geometry)	
ВК	Bilge keel	
DC	(ships, appendage geometry)	
BS	Bossing	
D	(ships, propulsor geometry)	
D	Duct	
d	(ships, hydrostatics, stabil-	
u	<i>ity)</i> dynamic	
DW	(ships, hull geometry) De-	
D	sign waterline	
dvn	(ships, hydrostatics, stabil-	
-)	<i>ity</i>) dynamic	
e	(ships, hydrostatics, stabil-	
eff	(ships, hydrostatics, stabil-	
EN	(shing hull geometry) Entry	
LIN	(ships, hull geometry) Entry	
f	(snips, nyurosiancs, siaon-	
	(ships hull geometry) Fore	
FB	hody	
	(ships_appendage_geometry)	
FB	Bow foil	
	(ships, hull geometry) Fore	
FP	perpendicular	
ED	(ships, appendage geometry)	
ГК	Flanking rudder	
FS	(ships, hull geometry) Frame	
	spacing	

Version 2017			Identifiers (Subscripts)	
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
FS		<i>(ships, appendage geometry)</i> Stern foil		
FW		(ships, hull resistance) Fresh water		
HE		(ships, hull geometry) Hull		
KL		(ships, appendage geometry) Keel		
KL		(<i>ships, hydrostatics, stabil-</i> <i>ity</i>) keel line		
L		(ships, hydrostatics, stabil- ity) longitudinal		
LR		(<i>ships, hull geometry</i>) Reference Line		
LP		(ships, hull geometry) Based on LPP		
LW		(<i>ships, hull geometry</i>) Based		
М		(General) Model		
MAX		(<i>ships, hydrostatics, stabil-</i> <i>ity</i>) maximum		
MF		(ships, hull resistance) Faired model data		
MR		(ships, hull resistance) Raw		
MS		(<i>ships, hull geometry</i>) Mid-		
MTL		(ships, hydrostatics, stabil- ity) longitudinal trimming moment		
OW		(ships, hull resistance) Open water		
Р		(<i>ships, propulsor geometry</i>) propeller shaft axis		
PB		(ships, hull geometry) Paral- lel body		
PMT		(<i>ships, hydrostatics, stabil-</i> <i>ity</i>) Permitted		
R		(<i>ships, hydrostatics, stabil-</i> <i>ity</i>) required (to be clarified)		
req		(ships, hydrostatics, stabil- ity) required (to be clarified)		
RF		(ships, appendage geometry) Rudder flap		
RU		(ships. hull geometry) Run		
RU		(ships, appendage geometry) Rudder		

Version 2017

Identifiers (Subscripts)

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
C		(C = 1) Chim		

5	(General) Ship	
S	(ships, hydrostatics, stabil-	
~	ity) Sinkage, squat	
s	(ships, hydrostatics, stabil-	
	<i>ity</i>) Static	
sat	(ships, hydrostatics, stabil-	
591	<i>ity</i>) Sinkage, squat	
SA	(ships, appendage geometry)	
	Stabilizer	
SF	(ships, hull resistance)	
	Faired full scale data	
SH	(ships, appendage geometry)	
	Shafting	
SK	(ships, appendage geometry)	
	Skeg	
SR	(ships, hull resistance) Raw	
	full scale data	
22	(ships, hull geometry) Sta-	
00	tion spacing	
ST	(ships, appendage geometry)	
51	Strut	
SW	(ships, hull resistance) Salt	
511	water	
т	(ships, hydrostatics, stabil-	
1	<i>ity</i>) transverse	
TC	(ships, hydrostatics, stabil-	
10	<i>ity</i>) Trim in cm	
TM	(ships, hydrostatics, stabil-	
1 1/1	<i>ity</i>) Trim in m	
тн	(ships, appendage geometry)	
111	Thruster	
V	(ships, hydrostatics, stabil-	
•	<i>ity</i>) vertical	
WG	(ships, appendage geometry)	
	Wedge	
WP	(ships, hull geometry)Water	
**1	plane	
WS	(ships, hull geometry) Wet-	
**5	ted surface	
0	(ships, hydrostatics, stabil-	
Ψ	ity) at heel angle φ	
A	(ships, hydrostatics, stabil-	
	<i>ity</i>) at trim angle θ	

Version 2017			Operators	S (Superscripts)
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

	(fundamental statistical	
•	(Junaameniai, Sialisticai,	
A	siochastic) Average, sample	
	(fundamental statistical	
CD	(Junaameniai, statisticai,	
CK	stochastic) Population co-	
	variance	
<i>C</i> .C.	(fundamental, statistical,	
CS	stochastic) Sample covari-	
	ance	
	(fundamental, statistical,	
D	stochastic) Population devia-	
	tion	
	(fundamental, statistical,	
DR	stochastic) Population devia-	
	tion	
סמ	(fundamental, statistical,	
DS	stochastic) Sample deviation	
	(fundamental, statistical,	
E, M, MR	<i>stochastic</i>) Expectation,	
	population mean	
	(fundamental, statistical,	
М	stochastic) Expectation,	
	population mean	
	(fundamental, statistical,	
MR	stochastic) Expectation,	
	population mean	
	(fundamental, statistical,	
MS	stochastic) Average, sample	
	mean	
	(fundamental_statistical	
PD	stochastic) Probability den-	
	sity	
	(fundamental statistical	
PF	stochastic) Probability func-	
	tion	
	(fundamental statistical	
\$	stochastic) (Power) Spec-	
5	trum	
	(fundamental statistical	
SS	(Junuamental, Statistical, stochastic) Sample spectrum	
	(fundamental statistical	
	(unaamental, statistical,	
	siocnusiic) Population corre-	
	lation	

Version 2017

Operators (Superscripts)

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
		(fundamental statistical		
RR		stochastic) Population corre-		
		lation		
		(fundamental, statistical,		
RS		stochastic) Sample correla-		
		tion		
		(fundamental, statistical,		
V		stochastic) Population vari-		
		ance		
		(fundamental, statistical,		
VR		stochastic) Population vari-		
		ance		
VS		(fundamental, statistical,		
		stochastic) Sample variance		