

ITTC Symbols and Terminology List

Version 2017

September 2017

Supersedes all previous versions

Please go to next page for hypertext table of contents

Updated by the 28th ITTC Quality Systems Group

ITTC Symbols and Terminology List, Version 2017 Table of Contents:

all lines have_hypertext link to symbols pages

2.

1. GENERAL4
1.1 Fundamental Concepts4
1.1.1 Uncertainty4
1.1.2 Coordinates and Space Related
Quantities8
1.1.2.1 Basic Quantities11
1.1.3 Time and Frequency Domain
Quantities12
1.1.3.1 Basic Quantities12
1.1.3.2 Complex Transforms
1.1.3.3 Complex Quantities
1.1.4 Random Quantities and Stochastic
Processes14
1.1.4.1 Random Quantities14
1.1.4.2 Stochastic Processes14
1.1.4.3 Probability Operators
(Superscripts)15
1.1.5 Balances and System Related
Concepts16
1.2 Solid Body Mechanics17
1.2.1 Inertial and Hydrodynamic
Properties17
1.2.1.1 Basic Quantities17
1.2.2 Loads
1.2.2.1 External Loads
1.2.2.2 Sectional Loads19
1.2.3 Rigid Body Motions20
1.2.3.1 Motions
1.2.3.2 Attitudes21
1.3 Fluid Mechanics22
1.3.1 Flow Parameters
1.3.1.1 Fluid Properties22
1.3.1.2 Flow parameters
1.3.1.3 Boundary conditions23
1.3.2 Flow Fields24
1.3.2.1 Velocities etc
1.3.2.2 Circulation etc
1.3.3 Lifting Surfaces25
1.3.3.1 Geometry25
1.3.3.2 Flow angles etc
1.3.3.3 Forces
1.3.3.4 Sectional coefficients26
1.3.4 Boundary Layers27
1.3.4.1 Two-dimensional Boundary Layers
1.3.5 Cavitation
1.3.5.1 Flow parameters28

	2 Flow fields28
	.3 Pumps
	vironmental Mechanics29
	Waves
	1 Periodic waves29
	2 Irregular waves
	3 Time Domain Analysis30
	4 Frequency Domain Analysis 30
	.5 Directional Waves
	Wind
	1 Basic Quantities
1.4.3	
	1 Basic Quantities
1.5 NO	Dise
	PS IN GENERAL
	sic Quantities
	eometry and Hydrostatics
2.2.1	5
	1 Basic Quantities
	2 Derived Quantities
2.2.1.	3 Symbols for Attributes and
222	Subscripts
	Propulsor Geometry
	1 Screw Propellers
	2 Ducts
	3 Waterjets (see also section 1.3.5)43
	4 Pods43 5 Operators and identifiers43
	Appendage Geometry44 1 Basic Quantities44
2.2.3.	2 Identifiers for Appendages
224	(Subscripts)
2.2.4	Hydrostatics and Stability46 1 Points and Centres (Still under
2.2.4.	construction)
224	2 Static Stability levers
	3 Derived Quantities
	4 Intact and Damage (Flooded)
2.2.4.	Stability
224	.5 Symbols for Attributes and
2.2.4.	Subscripts (under construction)49
2.3 Re	esistance and Propulsion
2.3 Ke	-
2.3.1	1.4.1 on Waves)
221	1 Basic Quantities
	2 Derived Quantities
2.3.1.	2 Deriveu Quantitues

2.3.1.3 Sym	bols for Attributes and
Subs	scripts52
2.3.2 Ship	Performance53
2.3.2.1 Basi	c Quantities53
2.3.2.2 Deri	ved Quantities53
2.3.2.3 Effic	ciencies etc54
2.3.3 Prop	oulsor Performance55
2.3.3.1 Basi	c Quantities55
2.3.3.2 Deri	ved Quantities55
2.3.3.3 Indu	ced Velocities etc56
2.3.4 Unst	teady Propeller Forces58
2.3.4.1 Basi	c Quantities58
	er Jets59
2.4 Manoeu	vrability and Sea Keeping.62
	oeuvrability62
	metrical Quantities62
2.4.1.2 Mot	ions and Attitudes62
	v Angles etc63
	es and Derivatives63
	ar Models64
	ning Circles64
	Zag Manoeuvres65
-	ping Manoeuvres65
	Keeping66
	c Quantities66
	e Amplitude Motions
-	sizing68
•	bols for Attributes and
	scripts73
	CRAFT74
	and Semi-Displacement
	74
	metry and Hydrostatics74
3.1.2 Geo	metry and Levers, Underway
•	
3.1.2.1 Geo	metry, Underway75

	3.1.2.2	2 Levers, Underway	76 ³
	3.1.3	Resistance and Propulsion	.77
3.2		lti-Hull Vessels (Add trimaran	
		nbols)	.78
	3.2.1	Geometry and Hydrostatics	.78
	3.2.2	Resistance and Propulsion	.79
	3.2.2.1	l Resistance Components	.79
3.3		drofoil Boats	
	3.3.1	Geometry and Hydrostatics	.80
		l Geometry, Underway	
		Resistance and Propulsion	
		l Basic Quantities	
		2 Derived Quantities	
		V and SES	
	3.4.1	Geometry and Hydrostatics	.84
		Resistance and Propulsion	
		Going Vessels	
		Resistance and Propulsion	
		ling Vessels	
	3.6.1	Geometry and Hydrostatics	
	3.6.2		
4.	BACI	KGROUND AND REFERENC	
4 1	n		.89
4.1 4.2		nbols and Terminology Group.	
	4.2.1	scription of the List of Symbols Classification	
	+.2.1 4.2.2		
	+. <i>2</i> .2 4.2.3		.09
-	+.2.3	structured list	80
5.	DDIN	CIPLES OF NOTATION	
5.1		cerpts of ISO 31	
		mputer Symbols1	
		cumentation	
	5.3.1		
	5.3.2		
	5.3.3	Other References	

General

1 **Fundamental Concepts** 1.1

1.1.1 Uncertainty

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

GENERAL 1.

1.1 Fundamental Concepts

1.1.1 Uncertainty (The following table follows ISO/IEC Guide 98-3:2008 – Annex J)

The following table to	1000000000000000000000000000000000000		
a	Half-width of a rectangular dis- tribution	Half-width of a rectangular dis- tribution of possible values of in- put quantity X_i : $a = (a_+ - a)/2$	
<i>a</i> ₊	Upper bound	Upper bound, or upper limit, of input quantity X_i :	
a_	Lower bound	Lower bound, or lower limit, of input quantity X_i :	
<i>b</i> ₊	Upper bound of the deviation	Upper bound, or upper limit, of the deviation of input quantity X_i from its estimate x_i : $b_+ = a_+ - x_i$	
<i>b</i>	Lower bound of the deviation	Lower bound, or lower limit, of the deviation of input quantity X_i from its estimate x_i : $b_{-} = x_i - a_{-}$	
Ci	Sensitivity coefficient	$c_i = \partial f / \partial x_i.$	1
f	Function	Functional relationship between measurand Y and input quantities X_i on which Y depends, and be- tween output estimate y and in- put estimates x_i on which y de- pends.	1
$\partial f/\partial x_i$	Partial derivative	Partial derivative of f with respect to input quantity x_i	1
k	Coverage factor	For calculation of expanded un- certainty $U = ku_c(y)$	1
k_p	Coverage factor for probability <i>p</i>	For calculation of expanded un- certainty $U_p = k_p u_c(y)$	1
n	Number of repeated observations		1
Ν	Number of input quantities	Number of input quantities X_i on which the measurand Y depends	1
p	Probability	Level of confidence: $0 \le p \le 1.0$	1
9	Random quantity		1
\overline{q}	Arithmetic mean or average		1
q _k	kth observation of q	k^{th} independent repeated observation of randomly varying quantity q	1
$r(x_i, x_j)$	Estimated correlation coefficient	$r(x_i, x_j) = u(x_i, x_j)/(u(x_i) u(x_j))$	1
s_p^2	Pooled estimate of variance		1
Sp	Pooled experimental standard de- viation	Positive square root of s_p^2	1
$s^2(\overline{q})$	Experimental variance of the mean	$s^{2}(\overline{q}) = s^{2}(q_{k})/n$; estimated variance obtained from a Type A evaluation	1
$s(\overline{q})$	Experimental standard deviation of the mean	Positive square root of $s^2(\overline{q})$	1
$s^2(q_k)$	Experimental variance from re- peated observations		1

Version 2017

1General1.1Fundamental Concepts1.1.1Uncertainty

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
		Experimental standard deviation	2()	1
$s(q_k)$		of repeated observations	Positive square root of $s^2(q_k)$	1
$s^2(\overline{X}_i)$		Experimental variance of input mean	From mean \overline{X}_i , determined from <i>n</i> independent repeated ob- servations $X_{i,k}$, estimated vari- ance obtained from a Type A evaluation.	1
$s(\overline{X}_i)$		Standard deviation of input mean	Positive square root of $s^2(\overline{X}_1)$	1
$s(\overline{q},\overline{r})$		Estimate of covariance of means		1
$s(\overline{X}_i, \overline{X}_j)$		Estimate of covariance of input means		1
$t_p(v)$		Inverse Student t	Student <i>t</i> -distribution for <i>v</i> de- grees of freedom corresponding to a given probability <i>p</i>	1
$t_p(v_{\rm eff})$		Inverse Student <i>t</i> for effective degrees of freedom	Student <i>t</i> -distribution for v_{eff} degrees of freedom corresponding to a given probability <i>p</i> in calculation of expanded uncertainty U_p	1
$u^2(x_i)$		Estimated variance	Associated with input estimate x_i that estimates input quantity X_i	1
$u(x_i)$		Standard deviation	Positive square root of $u^2(x_i)$	1
$u(x_i, x_j)$		Estimated covariance		1
$u_{\rm c}^2(y)$		Combined variance	Combined variance associated with output estimate <i>y</i>	1
$u_{\rm c}(y)$		Combined standard uncertainty	Positive square root of $u_c^2(y)$	1
$u_{cA}(y)$		Combined standard uncertainty from Type A	From Type A evaluations alone	1
$u_{\rm cB}(y)$		Combined standard uncertainty from Type B	From Type B evaluations alone	1
$u_c(y_i)$		Combined standard uncertainty	Combined standard uncertainty of output estimate y_i when two or more measurands or output quantities are determined in the same measurement	1
$u_i^2(y)$		Component of combined vari- ance	$u_i^2(y) \equiv [c_i u(x_i)]^2$	1
$u_i(y)$		Component of combined stand- ard uncertainty	$u_i(y) \equiv c_i u(x_i)$	1
$u(x_i)/ x_i $		Relative standard uncertainty of output estimate <i>x</i>		1
$u_c(y)/ y $		Relative combined standard un- certainty of output estimate y		
$[u(x_i)/ x_i]^2$		Estimated relative variance	Estimated relative variance asso- ciated with input estimate x_i	
$[u_c(y)/ y]^2$		Relative combined variance	Relative combined variance as- sociated with output estimate y	
$u(x_i,x_j))/ x_i $		Estimated relative covariance	Estimated relative covariance as- sociated with input estimates x_i and x_j	

Version 2017

1

General Fundamental Concepts 1.1

1.1.1 Uncertainty

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
U		Expanded uncertainty	Expanded uncertainty of output estimate <i>y</i> that defines an inter- val $Y = y \pm U$ having a high level of confidence, equal to coverage factor <i>k</i> times the combined standard uncertainty $u_c(y)$ of <i>y</i> : $U = k u_c(y)$	
U _p		Expanded uncertainty associated to confidence level <i>p</i>	Expanded uncertainty of output estimate y that defines an inter- val $Y = y \pm U_p$ having a high level of confidence p, equal to cover- age factor k_p times the combined standard uncertainty $u_c(y)$ of y: $U_p = k_p u_c(y)$	
x _i		Estimate of input quantity X_i	Estimate of input quantity X_i NOTE when x_i is determined from the arithmetic mean or av- erage of <i>n</i> independent repeated observation $x_i = \overline{X_i}$	
X_i		<i>i</i> th input quantity	i^{th} input quantity on which meas- urand Y depends NOTE X_i may be the physical quantity or the random variable	
X		Estimate of the value of input quantity X_i	Estimate of the value of input quantity X_i equal to the arithme- tic mean or average of <i>n</i> inde- pendent repeated observation $X_{i,k}$ of X_i	
$X_{i,k}$		k^{th} independent repeated observa- tion of X_i		
у		Estimated of measurand <i>Y</i> or Re- sult of a measurement or Output estimate		
Уi		Estimate of measurand Y_i	Estimate of measurand Y_i when two or more measurands are de- termined in the same measure- ment	
Y		A measurand. Estimated relative uncertainty of standard uncer- tainty $u(x_i)$ of inputs estimate x_i		
μ_p		Expectation or mean of the prob- ability distribution	Expectation or mean of the prob- ability distribution of random- varying quantity q	
v		Degrees of freedom (general)		
Vi		Degrees of freedom	Degrees of freedom, or effective degrees of freedom of standard uncertainty $u(x_i)$ of input esti- mate x_i	
Veff		Effective degrees of freedom	Effective degrees of freedom of $u_c(y)$ used to obtain $t_p(v_{eff})$ for calculating expanded uncertainty U_p	

Version 2017

1General1.1Fundamental Concepts1.1.1Uncertainty

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
σ^2		Variance of a probability	Variance of a probability distribution of (for example) a ran- domly-variing quantity q , estimated by $s^2(q_k)$	
σ		Standard deviation of a probabil- ity distribution	Standard deviation of a probabil- ity distribution, equal to the pos- itive square root of σ^2	
$\sigma^2(\overline{q})$		Variance of \overline{q}	Variance of \overline{q} , equal to σ^2 / n , estimated by $s^2(\overline{q}) = \frac{s^2(\overline{q_k})}{n}$	
$\sigma(\overline{q})$		Standard deviation of \overline{q}	Standard deviation of \overline{q} , equal to the positive root of $\sigma^2(\overline{q})$	
$\sigma^2 \left[s(\overline{q}) \right]$		Variance of experimental stand- ard deviation $s(\overline{q})$ of \overline{q}		
$\sigma \left[s(\overline{q}) \right]$		Standard deviation of experi- mental standard deviation $s(\overline{q})$ of \overline{q} , equal to the positive square root of $\sigma^2 [s(\overline{q})]$		

1.1.2 Coordinates and Space Related Quantities

Orientation of coordinates

A problem of general interest, the orientation of the axes of coordinate systems, has been treated extensively in the Report of the 17th ITTC Information Committee. The present QS Group recommends that the orientations of the coordinate systems chosen for convenience should be stated explicitly in any case. The coordinate system orientation should not be inferred from the symbols and/or names of the concepts or from national or professional traditions. All sign conventions of related Quantities should be consistent with the orientation chosen.

For ready reference the recommendation of the 17th ITTC Information Committee is quoted in the following.

"In order to adapt ITTC nomenclature to common practice a proposal for a standard coordinate system was published in the newsletter No 7, March 1983, to generate discussion. The response was quite diverse. On the one hand it was suggested that instead of the two orthogonal right handed systems with the positive x-axis forward and the positive z-axis either up- or downward as proposed only one system should be selected, in particular the one with the positive z-axis upwards. On the other hand the attention of the Information Committee was drawn to the fact that in ship flow calculations neither of the two systems proposed is customary. Normally the x-axis is directed in the main flow direction, i.e. backwards, the yaxis is taken positive to starboard and the z-axis is positive upwards. The origin of the co-ordinates in this case is usually in the undisturbed free surface half way between fore and aft perpendicular.

In view of this state of affairs the Information Committee (now Quality System Group - QSG) may offer the following recommendation, if any:

Axes, coordinates

Preferably, orthogonal right handed systems of Cartesian co-ordinates should be used, orientation and origin in any particular case should be chosen for convenience.

Body axes (x,y,z)

1 General **Fundamental Concepts** 1.1 1.1.2 Coordinates and Space related Quantities

> Coordinate systems fixed in bodies, ocean platforms, or ships.

8

For the definition of hull forms and ocean wave properties and the analysis of structural deflections it is customary to take the x-axis positive forward and parallel to the reference or base line used to describe the body's shape, the y-axis positive to port, and the z-axis positive upwards.

For seakeeping and manoeuvrability problems the coordinate system is defined as follows: usually the x-axis as before the y-axis positive to starboard, and the z-axis positive downwards, the origin customarily at the centre of mass of the vehicle or at a geometrically defined position.

For ship flow calculations usually the *x*-axis positive in the main flow direction, i.e. backwards, the y-axis positive to starboard, and the z-axis positive upwards, the origin customarily at the intersection of the plane of the undisturbed free-surface, the centre plane, and the midship section.

Fixed or space axes (x0,y0,z0)

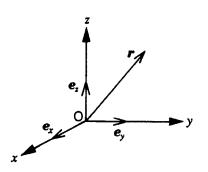
Coordinate systems fixed in relation to the earth or the water. For further references see ISO Standard 1151/1 ...6: Terms and symbols for flight dynamics.

There may be other coordinate systems in use and there is no possibility for the adoption of a single system for all purposes. Any problem requires an adequate coordinate system and transformations between systems are simple, provided that orientations and origins are completely and correctly documented for any particular case."

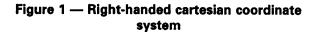
Origins of coordinates

In sea keeping and manoeuvrability problems customarily the centre of mass of the vehicle is chosen as the origin of the coordinates. This is in most cases not necessarily advantageous, as all the hydrodynamic properties entering the problems are related rather to the geometries of the bodies under investigation. So any geometrically defined point may be more adequate for the purposes at hand.

ISO Standard 31-11 makes the following suggestions


Version 2017

General


1

Fundamental Concepts Coordinates and Space related Quantities 9

Item No.	Coordinates	Position vector and its differ- ential	Name of coordi- nate system	Remarks		
11-12.1 (-)	x, y, z	$\mathbf{r} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z$ d $\mathbf{r} = dx \mathbf{e}_x + dy \mathbf{e}_y + dz \mathbf{e}_z$	cartesian coordinates	e_x , e_y and e_z form an orthonormal right-handed sys- tem. See Figure 1.		
11-12.2 (-)	ρ, φ, z	$\mathbf{r} = \rho \mathbf{e}_{\rho} + z \mathbf{e}_{z}$ d $\mathbf{r} = d\rho \mathbf{e}_{\rho} + d\varphi \mathbf{e}_{\varphi} + dz \mathbf{e}_{z}$	cylindrical coordinates	$e_{\rho}(\varphi)$, $e_{\varphi}(\varphi)$ and e_z form an orthonormal right-handed system. See Figures 3 and 4. If $z = 0$, then ρ and φ are the polar coordinates		
11-12.3 (-)	r, θ, φ	$r = r \boldsymbol{e}_{r};$ d $\boldsymbol{r} = dr \boldsymbol{e}_{r} + r d \boldsymbol{\mathcal{G}} \boldsymbol{e}_{\boldsymbol{\mathcal{G}}} + r d \boldsymbol{\mathcal{F}} \boldsymbol{e}_{\boldsymbol{\mathcal{G}}} + r d \boldsymbol{\mathcal{F}} \boldsymbol{e}_{\boldsymbol{\mathcal{G}}}$	spherical coordinates	$e_r(9, gyp), e_g(\vartheta, \varphi) \text{ and } e_{\varphi}(\varphi)$ form an orthonormal right- handed system. See Figures 3 and 5.		
NOTE 1 avoid the ris						

The x-axis is pointing towards the viewer.

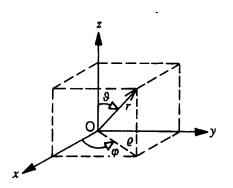
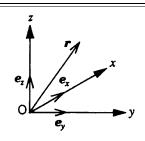



Figure 3 — Oxyz is a right-handed coordinate system

- 1.1 Fundamental Concepts
- 1.1.2 Coordinates and Space related Quantities 10

The x-axis is pointing away from the viewer.

Figure 2 — Left-handed cartesian coordinate system

1.

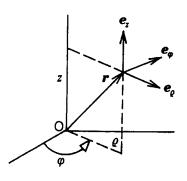


Figure 4 — Right-handed cylindrical coordinates

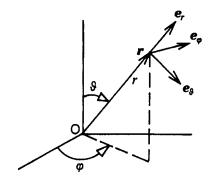


Figure 5 — Right-handed spherical coordinates

General 1

Fundamental Concepts 1.1 Fundamental Concepts 1.1.2 Coordinates and Space related Quantities 11

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.1.2.1 Basic Quantities

S	S	Any scalar quantity distributed, maybe singularly, in space	<i>fds</i>	
S^{0}_{ij}	SM0(I,J)	Zero th order moment of a scalar quantity	$\int \delta_{ij} ds = \delta_{ij} S$	
S^{1}_{ij}	SM1(I,J)	First order moment of a scalar quantity, formerly static mo- ments of a scalar distribution	∫€ _{ikj} x _k ds	
S^{2}_{ij}	SM2(I,J)	Second moment of a scalar quantity, formerly moments of inertia of a scalar distribution	$\int \varepsilon_{kli} x_l \varepsilon_{jkm} x_m ds$	
S _{uv}	S(U,V)	Generalized moment of a scalar quantity distributed in space	$S_{ij} = S^{0}_{ij}$ $S_{i, 3+j} = S^{1}_{ij}^{T}$ $S_{3+i, j} = S^{1}_{ij}$ $S_{3+i, 3+j} = S^{2}_{ij}$	
T_{ij}	T(I,J)	Tensor in space referred to an orthogonal system of Cartesian coordinates fixed in the body	$T_{ij}^{s} + T_{ij}^{a}$	
T_{ij}^{A}	TAS(I,J)	Anti-symmetric part of a tensor	$(T_{ij} - T_{ji})/2$	
$ T_{ij}^{A} \\ T_{ij}^{S} \\ T_{ij}^{T} $	TSY(I,J)	Symmetric part of a tensor	$(T_{ij} + T_{ji})/2$	
T_{ij}^{T}	TTR(I,J)	Transposed tensor	T _{ji}	
$T_{ij} v_j$		Tensor product	$\Sigma T_{ij} v_j$	
u_i, v_i	U(I), V(I)	Any vector quantities		
$u_i v_i$	UVPS	Scalar product	$u_i v_i$	
$u_i v_i$	UVPD(I,J)	Diadic product	$u_i v_i$	
u×v	UVPV(I)	Vector product	$\varepsilon_{ijk}u_jv_k$	
$V^0{}_i, V_i$	V0(I),V(I)	Zeroth order moments of a vec- tor quantity distributed in space, referred to an orthogonal system of Cartesian coordinates fixed in the body	fdv _i	
$V^{1}{}_{i}$	V1(I)	First order moments of a vector distribution	ſ _{Eijk} xjdv _k	
V_u	V(U)	Generalized vector	$V_i = V_i^0$ $V_{3+i} = V_i^1$	
x, x ₁ y, x ₂ z, x ₃	X, X(1) Y, X(2) Z, X(3)	Body axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in the body	m
$\begin{array}{c} x_{0}, \ x_{01} \\ y_{0}, \ x_{02} \\ z_{0}, \ x_{03} \end{array}$	X0, X0(1) Y0, X0(2) Z0, X0(3)	Space axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the space	m
<i>x</i> _F , <i>x</i> _{F1} <i>y</i> _F , <i>x</i> _{F2} <i>z</i> _F , <i>x</i> _{F3}	XF, XF(1) YF, XF(2) ZF, XF(3)	Flow axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the flow	m
Eijk	EPS(I,J,K)	Epsilon operator	+1 : <i>ijk</i> = 123, 231, 312 1 : <i>ijk</i> = 321, 213, 132 0 : if otherwise	
δ_{ij}	DEL(I,J)	Delta operator	+1: ij = 11, 22, 33 0: if otherwise	

Version 2017

1 Mechanics in General

1.1 Fundamental Concepts

1.1.3 Time and Frequency Domain Quantities 12

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol		Explanation	Unit

1.1.3 Time and Frequency Domain Quantities

1.1.3.1 Basic Quantities

a	ADMP	Damping	<i>s^r</i> , in Laplace variable	1/s
f	FR	Frequency		Hz
fc	FC	Basic frequency in repeating functions	1 / T _C	Hz
fs	FS	Frequency of sampling	$1/T_{\rm S}$ period in repeating spectra	Hz
i	Ι	Imaginary unit	sqrt(-1)	1
Ι	IM	Imaginary variable		1
j	J	Integer values	-∞+∞	1
R	R	Complex variable	$exp(s T_S)$ Laurent transform	
S	S	Complex variable	$a + 2\pi i f$ Laplace transform	1/s
t	TI	Time	-∞ +∞	S
ti	TI(J)	Sample time instances	j Ts	
T _C	TC	Period of cycle	$1/f_{\rm C}$ duration of cycles in periodic, repeating processes	S
Ts	TS	Period of sampling	Duration between samples	S
x	Х	Values of real quantities	x(t)	
X		Real "valued" function		
x_j	X(J)	Variables for samples values of real quantities	$x(t_j) = \int x(t)\delta(t - t_j)dt$	
z	Z	Complex variable		

Version 2017

ITTC Sy	mbols
----------------	-------

1 Mechanics in General

1.1 Fundamental Concepts

1.1.3 Time and Frequency Domain Quantities

13

ITTC	Computer	N	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

<u>1.1.3.2</u> C	Complex Transfo	orms	
x ^A	XA	Analytic function	$X^{\rm A}(t) = X(t) + iX^{\rm H}(t)$
x ^{DF}	XDF	Fourier transform of sampled	$X^{\rm DF}(f) = \Sigma x_j exp(-i2\pi f j T_{\rm S})$
		function	i.e. periodically repeating
			$= X(0)/2 + f_S \Sigma X^F (f + jf_S)$
			sample theorem: aliasing!
x ^{DL}	XDL	Laurent transform of	$X^{\rm DL}(s) = \Sigma x_j \exp(-sjT_{\rm S})$
F	XET	sampled function	
x ^F	XFT	Fourier transform	$X^{\rm F}(f) = \int X(t) \exp(-i2\pi f t) dt$
			inverse form:
			$= \int X^{\rm F}(f) \exp(-i2\pi ft) dt$
			if $X(t) = 0$ and $a = 0$ then
			$X^{\mathrm{F}}(f) = X^{\mathrm{L}}(f)$
x_{j}^{F}	XFT(J)	Fourier transform of	$1/T_{\rm C}/X(t)\exp(-i2\pi jt/T_{\rm C})dt$
		periodic function	$t = 0 \dots T_{\rm C}$
			$X^{\rm F} = \Sigma x^{\rm F}_{i} \delta(f - j/T_{\rm C})$
			inverse form:
			$X(t) = \Sigma x^{F_{i}} \exp(-i2\pi f j T_{C})$
x ^H	XHT	Hilbert transform	$X(t) = \Sigma x^{F_{j}} \exp(-i2\pi f j T_{C})$ $X^{H}(t) = 1/\pi \int X(\tau)/(t-\tau) d\tau$
x ^{HF}	XHF	Fourier transform of	$X^{\rm HF}(f) = X^{\rm F}(f)(-i{\rm sgn}f)$
		Hilbert transform	$(1/t)^{\rm F} = -i{\rm sgn}f$
x ^L	XLT	Laplace transform	$X^{\rm L}(s) = \int X(t) \exp(-st) dt$
			if $X(t < 0) = 0$ then
			$= (X(t)\exp(-at))^F$
x ^R	XRT	Laurent transform	$X^{\rm R}(r) = \Sigma x_i r^{-j} = X^{\rm DL}$
x ^s	XS	Single-sided complex spectra	$X^{\rm S}(f) = X^{\rm F}(f)(1 + \operatorname{sgn} f)$
			$=X^{AF}$
			i.e. = 0 for $f < 0$
x_{j}^{S}	XS(J)	Single-sided complex Fourier se	
		ries	line spectra

1.1.3.2 Complex Transforms

1.1.3.3 Complex Quantities

z^a	ZAM	Amplitude	$mod(z) = sqrt(z^{r2}+z^{i2})$
<i>z</i> ^c	ZRE	Real or cosine component	$z^{c} = real(z) = z^{a}cos(z^{p})$
z^i	ZIM	Imaginary or sine component	$\operatorname{imag}(z) = z^{\mathrm{a}} \sin(z^{p}) = z^{\mathrm{s}}$
z ^j	ZCJ	Conjugate	$z^r - iz^i$
z^l	ZLG	(Phase) Lag	
z^p	ZPH	Phase	$\operatorname{arc}(z) = \operatorname{arctg}(z^i / z^r)$
z ^r	ZRE	Real or cosine component	$\operatorname{real}(z) = z^{\operatorname{a}}\cos(z^{p}) = z^{\operatorname{c}}$
z^s	ZIM	Imaginary or sine component	$z^{\rm s} = \operatorname{imag}(z) = z^{\rm a} \sin(z^{\rm p})$

Version 2017

1 Mechanics in General

1.1 Fundamental Concepts

1.1.4 Stochastic Processes

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.1.4 Random Quantities and Stochastic Processes

$g^{\rm E}, g^{\rm M}, g^{\rm MR}$	GMR	Expected value of a function of a	$E(g) = \int g(x) f_x(x) dx$	
		random quantity	$x = -\infty \dots \infty$	
к, у	<i>X</i> , <i>Y</i>	Random quantities	$x(\zeta), y(\zeta)$	
x_i, y_i	<i>X</i> (I), <i>Y</i> (I)	Samples of random quantities	i = 1 n n: sample size $(x^m)^E$	
$(x^m)^E$	XmMR	m- th moment of a random quan- tity		
$x^{\mathrm{D}}, x^{\mathrm{DR}}, \sigma_x$	XDR	Standard deviation of a random quantity	x ^{VR 1/2}	
x^{DS}, s_x	XDS	Sample deviation of a random quantity	$x^{VS 1/2}$, unbiased random estimate of the standard deviation	
$xx^{\mathrm{R}}, xx^{\mathrm{MR}}, R_{xx}$	XXMR	Auto-correlation of a random quantity	x x ^E	
$xy^{\mathrm{R}}, xy^{\mathrm{MR}}, R_{xy}$	XYMR	Cross-correlation of two random quantities	x y ^E	
$x^{\mathrm{E}}, x^{\mathrm{M}}, x^{\mathrm{MR}}, \mu_x$	XMR	Expectation or population mean of a random quantity	E(x)	
$x^{\rm A}$, $x^{\rm MS}$, m_x	XMS	Average or sample mean of a random quantity	$1/n \Sigma x_i, i = 1n$ unbiased random estimate of the expectation with $x^{AE} = x^E$ $x^{VSE} = x^V / n$ $d F_x / dx$	
x^{PD}, f_x	XPD	Probability density of a random quantity	$d F_x / dx$	
xy^{PD} , f_{xy}	XYPD	Joint probability density of two random quantities	$\partial F_{xy}/(\partial x \partial y)$	
$x^{\rm PF}, F_x$	XPF	Probability function (distribu- tion) of a random quantity		1
xy^{PF}, F_{xy}	XYPF	Joint probability function (distri- bution) function of two random quantities		1
x^{V}, x^{VR}, xx^{VR} x^{VS}, xx^{VS}	XVR, XXVR	Variance of a random quantity	$x^{2E} - x^{E2}$	
	XVS, XXVS	Sample variance of a random quantity	$\frac{1}{(n-1)} \sum (x_i - x^A)^2$ i = 1n unbiased random estimate of the variance $x^{VSE} = x^V$	
xy ^V , xy ^{VR}	XYVR	Variance of two random quanti- ties	$x y^E - x^E y^E$	
ζ		Outcome of a random "experi- ment"		

1.1.4.2 Stochastic Processes

g^{MR}	GMR	Mean of a function of a random quantity	$M(g(t)) = \lim(1/T \int g(t)dt)$ $t = -T/2 \dots + T/2$
		quantity	$T = -\infty \dots +\infty$
g^{MS}	GMS	Average or sample mean of a function of a random quantity	$A(g(t)) = 1/T \int g(t)dt$ t = 0 +T
х, у	<i>X</i> , <i>Y</i>	Stationary stochastic process	$x(\zeta,t), y(\zeta,t)$
$xx^{\mathrm{C}}, xx^{\mathrm{CR}}, C_{xx}$	XXCR	Auto-covariance of a stationary stochastic process	$(x(t) - x^{\rm E})(x(t + \tau) - x^{\rm E})^{\rm E}$

Version 2017

1 Mechanics in General

1.1 Fundamental Concepts

1.1.4 Stochastic Processes

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit
$xy^{\mathrm{C}}, xy^{\mathrm{CR}}, C_{xy}$	XYCR	Cross-covariance of two station- ary stochastic processes	$(x(t) - x^{E})(y(t + \tau) - y^{E})^{E}$	
$xx^{\mathrm{R}}, xx^{\mathrm{RR}}, R_{xx}$	XXRR	Auto-correlation of a stationary stochastic process	$\begin{aligned} x(t)x(t+\tau)^{\rm E} &= R_{xx}(\tau) \\ R_{xx}(\tau) &= R_{xx}(-\tau) \\ \text{if } x \text{ is ergodic:} \\ R_{xx}(\tau) &= x(t)x(t+\tau)^{\rm MR} \\ R_{xx}(\tau) &= \int S_{xx}(\omega)\cos(\omega\tau)d\tau \\ \tau &= 0 \dots \infty \end{aligned}$	
xy^{R}, R_{xy}	<i>XY</i> RR	Cross-correlation of two station- ary stochastic processes	$\begin{aligned} x(t)y(t+\tau)^{E} &= R_{xy}(\tau) \\ R_{yx}(\tau) &= R_{xy}(-\tau) \\ \text{if } x, \text{ y are ergodic:} \\ R_{xy}(\tau) &= x(t)y(t+\tau)^{\text{MR}} \end{aligned}$	
xx^{S}, S_{xx}	XXSR	Power spectrum or autospectral power density of a stochastic process	xx ^{RRSR}	
xy^{S}, S_{xy}	XYSR	Cross-power spectrum of two stationary stochastic processes	xy ^{RRSR}	
τ	TICV	Covariance or correlation time		S
ζ		Outcome of a random "experi- ment"		

1.1.4.3 Probability Operators (Superscripts)

	v 1	× 1 1 /
A, MS	MS	Average, sample mean
C, CR	CR	Population covariance
CS	CS	Sample covariance
D, DR	DR	Population deviation
DS	DS	Sample deviation
E, M, MR	MR	Expectation, population mean
PD	PD	Probability density
PF	PF	Probability function
S	SR	(Power) Spectrum
SS	SS	Sample spectrum
R, RR	RR	Population correlation
RS	RS	Sample correlation
V, VR	VR	Population variance
VS	VS	Sample variance

Version 2017

Mechanics in General 1

1.1Fundamental Concepts1.1.5Balances and System Related Concepts

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.1.5 Balances and System Related Concepts

q	QQ	Quantity of the quality under consideration stored in a control volume		Q ^U
Q		Quality under consideration		Q ^U /s
Q^{C}	QCF	Convective flux		Q ^U /s
Q^{D}	QDF	Diffusive flux		Q ^U /s
Q^{F}	QFL	Total flux across the surface of the control volume	Inward positive!	Q ^U /s
Q^{M}		Molecular diffusion		Q ^U /s
Q^{P}	QPN	Production of sources in the con- trol volume		Q ^U /s
$Q^{\rm S}$	QRT	Storage in the control volume, rate of change of the quantity stored	dq / dt	Q ^U /s
Q^{T}	QDT	Turbulent diffusion		Q ^U /s

Mechanics in General 1

1.2 Solid Body Mechanics

1.2.1 Inertial and Hydrodynamic Properties

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.2 Solid Body Mechanics1.2.1 Inertial and Hydrodynamic Properties1.2.1.1 Basic Quantities

A_{ii}	AM(I,J)	Added mass coefficient in <i>i</i> th		
Aij	Alvi(1,J)	mode due to <i>j</i> th motion		
B_{ij}	DA(I,J)	Damping coefficient in <i>i</i> th mode due to <i>j</i> th motion		
C_{ij}	RF(I,J)	Restoring force coefficient in <i>i</i> th mode due to <i>j</i> th motion		
$D^{ m h}_{\ uv}$	DH(U,V)	Generalized hydrodynamic damping	$\partial F_u^h / \partial V_v$	
F^{h}_{u}	FH(U)	Generalized hydrodynamic force		
<i>I^huv</i>	IH(U,V)	Generalized hydrodynamic iner- tia	$\partial F_u^h / \partial \dot{\mathbf{V}}_v$	
IL	IL	Longitudinal second moment of water-plane area	About transverse axis through centre of floatation	m ⁴
I _T	IT	Transverse second moment of water-plane area	About longitudinal axis through centre of floatation	m ⁴
I_y , I_{yy} , m^2_{22} , m_{55}	IY, IYY, M2(2,2), MA(5,5)	Pitch moment of inertia around the principal axis y		kg m ²
I_z , I_{zz} , m^2_{33} , m_{66}	IZ, IZZ, M2(3,3), MA(6,6)	Yaw moment of inertia around the principal axis z		kg m ²
I_{xy} , I_{12} I_{yz} , I_{23} I_{zx} , I_{31}	IXY, I2(1,2) IYZ, I2(2,3) IZX, I2(3,1)	Real products of inertia in case of non-principal axes		kg m ²
k _x , k _{xx} k	RDGX	Roll radius of gyration around the principal axis <i>x</i>	$(I_{xx}/m)^{1/2}$	m
ky, kyy	RDGY	Pitch radius of gyration around the principal axis y	$(I_{yy}/m)^{1/2}$	m
kz, kzz	RDGZ	Yaw radius of gyration around the principal axis z	$(I_{zz}/m)^{1/2}$	m
т	MA	mass		kg
$m^0{}_{ij}$, m_{ij}	M0(I,J), MA(I,J)	Zero- th moments of mass, i.e. in- ertia distribution, mass tensor	$m_{ij} = m \ \delta_{ij}$	kg
m^{1}_{ij}	M1(I,J)	First moments of mass, i.e. iner- tia distribution	Alias static moments of mass	kg m
m^2_{ij} , I_{ij}	M2(I,J), IN(I,J)	Second moments of mass, i.e. in- ertia distribution	Alias mass moments of inertia	kg m ²
M_{uv}	MA(U,V)	Generalized mass, i. e. general- ized inertia tensor of a (rigid) body referred to a body fixed co- ordinate system	$egin{aligned} M_{ij} &= M^0{}_{ij} \ M_{i,\ 3+j} &= M^{1\mathrm{T}}{}_{ij} \ M_{3+i,\ j} &= M^1{}_{ij} \ M_{3+i,\ 3+j} &= M^2{}_{ij} \end{aligned}$	

1Mechanics in General1.2Solid Body Mechanics1.2.2Loads

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.2.2 Loads

1.2.2.1 External Loads

F_u	F(U)	Force, generalized, load, in body coordinates	$M^{F}_{u} = M^{M}_{u}$ $F_{i} = F^{0}_{i}$ $F_{3+i} = F^{1}_{i}$	Ν
gu	G(U)	Gravity field strength, general- ized, in body coordinates	$g_i = g^1_i$ $g_{3+i} = 0$	m/s ²
gi	G1(I)	Gravity field strength, in body coordinates!		m/s ²
K, M_x , $F^1{}_1$, F_4	K, M(1), F1(1), F(4)	Moment around body axis x		Nm
M,M_y , $F^1{}_2$, F_5	M, M(2), F1(2), F(5)	Moment around body axis y		Nm
N, M_z , FN^1_3 , F_6	N, M(3), F1(3), F(6)	Moment around body axis z		Nm
X, F_x, F_1 F^0_1, F_1	X, FX, F0(1), F(1)	Force in direction of body axis x		Nm
Y, F_y, F_{2}, F_{2} F_{2}^{0}, F_{2} $Z, F_z,$	Y, FY, F0(2), F(2)	Force in direction of body axis y		Nm
Z, F_z , F^0_3 , F_3	Z, FZ, F0(3), F(3)	Force in direction of body axis z		Nm
G_u	G(U)	Gravity or weight force, general- ized, in body co-ordinates!	$G_u = m_{uv} g_v$	N
$G^0 i$, G_i	G0(I)	Gravity or weight force in body coordinates!	$G_i = G^0{}_i = m^0{}_{ij} g_j$ $= mg_i$	N
$G^{1}{}_{i}$	G1(I)	Gravity or weight moment in body coordinates!	$= mg_i$ $G_{3+i} = G^1_i = \varepsilon_{ikj} x_k G^0_j$ $= m^1_{ij} g_j$	Nm
q	UNQ	Load per unit length		N/m
Ŵ	WPUL	Weight per unit length	dW/dx_1	N/m

ITTC Symbols	 Mechanics in General Solid Body Mechanics 	
Version 2017	1.2.2 Loads	19
ITTTC		

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.2.2.2 Sectional Loads

F ^S _u	FS(U)	Force or load acting at a given planar cross-section of the body, generalized, in section coordi- nates!	$F^{\mathbf{S}_i} = F^{\mathbf{S}0_i}$ $F^{\mathbf{S}_{3+i}} = F^{\mathbf{S}1_i} = M^{\mathbf{B}_i}$	N Nm
F^{S}_{i}	FS(I)	Shearing force	$F^{S0}{}_2$, $F^{S0}{}_3$	Ν
F^{T}	FT, FS(1)	Tensioning or normal force	$F^{S0}{}_1$	Ν
M^{B}_{i}	MB(I)	Bending moment	F^{S1}_{2}, F^{S1}_{3}	Nm
M^{T}	MT, MB(1)	Twisting or torsional moment	F^{S1}	Nm

1Mechanics in General1.2Solid Body Mechanics1.2.3Rigid Body Motions

ITTC	Computer	Namo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.2.3 Rigid Body Motions 1.2.3.1 Motions

1.2.3.1 M	otions			
p , ω_x ,	P, OMX,	Rotational velocity around body		rad/s
v_{1}^{0} , v_{4}	V0(1), V(4)	axis x		140/5
q , $\omega_{ m y}$,	Q, OMY,	Rotational velocity around body		rad/s
v^{0}_{2} , v_{5}	V0(2), V(5)	axis y		1au/ 8
$r, \omega_z,$	R, OMZ,	Rotational velocity around body		rad/s
v^{0}_{3} , v_{6}	V0(3), V(6)	axis z		rau/s
$u, v_x,$	U, VX,	Translatory velocity in the direc-		
v^{1}_{1} , v_{1}	V1(1), V(1)	tion of body axis x		m/s
$v, v_v,$	V, VY,	Translatory velocity in the direc-		
v^{1}_{2} , v_{2}	V1(2), V(2)	tion of body axis y		m/s
$w, v_z,$	W, VZ,	Translatory velocity in the direc-		
v^{1}_{3}, v_{3}	V1(3), V(3)	tion of body axis z		m/s
		Components of generalized ve-		
v_u	V(U)	locity or motion relative to body	$v_i = v^1_i$ $v_{3+i} = v^0_i$	m/s
		axes	$v_{3+i} \equiv v_i^*$	rad/s
<i>p</i>	PR	Datas of shange of components		
	QR	Rates of change of components of rotational velocity relative to		rad/s^2
\dot{q}	RR	2		1au/ 8
ŕ	KK	body axes		
ü	UR	Rates of change of components		
<i>v</i> ̈́	VR	of linear velocity relative to		m/s ²
ŵ	WR	body axes		
	AA	Angular acceleration	$d\omega/dt$	rad/s ²
α	ΛΛ	Angulai acceleration	uw/ui	Tau/S

1 1.2 Mechanics in General 1.2Solid Body Mechanics1.2.3Rigid Body Motions

ITTC	Computer	Namo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.2.3.2 Attitudes

α	AT ALFA	Angle of attack	The angle of the longitudinal body axis from the projection into the principal plane of sym- metry of the velocity of the origin of the body axes relative to the fluid, positive in the posi- tive sense of rotation about the y-axis	rad
β	DR BET	Angle of drift or side-slip	The angle to the principal plane of symmetry from the velocity vector of the origin of the body axes relative to the fluid, posi- tive in the positive sense of rota- tion about the <i>z</i> -axis	rad
γ	RO GAMR	Projected angle of roll or heel	The angular displacement about the x_0 axis of the principal plane of symmetry from the vertical, positive in the positive sense of rotation about the x_0 axis	rad
φ	X(4) RO PHIR	Angle of roll, heel or list	Positive in the positive sense of rotation about the <i>x</i> -axis	rad
θ	X(5) TR TETP	Angle of pitch or trim	Positive in the positive sense of rotation about the <i>y</i> -axis	rad
ψ	X(6) YA PSIY	Angle of yaw, heading or course	Positive in the positive sense of rotation about the <i>z</i> -axis	rad

1 Mechanics in General

1.3 Fluid Mechanics

1.3.1 Flow Parameters

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.3 Fluid Mechanics

1.3.1 Flow Parameters

1.3.1.1 Г	fuld Properties			
С	CS	Velocity of sound	$(E / \rho)^{1/2}$	m/s
Ε	EL	Modulus of elasticity		Ра
W	WD	Weight density	<i>ρg</i> (See 1.1.1)	
κ	CK	Kinematic capillarity	σ / ρ	m^3/s^2
μ	VI	Viscosity		kg/ms
v	VK	Kinematic viscosity	μ / ρ	m ² /s
ρ	DN, RHO	Mass density		kg/m ³
σ	CA	Capillarity	Surface tension per unit length	kg/s ²

1.3.1.2 Flow parameters

Bo	BN	Boussinesq number	$V / (g R_{\rm H})^{1/2}$	1
Са	CN	Cauchy number	$V/(E/\rho)^{1/2}$	1
Fr	FN	Froude number	$V/(gL)^{1/2}$	1
Fr_h	FH	Froude depth number	$V/(g h)^{1/2}$	1
Fr_{∇}	FV	Froude displacement number	$V/(g \nabla^{1/3})^{1/2}$	1
Ма	MN	Mach number	V/c	1
Re	RN	Reynolds number	VL/v	1
<i>Re</i> _{0.7}	RN07	Propeller Reynolds number at 0.7 R	$Re_{0.7} = \frac{c_{0.7}\sqrt{V_A^2 + (0.7\pi nD)^2}}{v}$	1
St	SN	Strouhal number	fL/V	1
Th	TN	Thoma number, Cavitation num- ber	$(p_A - p_V)/q$	1
We	WN	Weber number	$V^2 L / \kappa$	1

1 Mechanics in General 1.3 Fluid Mechanics

1.3.1 Flow Parameters

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.3.1.3 Boundary conditions

k	НК	Roughness height or magnitude	Roughness height, usually in terms of some average	m
$k_{ m s}$	SK	Sand roughness	Mean diameter of the equivalent sand grains covering a surface	m
$R_{ m H}$	RH	Hydraulic radius	Area of section divided by wet- ted perimeter	m

Mechanics in General Fluid Mechanics

1.3.2 Flow Fields

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.3.2 Flow Fields

2	ED	Density of total flow energy	$\rho V^2/2 + p + \rho g h$	Pa
i	FS(I)	Mass specific force	Strength of force fields, usually only gravity field g_i	m/s ²
'n	HS	Static pressure head Δz_0 , z_0 -axis positive vertical up!		m
H	HT	Total head	e / w = h + p/w + q/w	m
0	PR, ES	Pressure, density of static flow energy		Pa
\mathcal{D}_0	P0	Ambient pressure in undisturbed flow		Pa
9	PD, EK	Dynamic pressure, density of ki- netic flow energy,	$\rho V^2/2$	Ра
Q	QF, QFLOW	Rate of flow	Volume passing across a control surface in time unit	m ³ /s
S _H	THL	Total head loss		m
s^{R}_{ij}	SR(I,J)	Turbulent or Reynolds stress	$\rho v_i v_j^{CR}$	Pa
S _{ij}	ST(I,J)	Total stress tensor	Density of total diffusive mo- mentum flux due to molecular and turbulent exchange	Ра
s^{V}_{ij}	SV(I,J)	Viscous stress		Pa
u, v_x, v_1 v, v_y, v_2 w, v_z, v_3	VX, V1 VY, V2 VZ, V3	Velocity component in direction of x, y, z axes		m/s
Vi	V(I)	Velocity		m/s
V	VA	Velocity	$V = v_i v_i^{1/2}$	m/s
V_0	V0	Velocity of undisturbed flow		m/s
τ_w	TAUW	Wall shear stress	$\mu \left(\partial U / \partial y \right)_{y=0}$	Pa
.3.2.2 Cir	rculation etc.	·		
Γ ⁿ	CN	Normalized circulation	$\frac{\Gamma / (\pi D V)}{\pi \text{ is frequently omitted}}$	1
Ι	ID	Ratio between velocities induced Induction factor by helicoidal and by straight line vortices vortices		1
Г	VD	Vortex density	Strength per length or per area of vortex distribution	m/s
Г	CC	Circulation	$\int V ds$ along a closed line	m ² /s
Φ	PO	Potential function		m ² /s
Ψ	SF	Stream function	$\psi = \text{const}$ is the equation of a stream sur-	m ³ /s

face

Mechanics in General Fluid Mechanics

1.3.3 Lifting Surfaces

Version 2017

ITTCComputer
SymbolNameDefinition or
ExplanationSI-
Unit

1.3.3 Lifting Surfaces1.3.3.1 Geometry

1.3.3.1 G	eometry			
Α	AP	Projected area	$b c_M$	m^2
b	SP	Wing or foil span		m
$b_{ m F}$	BSPF	Flap span		m
CM	CHME	Mean chord length	A / b	m
c_T	CHTP	Tip chord length		m
Cr	CHRT	Root chord length		m
fL	FML	Camber of lower side (general)		m
<u>fu</u>	FMU	Camber of upper side		m
<u>γ</u>	ANSW	Sweep angle		rad
$\frac{\delta_{s}}{\delta_{s}}$	ANSL	Slat deflection angle		rad
		Thickness ratio of foil section		
δ	DELTT	(general)	<i>t / c</i>	1
		Thickness ratio of trailing edge		
$\delta_{ m B}$	DELTB	of struts	$t_{\rm B} / c_{\rm S}$	1
		Camber ratio of mean line (gen-		
$\delta_{ m F}$	DELTF	eral)	f/c	1
$\delta_{ m FL}$	DLTFL	Angle of flap deflection		rad
		Camber ratio of lower side of		144
$\delta_{ m L}$	DELTL	foil	$f_{\rm L}/c$	1
$\delta_{\rm S}$	DELTS	Thickness ratio of strut	$t_{\rm S} / c_{\rm S}$	1
05	DELIS	Theoretical thickness ratio of		1
$\delta_{ m STH}$	DELTT	section	$t_{\rm S} / c_{\rm STH}$	1
$\delta_{ m U}$	DELTU	Camber ratio of upper side	f _U / c	1
$\frac{\partial 0}{\lambda}$	TA	Taper ratio	· ·	-
$\frac{\lambda}{\Lambda}$	AS		$c_{\rm t} / c_{\rm r}$ b^2 / A	1
		Aspect ratio	D^{-}/A	1
	ow angles etc		I	,
V_{I}	VI	Induced velocity		m/s
V_{T}	VT	Resultant velocity of flow ap-	Taking vortex induced velocities	m/s
· 1		proaching a hydrofoil	into account	
	AA,		Angle between the direction of	
α			and at the dual of the flater and the	
	ALFA	Angle of attack or incidence	undisturbed relative flow and the	rad
	ALFA	Angle of attack or incidence	chord line	rad
			chord line The angle of attack relative to	
$\alpha_{ m EFF}$	AAEF,	Effective angle of attack or inci-	chord line The angle of attack relative to the chord line including the ef-	rad rad
$lpha_{ m EFF}$			chord line The angle of attack relative to the chord line including the ef- fect of induced velocities	
$lpha_{ m EFF}$	AAEF, ALFE	Effective angle of attack or inci- dence	chord lineThe angle of attack relative tothe chord line including the effect of induced velocitiesThe angle of attack relative to	rad
$\alpha_{\rm EFF}$ $\alpha_{\rm G}$	AAEF, ALFE AAGE,	Effective angle of attack or inci- dence Geometric angle of attack or in-	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef-	
	AAEF, ALFE AAGE, ALFG	Effective angle of attack or inci- dence	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef- fect of induced velocities	rad
α _G	AAEF, ALFE AAGE, ALFG AAHY,	Effective angle of attack or inci- dence Geometric angle of attack or in- cidence	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef-	rad rad
	AAEF, ALFE AAGE, ALFG	Effective angle of attack or inci- dence Geometric angle of attack or in-	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef- fect of induced velocitiesIn relation to the position at zero lift	rad
α _G	AAEF, ALFE AAGE, ALFG AAHY,	Effective angle of attack or inci- dence Geometric angle of attack or in- cidence	chord lineThe angle of attack relative tothe chord line including the ef-fect of induced velocitiesThe angle of attack relative tothe chord line neglecting the ef-fect of induced velocitiesIn relation to the position at zeroliftFor thin airfoil or hydrofoil, an-	rad rad
a _G	AAEF, ALFE AAGE, ALFG AAHY,	Effective angle of attack or inci- dence Geometric angle of attack or in- cidence	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef- fect of induced velocitiesIn relation to the position at zero liftFor thin airfoil or hydrofoil, an- gle of attack for which the	rad rad
a _G	AAEF, ALFE AAGE, ALFG AAHY, ALFI	Effective angle of attack or incidence Geometric angle of attack or incidence Hydrodynamic angle of attack	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef- fect of induced velocitiesIn relation to the position at zero liftFor thin airfoil or hydrofoil, an- gle of attack for which the streamlines are tangent to the	rad rad
a _G	AAEF, ALFE AAGE, ALFG AAHY, ALFI AAID,	Effective angle of attack or inci- dence Geometric angle of attack or in- cidence	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef- fect of induced velocitiesIn relation to the position at zero liftFor thin airfoil or hydrofoil, an- gle of attack for which the streamlines are tangent to the mean line at the leading edge.	rad rad
α _G α _H	AAEF, ALFE AAGE, ALFG AAHY, ALFI	Effective angle of attack or incidence Geometric angle of attack or incidence Hydrodynamic angle of attack	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef- fect of induced velocitiesIn relation to the position at zero liftFor thin airfoil or hydrofoil, an- gle of attack for which the streamlines are tangent to the mean line at the leading edge. This condition is usually referred	rad rad rad
α _G α _H	AAEF, ALFE AAGE, ALFG AAHY, ALFI AAID,	Effective angle of attack or incidence Geometric angle of attack or incidence Hydrodynamic angle of attack	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef- fect of induced velocitiesIn relation to the position at zero liftFor thin airfoil or hydrofoil, an- gle of attack for which the streamlines are tangent to the mean line at the leading edge. This condition is usually referred to as "shock-free" entry or	rad rad rad
α _G α _H	AAEF, ALFE AAGE, ALFG AAHY, ALFI AAID,	Effective angle of attack or incidence Geometric angle of attack or incidence Hydrodynamic angle of attack	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef- fect of induced velocitiesIn relation to the position at zero liftFor thin airfoil or hydrofoil, an- gle of attack for which the streamlines are tangent to the mean line at the leading edge. This condition is usually referred	rad rad rad
α _G α _H	AAEF, ALFE AAGE, ALFG AAHY, ALFI AAID,	Effective angle of attack or incidence Geometric angle of attack or incidence Hydrodynamic angle of attack	chord lineThe angle of attack relative to the chord line including the ef- fect of induced velocitiesThe angle of attack relative to the chord line neglecting the ef- fect of induced velocitiesIn relation to the position at zero liftFor thin airfoil or hydrofoil, an- gle of attack for which the streamlines are tangent to the mean line at the leading edge. This condition is usually referred to as "shock-free" entry or	rad rad rad

Mechanics in General Fluid Mechanics Lifting Surfaces

Version 2017

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

1.3.3.3 Forces

$D_{ m F}$	DRF	Foil drag	Force in the direction of motion of an immersed foil	Ν
D_{I}	DRIND	Induced drag	For finite span foil, the compo- nent of lift in the direction of motion	N
D _{INT}	DRINT	Interference drag	Due to mutual interaction of the boundary layers of intersecting foil	N
$D_{ m P}$	DRSE	Section or profile drag at zero lift	Streamline drag	N
$L_{\rm F}$	LF	Lift force on foil	$C_L A_{\rm FT} q$	Ν
L_0	LF0	Lift force for angle of attack of zero	$C_{L0}A_{ m FT}q$	Ν
.3.3.4 Se	ctional coefficie	ents		
C_D	CDSE	Section drag coefficient		1
C_{DI}	CDSI	Section induced drag coefficient		1
C_L	CLSE	Section lift coefficient		1
C_{L0}	CLSE0	Section lift coefficient for angle of attack of zero		1
C_M	CMSE	Section moment coefficient		1
Е	EPSLD	Lift-Drag ratio	L/D	1

Mechanics in Gene Fluid Mechanics Boundary Layers Mechanics in General

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.3.4 Boundary Layers1.3.4.1 Two-dimensional Boundary Layers

		Boundary Layers		
$C_{ m f}$	CFL	Skin friction coefficient	$\tau / (\rho U_e^2 / 2)$	1
F	CQF	Entrainment factor	$1 / (U_e dQ / dx)$	1
Н	HBL	Boundary layer shape parameter	δ^* / Θ	1
$H_{ m E}$	HQF	Entrainment shape parameter	$(\delta - \delta^*) / \Theta$	1
p	PR	Static pressure		Pa
Р	PT	Total pressure		Pa
Q	QF	Entrainment	$\int_{a}^{b} U dy$	m²/s
Re_{δ^*}	RDELS	Reynolds number based on dis- placement thickness	$U_{\infty}\delta^*/v \text{ or } U_e\delta^*/v$	1
$Re_{ heta}$	RTHETA	Reynolds number based on mo- mentum thickness	$U_{\infty} \Theta / v$ or $U_e \Theta / v$	1
и	UFL	Velocity fluctuations in bound- ary layer		m/s
u^{s}	UFLS	Root mean square value of ve- locity fluctuations		m/s
<i>u</i> ⁺	UPLUS	Non-dimensional distance from surface	U/u_{τ}	1
u_{τ}	UTAU	Shear (friction) velocity	$(\tau / \rho)^{1/2}$	m/s
$U_{ m m}$	UMR	Time mean of velocity in bound- ary layer		m/s
$U_{ m i}$	UIN	Instantaneous velocity		m/s
U_∞	UFS	Free-stream velocity far from the surface		m/s
$U_{ m e}$	UE	Velocity at the edge of the boundary layer at $y=\delta_{995}$		m/s
ΔU	UDEF	Velocity defect in boundary layer	$(U_{e}-U)/u_{\tau}$	1
<i>y</i> ⁺	YPLUS	Non-dimensional distance from the wall	y u _τ / v	1
β	BETE	Equilibrium parameter	$\delta^* / (\tau_w dp / dx)$	1
δ_{995}	DEL	Thickness of a boundary layer at $U=0.995U_{\rm e}$		m
δ^* , δ_1	DELS	Displacement thickness of boundary layer	$\int (U_{\rm e}-U) / U_{\rm e} dy$	m
K	K	von Karman constant	0.41	1
Λ	PRGR	Pressure gradient parameter	$\delta_{995} / (v dU_{\rm e} / dx)$	1
$ heta^*$, δ^{**}	ENTH	Energy thickness	$\int (U/U_{\rm e}) (1 - U^2/U_{\rm e}^2) dy$	m
Θ	THETA	Momentum thickness	$\int (U/U_{\rm e}) (1 - U/U_{\rm e}) dy$	m
$ au_w$	TAUW	Local skin friction	$\mu \left(\frac{\partial U}{\partial y} \right)_{y=0}$	Pa

1 Mechanics in General

1.3 Fluid Mechanics

1.3.5 Cavitation

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.3.5 Cavitation

TN

Thoma number

Th, σ

s	GR	Gas content ratio	$\alpha / \alpha_{\rm S}$	1
	GC	Gas content	Actual amount of solved and un- dissolved gas in a liquid	ppm
α _S	GS	Gas content of saturated liquid	Maximum amount of gas solved in a liquid at a given temperature	ppm
σ	CNPC	Cavitation number	$(p_{\rm A} - p_{\rm C}) / q$	1
ת	CNPI	Inception cavitation number		1
$\sigma_{ m V}$	CNPV	Vapour cavitation number	$(p_{\rm A} - p_{\rm V}) / q$	1
3.5.2 F	low fields			
D _C	DC	Cavity drag		Ν
lc	LC	Cavity length	Stream wise dimension of a fully-developed cavitating re- gion	m
$p_{\rm A}$	PA	Ambient pressure		Pa
р _{AC}	PACO	Collapse pressure	Absolute ambient pressure at which cavities collapse	Ра
<i>p</i> _{AI}	PAIC	Critical pressure	Absolute ambient pressure at which cavitation inception takes place	Ра
<i>p</i> _C	PC	Cavity pressure	Pressure within a steady or quasi-steady cavity	Pa
рсі	PCIN	Initial cavity pressure	Pressure, may be negative, i.e. tensile strength, necessary to cre- ate a cavity	Pa
\mathcal{D}_{V}	PV	Vapour pressure of water	At a given temperature!	Pa
UI	UNIN	Critical velocity	Free stream velocity at which cavitation inception takes place	m/s
VL	VOLS	Volume loss	W _L / w	m ³
WL	WTLS	Weight loss	Weight of material eroded from a specimen during a specified time	N/s
δ _c	НС	Cavity height or thickness	Maximum height of a fully-de- veloped cavity, normal to the surface and the stream-wise di- rection of the cavity	m
.3.5.3 P	umps			
H _N	HTNT	Net useful head of turbo-engines		m
$H_{\rm U}$	HTUS	Total head upstream of turbo-en- gines		m
71	TINI	EFI 1		1

 $(H_U - p_V / w) / H_N$

ITTC Symbols

1 Mechanics in General

1.4 Environmental Mechanics

1.4.1 Waves

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.4 Environmental Mechanics

1.4.1 Waves

This section is related to Sections 3.1.2 Time and Frequency Domain Quantities and 3.1.3 Random Quantities and Stochastic Processes. 1.4.1.1 Periodic waves

1.4.1.1 Pe	eriodic waves			
$c_{ m W}$	VP	Wave phase velocity or celerity	$L_{\rm W}/T_{\rm W} = \sqrt{gL_{\rm W}/2\pi}$ in deep water	m/s
C _{Wi}	VP(I)	Wave phase velocity of harmonic components of a periodic wave	$const = c_W$ for periodic waves in deep water	m/s
CG	VG	Wave group velocity or celerity	The average :rate of ad- vance of the energy in a finite train of gravity waves	m/s
.fw	FW	Basic wave frequency	$1 / T_{\rm W}$	Hz
fwi	FW(I)	Frequencies of harmonic compo- nents of a periodic wave	Frequencies of harmonic compo-	
$H_{ m W}$	HW	Wave height	The vertical distance from wave crest to wave trough, or twice the wave amplitude of a harmonic wave. $\eta_{\rm C} - \eta_{\rm T}$	m
k, к	WN	Wave number	$2\pi/L_{\rm W}=\omega^2/g$	1/m
$L_{ m W}$, $\lambda_{ m W}$	LW	Wave length	The horizontal distance be- tween adjacent wave crests in the direction of advance	m
$T_{ m W}$	TW	Basic wave period	Time between the passage of two successive wave crests past a fixed point. $1/f_W$	s
μ	WD	Wave direction	The angle between the direction of a component wave and the x_0 axis	rad
η	EW	Instantaneous wave elevation at a given location	z-axis positive vertical up, zero at mean water level;	m
$\eta^{lpha}{}_i$	EWAM(I)	Amplitudes of harmonic compo- nents of a periodic wave	η^{FSlpha}	m
$\eta^{ extsf{p}_i}$, $arepsilon_i$	EWPH(I)	Phases of harmonic components of a periodic wave	η^{FSp}	rad
$\eta_{\rm C}$	EC	Wave crest elevation		m
$\eta_{ m T}$	ET	Wave trough depression	Negative values!	m
ζ	DW	Instantaneous wave depression	<i>z</i> -axis positive vertical down, zero at mean water level	m
ζA	WAMP	Wave amplitude	Radius of orbital motion of a surface wave particle	m
ω _W , σ	FC	Circular wave frequency	$2\pi f_{\rm W} = 2\pi / T_{\rm W}$	rad/s

1.4.1.2 Irregular waves

H _d	HD	Wave height by zero down- crossing	The vertical distance between a successive crest and trough.	m
$H_{ m u}$	HU	Wave height by zero up-crossing	The vertical distance between a successive trough and crest	m

Version 2017

1Mechanics in General1.4Environmental Mechanics1.4.1Waves

TTC	Computer	Name	Definition or	SI-
ymbol	Symbol	Name	Explanation	Unit
H _{W1/3}	H13D	Significant wave height	Average of the highest one third zero down-crossing wave heights	m
$T_{1/3d}$	T13D	Significant wave period	By downcrossing analysis	S
$T_{1/3u}$	T13U	Significant wave period	By upcrossing analysis	S
T _d	TD	Wave periods by zero down- crossing	Time elapsing between two suc- cessive downward crossings of zero in a record	s
T _u	TU	Wave periods by zero up-cross- ing	Time elapsing between two suc- cessive upward crossings of zero in a record	s
ηс	EC	Maximum of elevations of wave crests in a record		m
ητ	ET	Elevations of wave troughs in a record	Negative values!	m
λ _d	LD	Wave length by zero down- crossing	The horizontal distance between adjacent down crossing in the di- rection of advance	m
λu	LU	Wave length by zero up-crossing	The horizontal distance between adjacent up crossing in the direc- tion of advance	m
.4.1.3 Tii	me Domain Ana	alysis		
$H_{ m WV}$	HWV	Wave height estimated from vis- ual observation		m
H _{1/3d}	H13D	Zero down-crossing significant wave height	Average of the highest one third zero down-crossing wave heights	m
<i>H</i> _{1/3u}	H13U	Zero up-crossing significant wave height	Average of the highest one third zero up-crossing wave heights	m
H_{σ}	HWDS	Estimate of significant wave height from sample deviation of wave elevation record		m
$L_{\rm WV}$	LWV	Wave length estimated by visual observation	Measured in the direction of wave propagation	m
T _{rt}	TRT	Return period	The average interval in years be- tween times that a given design wave is exceeded	
T _R	TR	Duration of record	$1/f_{\rm R}$	S
Ts	TS	Sample interval	$1/f_{\rm S}$, time between two successive samples	s
$T_{ m WV}$	TWV	Wave period estimated from vis- ual observation		s

1.4.1.4 Frequency Domain Analysis

b	В	Bandwidth of spectral resolution	Sampling frequency divided by the number of transform points	Hz
Cr	CRA	Average reflection coefficient		1
$C_{\rm r}(f)$	CRF	Reflection coefficient amplitude function		1
f _Р	FRPK	Spectral peak in frequency	Frequency at which the spectrum has its maximum	Hz
$f_{\rm R}$	FRRC	Frequency resolution	$1/T_{\rm R}$	Hz
$f_{\rm S}$	FRSA	Sample frequency	$1/T_{\rm S}$	Hz

Version 2017

1 Mechanics in General

1.4 Environmental Mechanics

1.4.1 Waves

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit
H _{mo}	НМО	Significant wave height based on zeroth moment for narrow banded spectrum	$4 (m_0)^{1/2}$	m
H_{σ}	HWDS	Estimate of significant wave height from sample deviation of wave elevation record		m
m_n	MN	n-th moment of wave power spectral density	$\int f^n S(f) df$	m^2/s^n
$S_i(f), S_i(\omega)$	EISF, EISC	Incident wave power spectral density		m²/Hz
$S_r(f),$ $S_r(\omega)$	ERSF, ERSC	Reflected wave power spectral density		m²/Hz
$S_{\eta}(f), S_{\eta}(\omega)$	EWSF, EWSC	Wave power spectral density		m²/Hz
T_P	TP	Period with maximum energy	$2\pi f_{\rm P}$	S
T_{01}	T1	Average period from zeroth and first moment	m_0/m_1	S
T_{02}	T2	Average period from zeroth and second moment	$(m_0/m_2)^{1/2}$	S

1.4.1.5 Directional Waves

$egin{aligned} D_{\mathrm{X}}(f, heta),\ D_{\mathrm{X}}(\omega,\mu),\ \sigma_{ heta} \end{aligned}$	DIRSF SIGMAOX	Directional spreading function	$\int_{0}^{2\pi} D_{X}(f,\theta) d\theta = 1$	rad
f	FR	Frequency	$2\pi\omega=1/T$	Hz
$S_{\zeta}(\omega,\mu)$ $S_{\theta}(\omega,\mu)$ <i>etc.</i>	S2ZET S2TET etc.	Two dimensional spectral den- sity		1
$S_{ ho}(f, heta) \ S_{\zeta}(\omega,\mu)$	STHETA	Directional spectral density		m²/Hz/ rad
θ, μ	CWD	Component wave direction		rad
$ heta_{ m m}$	MWD THETAMOX	Mean or dominant wave direc- tion		rad

Mechanics in General 1

1.4Environmental Mechanics1.4.2Wind

ITTC	Computer	N	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

1.4.2 Wind

1.4.2.1 Basic Quantities

C_{10}	C10M	Surface drag coefficient	$(0.08 + 0.065U_{10})10^{-3}$	
F	FETCH	Fetch length	Distance over water the wind blows	m
t _d	DURATN	Wind duration		S
T _{rt}	TRT	Return period	The average interval in years be- tween times that a given wind speed is exceeded	
u_z , u_{zi}	UFLUCT	Turbulent wind fluctuations		m/s
<i>U</i> _{<i>A</i>} , <i>u</i> *	USHEAR	Wind shear velocity	$C_{10}^{1/2} U_{10}$ or $0.71 U_{10}^{1.23}$	m/s
U_{10}	U10M	Reference mean wind speed at elevation 10 meters above sea surface	$U_{10} = (10/z)^{1/7} U_z^A$	m/s
U_z^{A}	UZA	Average wind speed at elevation z above the sea surface	$(U_z + u_{zi})^A U_z^A = (z/10)^{1/7} U_{10} \text{ or} U_z^A = U_{10} + U_A \ln(z/10)$	m/s
$V_{\rm WR}$	VWREL	Apparent wind velocity	see section 1.4.1	m/s
$V_{\rm WT}$	VWABS	True wind velocity	see section 1.4.1	m/s
$X_{ m F}$	FDIM	Dimensionless Fetch	gF/U_{10}^2	
Z	ZSURF	Height above the sea surface in meters		m
$\beta_{ m WA}$	BETWA	Apparent wind angle (relative to vessel course)	see section 2.6	rad
$\beta_{ m WT}$	BETWT	True wind angle (relative to ves- sel course)	see section 2.6	rad
$\theta_{\rm W}$	TETWI	Wind direction		rad

1 Mechanics in General

1.4 Environmental Mechanics

1.4.3 Ice Mechanics

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

1.4.3 Ice Mechanics 1.4.3.1 Basic Ouantities

	asic Quantities			
E_{I}	MEI	Modulus of elasticity of ice		Pa
SI	SAIC	Salinity of ice	Weight of salt per unit weight of ice	1
S _W	SAWA	Salinity of water	Weight of dissolved salt per unit weight of saline water	1
t _A	TEAI	Temperature of air		°C
t _I	TEIC	Local temperature of ice		°C
tw	TEWA	Temperature of water		°C
δ_{I}	ELIC	Deflection of ice sheet	Vertical elevation of ice surface	m
εI	STIC	Ice strain	Elongation per unit length	1
έ _ι	STRTIC	Ice strain rate	$\partial \epsilon / \partial \tau$	1/s
u_{I}	POIIC	Poisson's ratio of ice		1
VA	POAI	Relative volume of air	Volume of gas pores per unit vol- ume of ice	1
VB	POBR	Relative volume of brine	Volume of liquid phase per unit volume of ice	1
v_0	POIC	Total porosity of ice	$v_0 = v_A + v_B$	1
ØI	DNIC	Mass density of ice	Mass of ice per unit volume	kg/m ³
0 _{SN}	DNSN	Mass density of snow	Mass of snow per unit volume	kg/m ³
$ ho_{ m W}$	DNWA	Mass density of water		kg/m ³
04	DNWI	Density difference	$ ho_{\it A}= ho_{\it W}$ - $ ho_{\it I}$	kg/m ³
$\sigma_{ m CI}$	SCIC	Compressive strength of ice		Pa
$\sigma_{ m FI}$	SFIC	Flexural strength of ice		Pa
$\sigma_{ m TI}$	SNIC	Tensile strength of ice		Pa
$ au_{ m SI}$	STIC	Shear strength of ice		Ра

ITTC Symbols			1 Mechanics in General 1.5 Noise		
Version 2017	1		1.5.1 Underwater noise		34
ITTC	Computer	Nama	Definition or	SI-	

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

1.5 Noise

1.5.1 Underwater Noise

d	DIDR	Distance hydrophone to acoustic centre		m
L_p	SPL	Sound pressure level	$L_p = 10 \log_{10} \left(\frac{\bar{p}_{rms}^2}{p_{ref}^2} \right) dB, \ p_{ref}$ $= 1 \ \mu Pa$	
L _s	SRNL	Underwater sound radiated noise level at a reference distance of 1m	$L_{\rm s} = L_{\rm p}$	
р	SPRE	Sound pressure	· -	Pa

ITTC Symbols

2 Ships in General

Basic Quantities

Version 2017

ITTC Definition or SI-Computer Name Symbol Symbol Explanation Unit

2.1

SHIPS IN GENERAL 2. 2.1

Basic Quantities

2.1 Basic	e Quantities			
a, a^1	AC, A1	Linear or translatory acceleration	dv / dt	m/s^2
Α	A, AR, AREA	Area in general		m ²
В	B, BR	Breadth		m
C, F^{F_2}	FF(2)	Cross force	Force normal to lift and drag (forces)	N
Cc	CC	Cross force coefficient	$C_{\rm C} = \frac{C}{qA}$	1
D, F^{F_1}	FF(1)	Resistance, Drag (force)	Force opposing translatory velocity, generally for a completely immersed body	N
<i>d</i> , <i>D</i>	D, DI	Diameter		m
Ε	E, EN	Energy		J
f	FR	Frequency	1/T	Hz
F, F^0	F, F0	Force		N
g	G, GR	Acceleration of gravity	Weight force / mass, strength of the earth gravity field	m/s ²
h	DE	Depth		m
Н	H, HT	Height		m
Ι	I, IN	Moment of inertia	Second order moment of a mass dis- tribution	kg m ²
L	L, LE	Length		m
L, F^F_3	FF(3)	Lift (force)	Force perpendicular to translatory ve- locity	N
т	M, MA, MASS	Mass		kg
<i>M</i> , <i>F</i> ¹	M1, F1	Moment of forces	First order moment of a force distribution	Nm
М	MO	Momentum		Ns
n, N	FR, N	Frequency or rate of revolution	Alias RPS (RPM in some propulsor applications)	Hz
Р	P, PO	Power		W
r, R	RD	Radius		m
R, F^{F_1}	R, RE, FF(1)	Resistance (force)	Force opposing translatory velocity	Ν
s	SP	Distance along path		m
t	TI	Time		s
t	TE	Temperature		Κ
Т	TC	Period	Duration of a cycle of a repeating or periodic, not necessarily harmonic process	s
U	U, UN	Undisturbed velocity of a fluid		m/s
v, V^1	V, V1	Linear or translatory velocity of a body	ds / dt	m/s
V	VO	Volume		m ³
w	WD	Weight density, formerly specific weight	$dW/dV = \rho g$	N/m ³
W	WT	Weight (force), gravity force act- ing on a body		N
γ	MR	Relative mass or weight, in Eng- lish speaking countries called spe- cific gravity	Mass density of a substance divided by mass density of distilled water at 4°C	1
η	EF, ETA	Efficiency	Ratio of powers	
•		· · ·	1 4	

2 Ships in General

ITTC Symbols

Version 2017

2.1 Basic Quantities

1	1
	ь
~,	•

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Ivanie	Explanation	Unit
ρ	DN, RHO	Mass density	dm / dV	kg/m ³
$ ho_0$	RHO0	water density for reference water temperature and salt content		kg/m3
$ ho_{\mathrm{A}}$	DNA, RHOA	Mass density of air	Mass of air per unit volume	kg/m ³
τ	ST, TAU	Tangential stress		Pa
λ	SC	Scale ratio	Ship dimension divided by corre- sponding model dimension	1
σ	SN, SIGS	Normal stress		Pa
ω	FC, OMF	Circular frequency	$2\pi f$	1/s
ω, V ⁰	V0, OMN	Rotational velocity	$2\pi n$	rad/s

Ships in General Geometry and Hydrostatics Hull Geometry

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

2.2 Geometry and Hydrostatics2.2.1 Hull Geometry

2.2.1.1	Basic Quantities	S

2.2.1.1	Basic Quantities			
$A_{ m BL}$	ABL	Area of bulbous bow in longitudi- nal plane	The area of the ram projected on the middle line plane forward of the fore perpendicular	m ²
$A_{ m BT}$	ABT	Area of transverse cross-section of a bulbous bow (full area port and star-board)	The cross sectional area at the fore perpendicular. Where the water lines are rounded so as to terminate on the forward perpendicular A_{BT} is measured by continuing the area curve forward to the perpendicular, ignoring the final rounding.	m ²
A_{M}	AM	Area of midship section	Midway between fore and aft per- pendiculars	m ²
A_{T}	ATR	Area of transom (full area port and starboard)	Cross-sectional area of transom stern below the load waterline	m ²
$A_{ m V}$	AV	Area exposed to wind	Area of portion of ship above wa- terline projected normally to the direction of relative wind	m ²
A_{W}	AW	Area of water-plane		m ²
$A_{ m WA}$	AWA	Area of water-plane aft of midship		m ²
$A_{ m WF}$	AWF	Area of water-plane forward of midship		m ²
A _X	AX	Area of maximum transverse sec- tion		m ²
В	В	Beam or breadth, moulded, of ships hull		m
B _M	BM	Breadth, moulded of midship sec- tion at design water line		m
B _T	BTR	Breadth, moulded of transom at design water line		m
$B_{\rm WL}$	BWL	Maximum moulded breadth at de- sign water line		m
B _X	BX	Breadth, moulded of maximum section area at design water line		m
<i>d</i> , <i>T</i>	Т	Draught, moulded, of ship hull		m
d_{KL}	KDROP	Design drop of the keel line	T_{AD} - T_{FD} alias "keel drag" or "slope of keel"	m
D	DEP	Depth, moulded, of a ship hull		m
f	FREB	Freeboard	From the freeboard markings to the freeboard deck, according to official rules	m
i _E	ANEN	Angle of entrance, half	Angle of waterline at the bow with reference to centre plane, neglect- ing local shape at stem	rad
i _R	ANRU	Angle of run, half	Angle of waterline at the stern with reference to the centre-plane, neglecting local shape of stern frame	rad
L	L	Length of ship	Reference length of ship (gener- ally length between the perpendic- ulars)	m

Ships in General Geometry and Hydrostatics Hull Geometry

Version 2017

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
			Enorm the formula norman disular to	
$L_{ m E}$	LEN	Length of entrance	From the forward perpendicular to the forward end of parallel middle	m
LE	LEN	Length of entrance	body, or maximum section	111
L _{OA}	LOA	Length, overall	body, or maximum section	m
L_{OA} L_{OS}	LOA	Length, overall submerged		m
208			Length of constant transverse sec-	111
$L_{ m P}$	LP	Length of parallel middle body	tion	m
$L_{\rm PP}$	LPP	Length between perpendiculars		m
			From section of maximum area or	
$L_{\rm R}$	LRU	Length of run	after end of parallel middle body	m
LR	LIKU	Length of run	to waterline termination or other	111
			designated point of the stern	
$L_{ m WL}$	LWL	Length of waterline		m
$L_{\rm FS}$	LFS	Frame spacing	used for structures	m
Lss	LSS	Station spacing		m
S	S, AWS	Area of wetted surface		m ²
			The intercept of the tangent to the	
t	TT	Taylor tangent of the area curve	sectional area curve at the bow on	1
			the midship ordinate	
<i>T</i> , <i>d</i>	Т	Draught, moulded, of ship hull		m
$T_{\rm A}, d_{\rm A}$	TA, TAP	Draught at aft perpendicular		m
$T_{ m AD}$	TAD, TAPD	Design draught at aft perpendicu- lar		m
$T_{\rm F}, d_{\rm F}$	TF, TFP	Draught at forward perpendicular		m
		Design draught at forward perpen-		
$T_{ m FD}$	TFD, TFPD	dicular		m
T_H	THUL	Draught of the hull	Maximum draught of the hull without keel or skeg	m
			$(T_A + T_F) / 2$ for rigid bodies with	
$T_{\mathrm{M}}, d_{\mathrm{M}}$	TM, TMS	Draught at midship	straight keel	m
T _{MD}	TMD, TMSD	Design draught at midship	$(T_{AD} + T_{FD}) / 2$ for rigid bodies	m
- MD			Vertical depth of trailing edge of	
T_{T}	TTR	Immersion of transom	boat at keel below water surface	m
- 1			level	
∇ , V	DISPVOL	Displacement volume	$\Delta / (\rho g) = \nabla_{\rm BH} + \nabla_{\rm AP}$	m ³
$V_{\rm BH}$	DISPVBH	Displacement volume of bare hull	$\Delta_{\rm BH}/(\rho g)$	m ³
ивн		Displacement volume of append-		
$V_{ m APP}$	DISPVAP	ages	$\Delta_{\rm AP} / (\rho g)$	m ³
Δ	DISPF	Displacement force (buoyancy)	$g \rho \nabla$	Ν
4	DICDEDII	Displacement force (buoyancy) of	F	N
$\varDelta_{ m BH}$	DISPFBH	bare hull	$g ho V_{ m BH}$	IN
\varDelta_{APP}	DISPFAP	Displacement force (buoyancy) of appendages	$g \rho V_{\rm AP}$	N
Δ_m	DISPM	Displacement mass	$\rho \nabla$	kg
			$\lambda = L_{\rm S} / L_{\rm M} = B_{\rm S} / B_{\rm M}$	
λ	SC	Linear scale of ship model	$= T_{\rm S} / T_{\rm M}$	1
2.2.1.2 Deri	ived Quantities			
$B^{\rm C}$	CIRCB	R.E. Froude's breadth coefficient	$B \neq \nabla^{1/3}$	1
CB	CB	Block coefficient	$\overline{V}/(LBT)$	1
$C_{\rm GM}$	CGM		$\frac{\overline{GM}}{\overline{GM}}/\overline{\nabla}^{1/3}$	1
$C_{\rm GM}$	CGZ	Dimensionless GM coefficient	$\frac{GM}{GZ} / \nabla^{1/3}$	1
C_{GZ}		Dimensionless GZ coefficient		1
	CKG	Dimensionless KG coefficient	KG /T	11

Version 2017

Ships in General Geometry and Hydrostatics Hull Geometry

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	ivanie	Explanation	Unit
C _{IL}	CWIL	Coefficient of inertia of water plane, longitudinal	$12 I_{\rm L} / (B L^3)$	1
C _{IT}	CWIT	Coefficient of inertia of water plane, transverse	$12 I_{\rm T} / (B^3 L)$	1
См	CMS	Midship section coefficient (mid- way between forward and aft per- pendiculars)	$A_{\rm M}/(B T)$	1
C_{P}	CPL	Longitudinal prismatic coefficient	$\nabla/(A_{\rm X} L)$ or $\nabla/(A_{\rm M} L)$	1
C _{PA}	СРА	Prismatic coefficient, after body	$\overline{V_A}/(A_X L/2)$ or $\overline{V_A}/(A_M L/2)$	1
$C_{ m PE}$	CPE	Prismatic coefficient, entrance	$\overline{V_{\rm E}} / (A_{\rm X} L_{\rm E})$ or $\overline{V_{\rm E}} / (A_{\rm M} L_{\rm E})$	1
$C_{ m PF}$	CPF	Prismatic coefficient fore body	$\overline{V_{\rm F}}/(A_{\rm X} L/2)$ or $\overline{V_{\rm F}}/(A_{\rm M} L/2)$	1
$C_{ m PR}$	CPR	Prismatic coefficient, run	$ \overline{V_{\rm R}} / (A_{\rm X} L_{\rm R}) $ or $ \overline{V_{\rm R}} / (A_{\rm M} L_{\rm R}) $	1
C_S	CS	Wetted surface coefficient	$S / (VL)^{1/2}$	1
$C_{\rm VP}$	CVP	Prismatic coefficient vertical	$\nabla/(A_{\rm W}T)$	1
$C_{ m WA}$	CWA	Water plane area coefficient, aft	$A_{\rm WA}/(BL/2)$	1
$C_{ m WF}$	CWF	Water plane area coefficient, for- ward	A _{WF} /(B L / 2)	1
C_{WP}	CW	Water plane area coefficient	$A_{ m W}$ /(LB)	1
Cx	СХ	Maximum transverse section coef- ficient	$A_X/(BT)$, where <i>B</i> and <i>T</i> are measured at the position of maxi- mum area	1
C_{∇}	CVOL	Volumetric coefficient	∇/L^3	1
$f_{\rm BL}$	CABL	Area coefficient for bulbous bow	$A_{\rm BL}/(LT)$	1
fвт	CABL	Taylor sectional area coefficient for bulbous bow	$A_{\rm BT}/A_{\rm X}$	1
fт	ATR	Sectional area coefficient for tran- som stern	$A_{\rm T}/A_{\rm X}$	1
M ^C	CIRCM	R.E. Froude's length coefficient, or length-displacement ratio	$L \neq \nabla^{1/3}$	1
S^C	CIRCS	R.E. Froude's wetted surface area coefficient	$S/\nabla^{2/3}$	1
T^C	CIRCT	R.E. Froude's draught coefficient	$T \neq \nabla^{1/3}$	1

2.2.1.3 Symbols for Attributes and Subscripts

2.2.1.5	by moons for rate	nouces and Subscripts
А	AB	After body
AP	AP	After perpendicular
APP	APP	Appendages
В	BH	Bare hull
	DW	Design waterline
E	EN	Entry
F	FB	Fore body
FP	FP	Fore perpendicular
FS	FS	Frame spacing
Н	HE	Hull
	LR	Reference Line
LP	LP	Based on LPP
LW	LW	Based on LWL
Μ	MS	Midships
	PB	Parallel body
R	RU	Run

Version 2017

Ships in General Geometry and Hydrostatics Hull Geometry

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
SS W	SS WP	Station spacing Water plane		
S	WS	Wetted surface		

Ships in General Geometry and Hydrostatics Propulsor Geometry

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

2.2.2 Propulsor Geometry 2.2.2.1 Screw Propellers

2.2.2.1 Scre	w Propellers			1
$A_{\rm D}$	AD	Developed blade area	Developed blade area of a screw propeller outside the boss or hub	m ²
A _E	AE	Expanded blade area	Expanded blade area of a screw propeller outside the boss or hub	m ²
A_0	AO	Propeller Disc Area	$\pi D^2/4$	m ²
		· · · · · · · · · · · · · · · · · · ·	Projected blade area of a screw	
$A_{ m P}$	AP	Projected blade area	propeller outside the boss or hub	m ²
a _D	ADR	Developed blade area ratio	$A_{\rm D}/A_0$	1
$a_{\rm E}$	ADE	Expanded blade area ratio	$A_{\rm E}/A_0$	1
aр	ADP	Projected blade area ratio	$A_{\rm P}/A_0$	1
c	LCH	Chord length		m
C0.7	C07	Chord length	Chord length at r/R=0.7	m
$c_{ m LE}$	CHLE	Chord, leading part	The part of the Chord delimited by the Leading Edge and the intersec- tion between the Generator Line and the pitch helix at the consid- ered radius	m
$c_{ m M}$	CHME	Mean chord length	The expanded or developed area of a propeller blade divided by the span from the hub to the tip	m
CS	CS	Skew displacement	The displacement between middle of chord and the blade reference line. Positive when middle chord is at the trailing side regarding the blade reference line	m
С _{ТЕ}	CHTE	Chord, trailing part	The part of the Chord delimited by the Trailing Edge and the intersec- tion between the Generator Line and the pitch helix at the consid- ered radius	m
d_{h}	DH	Boss or hub diameter	2 <i>r</i> _h	m
$d_{ m ha}$	DHA	Hub diameter, aft	Aft diameter of the hub, not con- sidering any shoulder	m
$d_{ m hf}$	DHF	Hub diameter, fore	Fore diameter of the hub, not con- sidering any shoulder	m
D	DP	Propeller diameter		m
f	FBP	Camber of a foil section		m
Gz	GAP	Gap between the propeller blades	$2\pi r\sin(\varphi)/z$	m
h_0	НО	Immersion	The depth of submergence of the propeller measured vertically from the propeller centre to the free sur- face	m
H_{TC}	HTC	Hull tip clearance	Distance between the propeller sweep circle and the hull	m
i_G, R_k (ISO)	RAKG	Rake	The displacement from the propel- ler plane to the generator line in the direction of the shaft axis. Aft displacement is positive rake.	m
i _S	RAKS	Rake, skew-induced	The axial displacement of a blade section which occurs when the propeller is skewed. Aft displace- ment is positive rake	m

Ships in General Geometry and Hydrostatics Propulsor Geometry

Version 2017

ITTC Symbol	Computer	Name	Definition or Explanation	SI- Unit
Symbol	Symbol		Explanation	Unit
	-			r
			The axial displacement of the	
			blade reference line from the pro-	
i _T	RAKT	Rake, total	peller plane	m
			$i_{\rm G} + i_{\rm S} = c_{\rm S} \sin \varphi$	
			Positive direction is aft.	
$l_{ m h}$	LH	Hub length	The length of the hub, including	m
			any fore and aft shoulder	
			Length of the hub taken from the	
l _{ha}	LHA	Hub length, aft	propeller plane to the aft end of	m
			the hub including aft shoulder	
			Length of the hub taken from the	
$l_{ m hf}$	LHF	Hub length, fore	propeller plane to the fore end of	m
			the hub including fore shoulder	
V _P	NPR	Number of propellers		1
<i>)</i>	PDR	Pitch ratio	P/D	1
р	PITCH	Propeller pitch in general		m
r	LR	Blade section radius		m
r _h	RH	Hub radius		m
R	RDP	Propeller radius		m
4	TM	Blade section thickness		m
*	1 1 1	Thickness on axis of propeller	Thickness of propeller blade as ex-	111
to	ТО	blade	tended down to propeller axis	m
	VDDD	Boss to diameter ratio		
х _в	XBDR	Boss to diameter ratio	$d_{\rm h}/D$	
ХP	XP	Longitudinal propeller position	Distance of propeller centre for-	m
			ward of the after perpendicular	-
VР	YP	Lateral propeller position	Transverse distance of wing pro-	m
			peller centre from middle line	
Z, z	NPB	Number of propeller blades		1
ζp	ZP	Vertical propeller position	Height of propeller centre above	m
GI			base line	
ε, $\psi^{ m bP}$	PSIBP	Propeller axis angle measured to	Angle between reference line and	rad
,, φ	I SIDI	body fixed coordinates	propeller shaft axis	Tuu
			The angular displacement about	
			the shaft axis of the reference	
			point of any blade section relative	
$\theta_{\rm s}$	TETS	Skew angle	to the generator line measured in	rad
			the plane of rotation. It is positive	
			when opposite to the direction of	
			ahead rotation	
9	RAKA	Angle of rake		rad
0			The difference between maximum	
θ_{EXT}	TEMX	Skew angle extent	and minimum local skew angle	rad
φ	PHIP	Pitch angle of screw propeller	$\operatorname{arctg}\left(P / (2 \pi R)\right)$	1
Τ		Pitch angle of screw propeller		
$arphi_{ m F}$	PHIF	measured to the face line		1
	1	measured to the face line		l
		Propeller avis angle massured to	Angle between horizontal plana	
ψ^{aP}	PSIAP	Propeller axis angle measured to space fixed coordinates	Angle between horizontal plane and propeller shaft axis	rad

Ships in General

2 2.2 2.2 Geometry and Hydrostatics2.2.2 Propulsor Geometry

ITTC	Computer	Namo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

2.2.2.2 Ducts

2.2.2.2 Du				
$A_{\rm DEN}$	ADEN	Duct entry area		m^2
I DEX	ADEX	Duct exit area		m^2
l _D	CLEARD	Propeller tip clearance	Clearance between propeller tip and inner surface of duct	m
D	FD	Camber of duct profile		m
-D	LD	Duct length		m
- DEN	LDEN	Duct entry part length	Axial distance between leading edge of duct and propeller plane	m
-DEX	LDEX	Duct exit length	Axial distance between propeller plane and trailing edge of duct	m
D	TD	Thickness of duct profile		m
ί _D	AD	Duct profile-shaft axis angle	Angle between nose-tail line of duct profile and propeller shaft	rad
D	BD	Diffuser angle of duct	Angle between inner duct tail line and propeller shaft	rad
.2.2.3 Wa	terjets (see also	o section 1.3.5)		
A_n, A_6		Nozzle discharge area		m ²
A _s		Cross sectional area at station s		m ²
D		Impeller diameter (maximum)		m
D _n		Nozzle discharge diameter		m
H_{ij}		Head between station i and j		m
$H_{\rm JS}$		Jet System Head		m
$h_{1\mathrm{A}}$		maximum height of cross sections area of stream tube at station 1A	al	m
K _H		Head coefficient:	$\frac{gH}{n^2D^5}$	1
.2.2.4 Poo	ds			
A _{PB}	APB	Wetted Surface Area of Pod Main Body		m ²
Apbf	APBF	Wetted Surface Area of Bottom Fin		m ²
1 _{PS}	APS	Wetted Surface Area of Strut		m ²
BFTC	CBFTC	Thickness Cord Ratio of Bottom Fin		1
Cstc	CSTC	Thickness Cord Ratio of Strut		1
) _{PB}	DPB	Maximum Diameter of Pod Body		m
PB	LPB	Length of Pod Main Body		m
-PBF	LPBF	Length of Bottom Fin	Code length of bottom fin under pod main body	m
-PS	LPS	Length of Upper Strut	Code length of strut between for- ward edge and aft edge	m
Г	TDDC	$\mathbf{D} = (1 + 1) \mathbf{T} 1 + 1 \mathbf{T} 1 + 1 \mathbf{T} 1 \mathbf{T} 1 \mathbf{T} 1 \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} T$		

 T_{PBS} TPBSBott2.2.2.5Operators and identifiers

	ript)
aabsolute (space) reference(superscrbbody axis reference(superscr	. 1 /
P propeller shaft axis (subscrip	1 /
D Duct (subscrip	· ·

Bottom Thickness of Strut

m

Ships in General

2 2.2 2.2 Geometry and Hydrostatics2.2.3 Appendage Geometry

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

2.2.3 Appendage Geometry Related information may be found in Section 3.3.3 on Lifting Surfaces.

2.2.3.1 Basic Quantities

A _C	AC	Area under cut-up		m ²
4 _{FB}	AFB	Area of bow fins		m ²
4 _{FR}	AFR	Frontal area	Projected frontal area of an ap- pendage	m ²
$A_{\rm RF}$	AF	Projected flap area		m ²
A _R	ARU	Lateral rudder area	Area of the rudder, including flap	m ²
A _{RX}	ARX	Lateral area of the fixed part of rudder		m ²
$A_{\rm RP}$	ARP	Lateral area of rudder in the pro- peller race		m ²
$A_{\rm RT}$	ART	Total lateral rudder area	$A_{\rm RX} + A_{ m Rmov}$	m ²
$A_{\rm FS}$	AFS	Projected area of stern fins		m ²
$A_{\rm SK}$	ASK	Projected skeg area		m ²
S _{WBK}	SWBK	Wetted surface area of bilge keels		m ²
с	СН	Chord length of foil section		m
c _M	CHME	Mean chord length	$A_{\rm RT}/S$	m
C _R	CHRT	Chord length at the root		m
CT	CHTP	Chord length at the tip		m
f	FM	Camber of an aerofoil or a hydro- foil	Maximum separation of median and nose-tail line	m
$L_{ m F}$	LF	Length of flap or wedge	Measured in direction parallel to keel	m
t	TMX	Maximum thickness of an aerofoil or a hydrofoil	Measured normal to mean line	m
α_{FB}	ANFB	Bow fin angle		rad
$\alpha_{\rm FS}$	ANFS	Stern fin angle		rad
$\delta_{ m F}$	DELFS	Flap angle (general)	Angle between the planing surface of a flap and the bottom before the leading edge	rad
$\delta_{ m W}$	DELWG	Wedge angle	Angle between the planing surface of a wedge and the bottom before the leading edge	rad
$\delta_{ m FR}$	ANFR	Flanking rudder angle		rad
$\delta_{ ext{FRin}}$	ANFRIN	Assembly angle of flanking rud- ders	Initial angle set up during the as- sembly as zero angle of flanking rudders	rad
$\delta_{\rm R}$	ANRU	Rudder angle		rad
$\delta_{ m RF}$	ANRF	Rudder-flap angle		rad
λ _R	TARU	Rudder taper	$c_{\rm T}/c_{\rm R}$	1
λ _{FR}	TAFR	Flanking rudder taper		1
$\Lambda_{\rm R}$	ASRU	Rudder aspect ratio	$b_{\rm R}^2/A_{\rm RT}$	1
$\Lambda_{\rm FR}$	ASRF	Flanking rudder aspect ratio	-	

2.2.3.2	identifiers for Appendages (Subscri
BK	Bilge keel
BS	Bossing
FB	Bow foil
FR	Flanking rudder
FS	Stern foil
KL	Keel
RU	Rudder
RF	Rudder flap

Version 2017

Ships in General Geometry and Hydrostatics Appendage Geometry

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
	SA	Stabilizer		
	SH	Shafting		
	SK	Skeg		
	ST	Strut		
	TH	Thruster		
	WG	Wedge		

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

2.2.4 Hydrostatics and Stability

	•	•
2.2.4.1	Points and Centres	(Still under construction)

2.2.4.1 Point	is and Centre	es (Still under construction)		r
Α		Assumed centre of gravity above keel used for cross curves of sta- bility		
b		Centre of flotation of added buoy- ant layer or centre of lost buoy- ancy of the flooded volume		
В		Centre of buoyancy	Centroid of the underwater vol- ume	
F		Centre of flotation of the water plane		
g		Centre of gravity of an added or removed weight (mass)		
G		Centre of gravity of a vessel		
К		Keel reference		
М		Metacentre of a vessel	See subscripts for qualification	
$X_{ m CB}$, $L_{ m CB}$	XCB	Longitudinal centre of buoyancy (LCB)	Longitudinal distance from reference point to the centre of buoyancy, B such as X_{MCF} from Midships	m
$X_{ m CF}$, $L_{ m CF}$	XCF	Longitudinal centre of flotation (LCF)	Longitudinal distance from reference point to the centre of flota- tion, F such as X_{MCF} from Mid- ships	m
x _{Cb}	XACB	Longitudinal centre of buoyancy of added buoyant layer	Longitudinal distance from refer- ence point to the centre of buoy- ancy of the added buoyant layer, <i>b</i> such as x_{MCb} from Midships	m
<i>x</i> _{Cf}	XACF	Longitudinal centre of flotation of added buoyant layer	Longitudinal distance from refer- ence point to the centre of flota- tion of the added buoyant layer, f such as x_{MCf} from Midships	m
XCg	XACG	Longitudinal centre of gravity of added weight (mass)	Longitudinal distance from refer- ence to the centre of gravity, g , of an added or removed weight (mass) such as x_{MCg} from Mid- ships	m
$X_{ m CG}$, $L_{ m CG}$	XCG	Longitudinal centre of gravity (LCG)	Longitudinal distance from a ref- erence point to the centre of grav- ity, G such as X_{MCG} from Mid- ships	m
Y _{CG}	YCG	Lateral displacement of centre of gravity (YCG)	Lateral distance from a reference point to the centre of gravity, G	m
Z	ZRA	Intersection of righting arm with line of action of the centre of buoyancy		

2.2.4.2 Static Stability levers

\overline{AB}	IXAB		Distance of centre of buoyancy from aft perpendicular	m
\overline{AF}	ХДН	Distance of centre of flotation from aft perpendicular		m

Version 2017

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
\overline{AG}_{L}	XAG	Longitudinal centre of gravity from aft perpendicular	Distance of centre of gravity from aft perpendicular	m
$\overline{AG}_{\mathrm{T}}$	YAG	Transverse distance from assumed centre of gravity A, to actual cen- tre of gravity G		m
\overline{AG}_{v}	ZAG	Vertical distance from assumed centre of gravity A, to actual cen- tre of gravity G		m
\overline{AZ}	YAZ	Righting arm based on horizontal distance from assumed centre of gravity A, to Z	Generally tabulated in cross curves of stability	m
BM	ZBM	Transverse metacentre above cen- tre of buoyancy	Distance from the centre of buoy- ancy B to the transverse metacen- tre M. $\overline{BM} = I_T / \nabla = \overline{KM} - \overline{KB}$	m
\overline{BM}_{L}	ZBML	Longitudinal metacentre above centre of buoyancy	$\overline{KM}_{L-}\overline{KB}$	
\overline{FB}	XFB	Longitudinal centre of buoyancy, L_{CB} , from forward perpendicular	Distance of centre of buoyancy from forward perpendicular	m
FF	XFF	Longitudinal centre of floatation, $L_{\rm CF}$, from forward perpendicular	Distance of centre of flotation from forward perpendicular	m
\overline{FG}	XFG	Longitudinal centre of gravity from forward perpendicular	Distance of centre of gravity from forward perpendicular	m
$\overline{GG}_{\mathrm{H}}$	GGH	Horizontal stability lever caused by a weight shift or weight addi- tion		m
\overline{GG}_{L}	GGL	Longitudinal stability lever caused by a weight shift or weight addi- tion		m
$\overline{GG}_1, \overline{GG}_V$	GG1, GGV	Vertical stability lever caused by a weight shift or weight addition	$\overline{KG}_1 = \overline{KG}_0 + \overline{GG}_1$	m
\overline{GM}	GM	Transverse metacentric height	Distance of centre of gravity to the metacentre \overline{KM} \overline{KG}	m
$\overline{GM}_{ ext{EFF}}$	GMEFF	Effective transverse metacentric height	\overline{GM} corrected for free surface and/or free communication effects	m
\overline{GM}_{L}	GML	Longitudinal centre of metacentric height	Distance from the centre of gravity G to the longitudinal metacentre $\frac{M_L}{GM_L} = \overline{KM_L} - \overline{KG}$	m
\overline{GZ}	GZ	Righting arm or lever	$\overline{\overline{GZ}} = \overline{\overline{AZ}} - \overline{\overline{AG}}_{V} \sin \varphi - \overline{\overline{AG}}_{T} \cos \varphi$	m
\overline{GZ}_{MAX}	GZMAX	Maximum righting arm or lever		m
KA	ZKA	Assumed centre of gravity above moulded base or keel	Distance from the assumed centre of gravity A to the moulded base or keel K	m
KB	ZKB	Centre of buoyancy above moulded base or keel	Distance from the centre of buoy- ancy B to the moulded base or keel K	m

Version 2017

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
KG	ZKG	Centre of gravity above moulded base or keel	Distance from centre of gravity G to the moulded base or keel K	m
\overline{Kg}	ZKAG	Vertical centre of gravity of added or removed weight above moulded base or keel	Distance from centre of gravity, g, to the moulded base or keel K	m
KM	ZKM	Transverse metacentre above moulded base or keel	Distance from the transverse meta- centre M to the moulded base or keel K	m
\overline{KM}_L	ZKML	Longitudinal metacentre above moulded base or keel	Distance from the longitudinal metacentre M_L to the moulded base or keel K	m
1	XTA	Longitudinal trimming arm	x _{CG} - x _{CB}	m
t	YHA		Heeling moment $/\Delta$	m
2.2.4.3 De	rived Quantities			
$C_{ m GM}$	CGM	Dimensionless \overline{GM} coefficient	\overline{GM} / $\nabla^{1/3}$	1
$C_{\rm GZ}$	CGZ	Dimensionless \overline{GZ} coefficient	\overline{GZ} / $\nabla^{1/3}$	1
				1
C_{KG}	CKG	Dimensionless KG coefficient	KG /T	1
C _{MTL}	CMTL	Longitudinal trimming coefficient	Trimming moment divided by change in trim which approxi- mately equals \overline{BM}_L/L	1
2.2.4.4 Inta	act and Damage	(Flooded) Stability		
C _{MTL}	CMTL	Longitudinal trimming coefficient	trimming moment divided by change in trim which approxi- mately equals	1
f	FREB	Freeboard	BM_L / L From the freeboard markings to the freeboard deck, according to official rules	m
$A_{\rm SI}, I_{\rm AS}$	ASI	Attained subdivision index	(to be clarified)	1
Ms	MS	Moment of ship stability in gen- eral	$\Delta \overline{GZ}$ Other moments such as those of capsizing, heeling, etc. will be represented by MS with additional subscripts as appropri- ate	Nm
т	SHIPMA	Ship mass	W/g	kg
<i>M_{TC}</i>	MTC	Moment to change trim by one centimetre		Nm/cm
M_{TM}	MTM	Moment to change trim by one meter	$\Delta C_{\rm MTL}$	Nm/m
R _{SI}	RSI	Required subdivision index		1
$t_s, t_{\rm KL}$	TRIM	Static trim	$T_{\rm A}$ - $T_{\rm F}$ - $d_{\rm KL}$	m
W	SHIPWT	Ship weight		Ν
ZSF	ZSF	Static sinkage at FP	Caused by loading	m
ZSA	ZSA ZS	Static sinkage at AP	Caused by loading $(7an + 7a+)/2$	m
$\frac{z_{\rm S}}{\delta}$	 D	Mean static sinkage Finite increment in	$(z_{\rm SF} + z_{\rm SA}) / 2$ Prefix to other symbol	m 1
$\frac{\delta}{\delta t_{\rm KL}}$	DTR	Change in static trim		n m
Δ	DISPF	Displacement (buoyant) force	g ρ ∇	N
Δ_m	DISPM	Displacement mass	$\rho \nabla$	kg
t ni	DISPVOL	Displacement volume	$\Delta / (\rho g)$	m ³

Version 2017

Ships in General

2 2.2 2.2 Geometry and Hydrostatics2.2.4 Hydrostatics and Stability

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit
$V_{ m fw}$	DISVOLFW	Displacement volume of flooded water	$\Delta f_w / (ho g)$	m ³
$\theta_{\rm S}$	TRIMS	Static trim angle	$\tan^{-1}((z_{\rm SF} - z_{\rm SA}) / L)$	rad
μ	PMVO	Volumetric permeability	The ratio of the volume of flood- ing water in a compartment to the total volume of the compartment	1
ϕ	HEELANG	Heel angle		rad
$\phi_{\rm F}$	HEELANGF	Heel angle at flooding		rad
$\phi_{\rm VS}$	HEELANGV	Heel angle for vanishing stability		rad

2.2.4.5 Symbols for Attributes and Subscripts (under construction)

а	apparent
A, att	attained
d, dyn	dynamic
e, EFF	effective
f	false
KL	keel line
L	longitudinal
MAX	maximum
MTL	longitudinal trimming moment
R, req	required (to be clarified)
S	Static
S, sqt	Sinkage, squat
TC	Trim in cm
ΤM	Trim in m
Т	transverse
V	vertical
0	Initial
ϕ	at heel angle ϕ
$\stackrel{'}{ heta}$	at trim angle $\hat{\theta}$
	č

Version 2017

Ships in General Resistance and Propulsion 2 2.3

2.3.1 Hull Resistance

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

2.3 Resistance and Propulsion

2.3.1 Hull Resistance

(see also Section 1.4.1 on Waves)

2.3.1.1 Basic Quantities

2.3.1.1 DC	usie Quantities			
т	BLCK	Blockage parameter	Maximum transverse area of model ship divided by tank cross section area	1
R _A	RA	Model-ship correlation allowance	Incremental resistance to be added to the smooth ship resistance to complete the model-ship predic- tion	N
R _{AA}	RAA	Air or wind resistance		Ν
R _{APP}	RAP	Appendage resistance		N
$R_{\rm AR}$	RAR	Roughness resistance		N
R _C	RC		$\frac{R_{\text{TM}}[(1+k) C_{\text{FMC}} + C_{\text{R}}] / [(1+k) C_{\text{FM}} + C_{\text{R}}]}{[(1+k) C_{\text{FM}} + C_{\text{R}}]}$ where C_{FMC} is the frictional coefficient at the temperature of the self-propulsion test	N
R _F	RF	Due to fluid friction on the surface		N
$R_{ m F0}$	RF0	Frictional resistance of a flat plate		Ν
R_P	RP	Pressure resistance	Due to the normal stresses over the surface of a body	N
R_{PV}	RPV	Viscous pressure resistance	Due to normal stress related to vis- cosity and turbulence	N
R _R	RR	Residuary resistance	$R_{\rm T}$ - $R_{\rm F}$ or $R_{\rm T}$ - $R_{\rm F0}$	Ν
$R_{ m RBH}$	RRBH	Residuary resistance of the bare hull		N
R _S	RS	Spray resistance	Due to generation of spray	N
R _T	RT	Total resistance	Total towed resistance	Ν
R _{TBH}	RTBH	Total resistance of bare hull		Ν
$R_{\rm V}$	RV	Total viscous resistance	$R_{ m F}+R_{P m V}$	Ν
$R_{ m W}$	RW	Wave making resistance	Due to formation of surface waves	Ν
$R_{ m WB}$	RWB	Wave breaking resistance	Associated with the breakdown of the bow wave	Ν
$R_{\rm WP}$	RWP	Wave pattern resistance		Ν
S	S	Wetted surface area, underway	$S_{\rm BH} + S_{\rm APP}$	m ²
S_0	S0	Wetted surface area, at rest	$S_{\rm BH0} + S_{\rm APP0}$	m ²
S_{APP}	SAP	Appendage wetted surface area, underway		m ²
S _{APP0}	SAP0	Appendage wetted surface area, at rest		m ²
S _{BH}	SBH	Bare Hull wetted surface area, un- derway		m ²
S _{BH0}	SBH0	Bare Hull wetted surface area, at rest		m ²
$\Delta C_{\rm F}$	DELCF	Roughness allowance		1
V	V	Speed of the model or the ship		m/s
VK	VKN	Speed in knots		
$V_{\rm WR}$	VWR	Wind velocity, relative		m/s
ZVF	ZVF	Running sinkage at FP		m
ZVA	ZVA	Running sinkage at AP		m

Version 2017

Ships in General Resistance and Propulsion 2 2.3

2.3.1 Hull Resistance

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit
<i>ZV</i> M	ZVM	Mean running sinkage	$(z_{VF} + z_{VA}) / 2$	m
η	EW	Wave Elevation	see 3.4.1	m
$ heta_V$, $ heta_{ m D}$	TRIMV	Running (dynamic) trim angle	$\tan^{-1}((z_{VF} - z_{VA}) / L)$	1
$ au_{ m W}$	LSF, TAUW	Local skin friction	see 3.3.4	N/ m ²
2.3.1.2 De	rived Quantities			
C	CA	Incremental resistance coefficient	$\mathbf{P} = \langle \langle \mathbf{C} \rangle \langle \mathbf{c} \rangle$	1
C_{A}	CA	for model ship correlation	$R_{\rm A}/(S q)$	1
$C_{ m AA}$	CAA	Air or wind resistance coefficient	$= C_{DA} \frac{\rho_A}{\rho_S} \frac{A_V}{S_S} = -C_X \frac{\rho_A}{\rho_S} \frac{A_V}{S_S}$	1
C_{APP}	CAPP	Appendage resistance coefficient	$R_{\text{APP}}/(S q)$	1
C_D	CD	Drag coefficient	D/(Sq)	1
C_{DA}	CDA	Fujiwara air or wind resistance coefficient, from wind tunnel tests	$R_{\rm AA}/(A_{\rm V} q_{\rm R})$	1
$C_{ m F}$	CF	Frictional resistance coefficient of a body	$R_{ m F}/(S q)$	1
$C_{ m F0}$	CF0	Frictional resistance coefficient of a corresponding plate	$R_{\rm F0}/(S q)$	1
C_p	СР	Local pressure coefficient		1
C_{PR}	CPR	Pressure resistance coefficient, in- cluding wave effect	$R_P/(Sq)$	1
C_{PV}	CPV	Viscous pressure resistance coef- ficient	$R_{PV}/(S q)$	1
C _R	CR	Residuary resistance coefficient	$R_{\rm R}/(S q)$	1
$C_{\rm S}$	CSR	Spray resistance coefficient	$R_{\rm S}/(Sq)$	1
Ст	СТ	Total resistance coefficient	$R_{\rm T}/(Sq)$	1
C_{TL}	CTLT	Telfer's resistance coefficient	$g R L / (\Delta V^2)$	1
C _{TQ}	CTQ	Qualified resistance coefficient	$C_{\mathrm{T} abla} / (\eta_{\mathrm{H}} \eta_{\mathrm{R}})$	1
$C_{\mathrm{T}V}$	CTVOL	Resistance displacement	$R_{\rm T} / (\nabla^{2/3} q)$	1
C _v	CV	Total viscous resistance coeffi- cient	$R_{\rm V}/(Sq)$	1
Cw	CW	Wave making resistance coeffi- cient	$R_{\rm W}/(S q)$	1
$C_{ m WP}$	CWP	Wave pattern resistance coeffi- cient, by wave analysis		1
C _X	CXA	Air or wind resistance coefficient, usually from wind tunnel tests	$-R_{\rm AA}/(A_{\rm V} q_{\rm R})$	1
C ^C	CIRCC	R.E. Froude's resistance coefficient	$1000 R_{\rm T} / (\Delta (K^{\rm C})^2)$	1
F ^C	CIRCF	R.E. Froude's frictional resistance coefficient	$1000 R_{\rm F} / (\Delta (K^{\rm C})^2)$	1
f	FC	Friction coefficient	Ratio of tangential force to normal force between two sliding bodies	1
k	К	Three dimensional form factor on flat plate friction	$(C_{\rm V} - C_{\rm F0}) / C_{\rm F0}$	1
k(θ)	WDC	Wind direction coefficient	$C_{\rm AA}/C_{\rm AA0}$	1
<u>к</u> С	CIRCK	R.E. Froude's speed displacement coefficient	$(4 \pi)^{1/2} Fr_{\nabla} or (4\pi/g)^{1/2} V_{\rm K} / \nabla^{1/6}$	
K _R	KR	Resistance coefficient corre- sponding to K_Q , K_T	$R / (ho D^4 n^2)$	1
<i>q</i>	PD, EK	Dynamic pressure, density of ki- netic flow energy,	$\frac{\rho V^2/2}{\text{see 3.3.2}}$	Ра

Version 2017

2 2.3 Ships in General Resistance and Propulsion

2.3.1 Hull Resistance

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Ivallie	Explanation	Unit
0-	PDWR, EKWR	Dynamic pressure based on ap-	$\rho V_{\rm WR}^2 / 2$ see 3.4.2	Pa
$q_{ m R}$	I D WK, EK WK	parent wind	see 3.4.2	Гa
C C	CIRCS	R. E. Froude's wetted surface co-	$S/\nabla^{2/3}$	1
5	CIKCS	efficient	3/V	1
	EPSG	Resistance-displacement ratio in	R/Λ	1
ε	EFSU	general	$K \neq \Delta$	1
	EPSR	Residuary resistance-displace-	B / 4	1
$\varepsilon_{ m R}$	EFSK	ment ratio	$R_{\rm R}$ / Δ	1

2.5.1.5 Symbols for Autoutes and Subscripts	2.3.1.3	Symbols for Attributes and Subscripts
---	---------	---------------------------------------

FW Fresh water

MF Faired model data

MR Raw model data

Open water OW

Faired full scale data SF

Raw full scale data SR

SW Salt water

Ships in General Resistance and Propulsion Ship Performance

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

2.3.2 Ship Performance 2.3.2.1 Basic Quantities

2.3.2.1 Ba	asic Quantities			
F _D	SFC	Friction deduction force in self propulsion test	Towing force applied to a model to correct the model resistance for different <i>Re</i> between model and full scale.	N
$F_{\rm P}$	FP	Force pulling or towing a ship		N
F_{P0}	FPO	Pull during bollard test		N
ks	KHS	Roughness height of Hull surface		m
n	N	Frequency, commonly rate of rev- olution		Hz
P _B	PB	Brake power	Power delivered by prime mover	W
$P_{\rm D}$, $P_{\rm P}$	PD, PP	Delivered power, propeller power	$Q \omega$	W
	PE, PR	Effective power, resistance power	<i>Q</i> ⁽¹⁾ <i>R V</i>	W
$P_{\rm E}$, P_R $P_{\rm I}$	PI	Indicated power	Determined from pressure meas- ured by indicator	W
Ps	PS	Shaft power	Power measured on the shaft	W
P_T	PTH	Thrust power	$T V_{\rm A}$	W
$\frac{Q}{Q}$	Q	Torque	$P_{\rm D}/\omega$	Nm
<u>e</u> tv	TV	Running trim	- 5	m
V	V	Ship speed		m/s
V V _A	VA	Propeller advance speed	Equivalent propeller open water speed based on thrust or torque identity	m/s
ζV	ZV	Running sinkage of model or ship		m
υ	V0,OMN	Rotational shaft velocity	$2\pi n$	1/s
	erived Quantitie			
a	RAUG	Resistance augment fraction	$(T - R_{\mathrm{T}}) / R_{\mathrm{T}}$	1
$C_{\rm ADM}$	CADM	Admiralty coefficient	$\frac{\Delta^{2/3} V^3}{P_{\rm S}}$	1
	CDVOL	Power-displacement coefficient	$\frac{P_D}{(\rho V^3 \nabla^{2/3}/2)}$	1
$C_{\rm DV}$	CDVOL	Trial correction for propeller rate	$P_D/(p v^* v^*/2)$	1
C_N	CN	of revolution at speed identity	$n_{\rm T}$ / $n_{\rm S}$	1
C_{NP}	CNP	Trial correction for propeller rate of revolution at power identity	$P_{\rm DT} / P_{\rm DS}$	1
C_P	CDP	Trial correction for delivered power		1
K_1	C1	Ship model correlation factor for propulsive efficiency	$\eta_{\rm DS}$ / $\eta_{\rm DM}$	1
K_2	C2	Ship model correlation factor for propeller rate revolution	<i>n</i> _S / <i>n</i> _M	1
Карр	КАР	Appendage correction factor	Scale effect correction factor for model appendage drag applied at the towing force in a self-propul- sion test	1
s_V	SINKV	Sinkage, dynamic	Change of draught, fore and aft, divided by length	1
t_V	TRIMV	Trim, dynamic	Change of the trim due to dynamic condition, divided by length	1
t	THDF	Thrust deduction fraction	$(T - R_{\rm T}) / T$	1
W	WFT	Taylor wake fraction in general	$(V - V_A) / V$	1
				1
WF	WFF	Froude wake fraction	$(V - V_{\rm A}) / V_{\rm A}$	1

Ships in General Resistance and Propulsion Ship Performance

Version 2017

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Ivanic	Explanation	Unit
WT	WFTT	Thrust wake fraction	Propeller speed, V_A , determined from thrust identity	1
⊿w	DELW	Ship-model correlation factor for wake fraction	WT,M - WT,S	1
⊿wc	DELWC	Ship-model correlation factor with respect to $w_{T,S}$ method formula of ITTC 1978 method		1
x	XLO	Load fraction in power prediction	$\eta_{\rm D} P_{\rm D} / P_{\rm E}$ - 1	1
β	APSF	Appendage scale effect factor	Ship appendage resistance divided by model appendage resistance	1
2.3.2.3 Ef	ficiencies etc.			
η_{APP}	ETAAP	Appendage efficiency	$P_{\rm Ew0APP} / P_{\rm EwAPP}, R_{\rm TBH} / R_{\rm T}$	1
$\eta_{ m B}$	ETAB, EFTP	Propeller efficiency behind ship	$P_{\rm T}/P_{\rm D} = T V_{\rm A}/(Q \omega)$	1
$\eta_{\rm D}$	ETAD, EFRP	Quasi-propulsive efficiency coef- ficient	$P_{\rm E}/P_{\rm D} = P_{\rm R}/P_{\rm P}$	1
$\eta_{ m G}$	ETAG, EFGP	Gearing efficiency		1
$\eta_{ m H}$	ETAH, EFRT	Hull efficiency	$P_{\rm E} / P_{\rm T} = P_{\rm R} / P_{\rm T}$ = (1 - t) / (1 - w)	1
$\eta_{ m M}$	ETAM	Mechanical efficiency of transmis- sion between engine and propeller	$P_{\rm D}/P_{\rm B}$	1
η0	ETAO, EFTPO	Propeller efficiency in open water	$P_{\rm T} / P_{\rm D} = T V_{\rm A} / (Q \omega)$ all quantities measured in open water tests	1
$\eta_{ m P}$	ETAP	Propulsive efficiency coefficient	$P_{\rm E}/P_{\rm B}$	1
$\eta_{ m R}$	ETAR, EFRO	Relative rotative efficiency	$\eta_{\rm B}/\eta_{\rm O}$	1
ηs	ETAS, EFPS	Shafting efficiency	$P_{\rm D}/P_{\rm S} = P_{\rm P}/P_{\rm S}$	1

Ships in General

2 2.3 **Resistance and Propulsion**

2.3.3 Propulsor Performance

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

2.3.3 Propulsor Performance 2.3.3.1 Basic Quantities

1 ₀	AO	Propeller disc area	$\pi D^2 / 4$	m^2
)	DP	Propeller diameter		m
	FR	Propeller frequency of revolution		Hz
ζP	KS	Roughness height of propeller blade surface		m
/A	QA	Dynamic pressure based on ad- vance speed	$\rho V_{A}^{2}/2$	Pa
/s	QS	Dynamic pressure based on sec- tion advance speed	$\rho V_{\rm S}^2/2$	Pa
2s	QSP	Spindle torque	About spindle axis of controllable pitch propeller $Q_{\rm S}=Q_{\rm SC}+Q_{\rm SH}$ positive if it increases pitch	Nm
2sc	QSPC	Centrifugal spindle torque		Nm
Qsн	QSPH	Hydrodynamic spindle torque		Nm
R _U	RU	Pod unit resistance	Resistance of a podded drive unit	Ν
r	TH	Propeller thrust		Ν
Γυ	TU	Pod unit thrust	Pod unit resistance subtracted from the propeller thrust	N
T _D	THDU	Duct thrust		Ν
DP	THDP	Ducted propeller thrust		Ν
DT	THDT	Total thrust of a ducted propeller unit		N
T _x P	ТХР	Propeller Thrust along shaft axis		Ν
Г _{уР}	ТҮР	Propeller normal force in y direc- tion in propeller axis		Ν
r _{zP}	TZP	Propeller normal force in z direc- tion in propeller axis		N
/ _A	VA	Advance speed of propeller		m/s
V _P	VP	Mean axial velocity at propeller plane of ducted propeller		m/s
/s	VS	Section advance speed at 0.7 <i>R</i>	$(V_{\rm A}^2 + (0.7 \ R \ \omega)^2)^{1/2}$	m/s
) _P	DNP	Propeller mass density		kg/m ³
υ	V0P	Propeller rotational velocity	$2 \pi n$	1/s

2.3.3.2 Derived Quantities

$B_{ m P}$	ВР	Taylor's propeller coefficient based on delivered horsepower	$n P_D^{V_2} / V_A^{2.5}$ with n in revs/min, P_D in horsepower, and V_A in kn (obsolete)	1
B_{U}	BU	Taylor's propeller coefficient based on thrust horsepower	$n P_{T}^{V_2} / V_A^{2.5}$ with n in revs/min, P_T in horsepower, and V_A in kn (obsolete)	1
C_P	CPD	Power loading coefficient	$P_{\rm D}/(A_{\rm P} q_{\rm A} V_{\rm A})$	1
C_{Q^*}	CQS	Torque index	$Q/(A_{\rm P} q_{\rm S} D)$	1
C_{Th}	СТН	Thrust loading coefficient, energy loading coefficient	$T / (A_{\rm P} q_{\rm A}) = (T_{\rm P} / A_{\rm P}) / q_{\rm A}$	1
C_{T^*}	CTHS	Thrust index	$T/(A_{\rm P} q_{\rm S})$	1
J	JEI	Propeller advance ratio	$V_{\rm A}/(D n)$	1
$J_{ m A}$, $J_{ m H}$	JA, JH	Apparent or hull advance ratio	$V/(D n) = V_{\rm H}/(D n)$	1

Version 2017

Ships in General Resistance and Propulsion Propulsor Performance

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit
			1	
$J_{ m P}$	JP	Propeller advance ratio for ducted propeller	$V_{\rm P}/(D n)$	
J_T , $J_{\mathrm{P}T}$	JT, JPT	Advance ratio of propeller deter- mined from thrust identity		1
J_{Q} , $J_{\mathrm{P}Q}$	JQ, JPQ	Advance ratio of propeller deter- mined from torque identity		1
K _P	КР	Delivered power coefficient	$P_{\rm D} / (\rho n^3 D^5) = 2 \pi K_Q$	1
$\frac{K_P}{K_Q}$	KQ	Torque coefficient	$\frac{P_{D}}{Q} / (\rho n^2 D^5)$	1
		Centrifugal spindle torque coeffi-		1
K _{SC}	KSC	cient	$Q_{\rm SC}$ / ($\rho n^2 D^5$)	1
$K_{ m SH}$	KSH	Hydrodynamic spindle torque co- efficient	$Q_{ m SH}$ / ($ ho \ n^2 \ D^5$)	1
K _T	KT	Thrust coefficient	$T/(\rho n^2 D^4)$	1
K _{TD}	KTD	Duct thrust coefficient	$T_{\rm D}$ / ($\rho n^2 D^4$)	1
K _{TP}	KTP	Ducted propeller thrust coefficient	$T_{\rm P} / (\rho n^2 D^4)$	1
<i>K</i> _{TT}	KTT	Total thrust coefficient for a ducted propeller unit	$K_{TP} + K_{TD}$	1
K_{Q0}	KQ0	Torque coefficient of propeller converted from behind to open water condition	$K_Q \eta_{ m R}$	1
K _{QT}	KQT	Torque coefficient of propeller de- termined from thrust coefficient identity		1
PJ	PJ	Propeller jet power	$\eta_{\mathrm{TJ}} T V_{\mathrm{A}}$	
SA	SRA	Apparent slip ratio	1 - V/(nP)	1
S _R	SRR	Real slip ratio	$1 - V_{\rm A}/(n P)$	1
δ	ADCT	Taylor's advance coefficient	$n D / V_A$ with <i>n</i> in revs/min, <i>D</i> in feet, V_A in kn	1
$\eta_{ m JP}$	EFJP	Propeller pump or hydraulic effi- ciency	$P_{\rm J}/P_{\rm D}=P_{\rm J}/P_{\rm P}$	1
η JP0	ZET0, EFJP0	Propeller pump efficiency at zero advance speed, alias static thrust coefficient	$T/(\rho \pi/2)^{1/3}/(P_{\rm D}D)^{2/3}$	1
η_{I}	EFID	Ideal propeller efficiency	Efficiency in non-viscous fluid	1
η_{TJ}	EFTJ	Propeller jet efficiency	$2/(1+(1+C_{Th})^{1/2})$	1
η_0 , $\eta_{ ext{TP0}}$	ETA0, EFTP0	Propeller efficiency in open water	$P_{\rm T} / P_{\rm D} = T V_{\rm A} / (Q \omega)$ all quantities measured in open water tests	1
λ	ADR	Advance ratio of a propeller	$V_{\rm A} / (n D) / \pi = J / \pi$	1
π τ	TMR	Ratio between propeller thrust and total thrust of ducted propeller	$\frac{V_{\rm A}}{T_{\rm P}} / T_{\rm T}$	1
2.3.3.3 Ind	luced Velocities	1 1	I	
U _A	UA	Axial velocity induced by propel-		m/s
$U_{ m AD}$	UADU	Axial velocity induced by duct of ducted propeller		m/s
$U_{ m RP}$	URP	Radial velocity induced by propel- ler of ducted propeller		m/s
$U_{ m RD}$	URDU	Radial velocity induced by duct of ducted propeller		m/s
$U_{ m AP}$	UAP	Axial velocity induced by propel- ler of ducted propeller		m/s
U _R	UR	Radial velocity induced by propel- ler		m/s

Version 2017

Ships in General Resistance and Propulsion Propulsor Performance

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Ivanie	Explanation	Unit
				
$U_{ m TD}$	UTDU	Tangential velocity induced by duct of ducted propeller		m/s
$U_{ m TP}$	UTP	Tangential velocity induced by propeller of ducted propeller		m/s
U_{T}	UT	Tangential velocity induced by propeller		m/s
β	BETB	Advance angle of a propeller blade section	$\arctan(V_{\rm A}/r\omega)$	rad
β_{I}	BETI	Hydrodynamic flow angle of a propeller blade section	Flow angle taking into account in- duced velocity	rad
β^*	BETS	Effective advance angle	$\operatorname{arctg}(V_{A}/(0.7 R \omega))$	rad

Ships in General Resistance and Propulsion Unsteady Propeller Forces

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

	asic Quantities			1
C_{uv}	SI(U,V)	Generalized stiffness		
D_{uv}	DA(U,V)	Generalized damping		
F _u	FG(I)	Generalized vibratory force	u = 1,, 6 u = 1, 2, 3: force u = 4, 5, 6: moment	N N Nm
F_i	F(I)	Vibratory force	i = 1, 2, 3	Ν
K _{Fu}	KF(U)	Generalized vibratory force coeffi- cients	According to definitions of K_{Fi} and K_{Mi}	1
K_{Fi}	KF(I)	Vibratory force coefficients	$F_i / (\rho n^2 D^4)$	1
K _{Mi}	KM(I)	Vibratory moment coefficients	$M_i/(\rho n^2 D^5)$	1
K_p	KPR	Pressure coefficient	$p/(\rho n^2 D^2)$	1
M_i	M(I)	Vibratory moment	i = 1, 2, 3	Nm
M _{uv}	MA(U,V)	Generalized mass		
p	PR	Pressure		Pa
R_u	R(U)	Generalized vibratory bearing re- action	u = 1,, 6 u = 1, 2, 3: force u = 4, 5, 6: moment	N N Nm
V_i	V(I)	Velocity field of the wake	i = 1, 2, 3	m/s
x y z	X Y Z	Cartesian coordinates	Origin O coinciding with the cen- tre of the propeller. The longitudi- nal <i>x</i> -axis coincides with the shaft axis, positive forward; the trans- verse <i>y</i> -axis, positive to port; the third, <i>z</i> -axis, positive upward	m m m
X a r	X ATT R	Cylindrical coordinates	Cylindrical system with origin O and longitudinal <i>x</i> -axis as defined before; angular a-(attitude)-coordi- nate, zero at 12 o'clock position, positive clockwise looking for- ward; <i>r</i> distance measured from the <i>x</i> -axis	m 1 m
$\delta_{_{u}}$	DP(U)	Generalized vibratory displace- ment	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m m rad
$\dot{\delta}_{_{u}}$	DPVL(U)	Generalized vibratory velocity	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m/s m/s rad/s
$\ddot{\delta}_{u}$	DPAC(U)	Generalized vibratory acceleration	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m/s^2 m/s^2 rad/s^2

2.3.4 Unsteady Propeller Forces

Ships in General Resistance and Propulsion Water Jets

ITTC	Computer	N	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

2.3.5 Water Jets

C_p	CP	Local pressure coefficient	$(p-p_0)/(\rho V^2/2)$	1
		Thrust loading coefficient:viscous		
C_{Tn}		pressure	$\frac{T_{\rm net}}{\frac{1}{2}\rho U_0^2 A_{\rm n}}$	1
C _{es}		Energy velocity coefficient at sta- tion s		1
C _{ms}		Momentum velocity coefficient at		1
		station <i>s</i> Pressure differential of flow rate		
Dp		transducer		Ра
E_j	EJ	Energy flux at station <i>j</i>	$E_j = (\rho/2) \int V_{Ej}^2 dQ_j$ Q_J	W
E _s		Total energy flux at station s (ki- netic + potential + pressure)	$\iint_{A_s} \rho \left(\frac{1}{2} \boldsymbol{u}^2 + \frac{p}{\rho} - g_j \boldsymbol{x}_j \right) \boldsymbol{u}_i \boldsymbol{n}_i dA$	W
$E_{\mathrm{s}\xi}$		Total axial (in ξ direction) energy flux at station s	$\iint_{A_s} \rho \left(\frac{1}{2} u_{\xi}^2 + \frac{p}{\rho} - g_j x_j \right) u_i n_i dA$	W
F_D		Skin friction correction in a self propulsion test carried out at the ship self-propulsion point		Ν
H_1	HT1	Local total head at station 1		m
H ₃₅	H35	Mean increase of total head across pump and stator or several pump stages		m
I _{VR}	IVR	Intake velocity ratio	VI/V	1
$J_{ m VR}$	JVR	Jet velocity ratio	VJ/V	1
K_Q		Impeller torque coefficient:	$\frac{Q}{\rho n^2 D^5}$	
K _{QJ}		Flow rate coefficient:	$\frac{Q_{\rm J}}{nD^3}$	1
\overline{M}_{is}		Momentum flux at station s in i direction	$\iint_{A_s} \rho u_i \left(u_j n_j \right) dA$	N
NVR		Nozzle velocity ratio:	$\left \frac{\overline{u_{6\xi}}}{\overline{U}_0} \right $	1
T_{jx}	TJX	Jet thrust (can be measured di- rectly in bollard pull condition)		N
n		Impeller rotation rate		Hz
n _i		Unit normal vector in <i>i</i> direction		1
P _D		Delivered Power to pump impeller		W
$P_{\rm E}$		Effective power:	$R_{ m TBH} U_0$	W
$P_{\rm JSE}$		Effective Jet System Power	$Q_{ m J}H_{ m 1A7}$	W
$P_{\rm PE}$		Pump effective power:	$Q_{\rm J}H_{35}$	W

Version 2017

2 2.3 Ships in General Resistance and Propulsion

2.3.5 Water Jets

TTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
J 0 -				
P _{TE}		Effective thrust power		W
7 0	PR0	Ambient pressure in undisturbed flow		Ра
p _s		Local static pressure at station s		Pa
\overline{Q}		Impeller torque		Nm
Q _{bl}		Volume flow rate inside boundary layer		m³/s
$Q_{ m J}$		Volume flow rate through water jet system		m³/s
R _{TBH}		Total resistance of bare hull		Ν
$T_{\text{jet }x}$		Jet thrust (can be measured di- rectly in bollard pull condition)		N
T _{net}		Net thrust exerted by the jet sys- tem on the hull		Ν
t		Thrust deduction fraction	$(1-t) = \frac{R_{\text{TBH}}}{T_{\text{net}}}$	1
$\overline{U_0}$		Free stream velocity		m/s
— U _{eis}		Mean energy velocity in <i>i</i> direction at station s	$\sqrt{\frac{1}{Q_{\rm J}}\iint u_{\xi}^3 dA}$	m/s
\overline{u}_{es}		Mean (total) energy velocity at station <i>s</i>	$ \sqrt{\frac{1}{Q_{J}} \iint u_{\xi}^{3} dA} \\ \sqrt{\frac{1}{Q_{J}} \iint u^{3} dA} $	m/s
u _{is}		Velocity component in <i>i</i> -direction at station <i>s</i>		m/s
u _s		Velocity at station s		m/s
U7φ	UJFI	Local tangential velocity at station 7		m/s
<i>w</i> ₁		Geometric intake width at station 1		m
W _{1A}		Width of capture area measured over hull surface at station 1A		m
<i>z</i> ₆		Vertical distance of nozzle centre relative to undisturbed surface		m
1 <i>M</i>	DMF	Change of momentum flux		N
$\Delta \overline{M}_x$		Change in Momentum Flux in <i>x</i> direction		N
$\eta_{ m D}$		Overall propulsive efficiency:	$\frac{P_{\rm E}}{P_{\rm D}}$	1
$\eta_{ m duct}$		Ducting efficiency:	$\frac{P_{\rm JSE}}{P_{\rm PE}}$	1
$\eta_{ m eI}$		Energy interaction efficiency:	$\frac{P_{\rm JSE0}}{P_{\rm JSE}}$	1
$\eta_{\scriptscriptstyle \mathrm{I}}$		Ideal efficiency, equivalent to jet efficiency in free stream condi- tions	$\frac{P_{\text{TEO}}}{P_{\text{JSEO}}}$	1

Version 2017

Ships in General Resistance and Propulsion Water Jets

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	I	Explanation	Unit
$\eta_{ m inst}$		Installation efficiency to account for the distorted flow delivered by the jet intake to the pump		1
η_{int}		Total interaction efficiency:	$\frac{\eta_{\rm eI}}{\eta_{\rm mI}}(1-t)$	1
$\eta_{ m jet}$		Momentum or jet efficiency:	$\frac{P_{\rm TE}}{P_{\rm JSE}}$	1
$\eta_{ m JS}$		Jet system efficiency:	$\frac{P_{\rm JSE}}{P_{\rm D}}$	1
$\eta_{ m mI}$		Momentum interaction efficiency:	$\frac{T_{\rm net0}}{T_{\rm net}}$	1
$\eta_{_{ m P}}$	ETAP	Pump efficiency	$\frac{P_{\rm PE}}{P_{\rm D}}$	1
$\eta_{_{ m P0}}$		Pump efficiency from a pump loop test		1
$\eta_{_0}$		Free stream efficiency:	$\eta_{ ext{P}} \eta_{ ext{duct}} \eta_{ ext{I}}$	1
$\theta_{\rm n}$		Jet angle relative to the horizontal at the nozzle (station 6)		rad
ρ		Mass density of fluid		kg/m³
ζ_{ij}		Energy loss coefficient between station <i>i</i> and <i>j</i>		1
ζ_{13}	ZETA13	Inlet duct loss coefficient:	$\frac{\frac{E_{3} - E_{1}}{\frac{1}{2}\rho U_{0}^{2}}}{\frac{E_{7} - E_{5}}{\frac{1}{2}\rho U_{0}^{2}}}$	1
ζ ₅₇	ZETA57	Nozzle duct loss coefficient:	$\frac{E_7 - E_5}{\frac{1}{2}\rho u_{e6}^{-2}}$	1

2

Ships in General Manoeuvrability and Sea Keeping 2.4

2.4.1 Manoeuvrability

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

2.4 Manoeuvrability and Sea Keeping

2.4.1 Manoeuvrability

2.4.1.1 Geometrical Quantities see also Section 1.3.1 and Section 1.3.3

A _{FB}	tion 1.3.1 and Sectio	Projected area of bow fins		m ²
$A_{ m HL}$	AHLT	Lateral area of the hull	The area of the profile of the un- derwater hull of a ship when pro- jected normally upon the longitu- dinal centre plane	m ²
$A_{ m LV}$	AHLV	Lateral area of hull above water		m ²
$A_{\rm R}$	ARU	Total lateral area of rudder		m^2
$A_{\rm Rmov}$	ARMV	Lateral area of movable part of rudder		m ²
$A_{\rm RN}$	ARNO	Nominal lateral area of rudder	$(A_{\rm R} + A_{\rm Rmov}) / 2$	m^2
$b_{ m R}$	SPRU	Rudder span	Maximum distance from root to tip	m
$b_{\rm RM}$	SPRUME	Mean span of rudder		m
C_{AL}	CAHL	Coefficient of lateral area of ship	$A_{\rm HL}/(LT)$	1
h	DE	Water depth		m
h_{M}	DEME	Mean water depth		m
X _R	XRU	Longitudinal position of rudder axis		m
δ	ANRU	Rudder angle, helm angle		rad
$\Lambda_{\rm R}$	ASRU	Aspect ratio of rudder	$b_{\rm R}^2/A_{\rm R}$	1
	Aotions and Attitu	· · ·		
p	OX, P	Roll velocity, rotational velocity about body <i>x</i> -axis		1/s
9	OY, Q	Pitch velocity, rotational velocity about body y-axis		1/s
r	OZ, R	Yaw velocity, rotational velocity about body <i>z</i> -axis		1/s
<i>p</i>	OXRT, PR	Roll acceleration, angular acceler- ation about body <i>x</i> -axis	dp / dt	$1/s^{2}$
ġ	OYRT, QR	Pitch acceleration, angular acceleration about body <i>y</i> -axis	dq / dt	$1/s^{2}$
ŕ	OZRT, RR	Yaw acceleration, angular acceler- ation about body <i>z</i> -axis	dr / dt	$1/s^{2}$
и	UX, U	Surge velocity, linear velocity along body <i>x</i> -axis		m/s
v	UY, V	Sway velocity, linear velocity along body <i>y</i> -axis		m/s
w	UZ, W	Heave velocity, linear velocity along body <i>z</i> -axis		m/s
ù	UXRT, UR	Surge acceleration, linear acceler- ation along body <i>x</i> -axis	du / dt	m/s ²
<i>v</i> ̇́	UYRT, VR	Sway acceleration, linear accelera- tion along body <i>y</i> -axis	av / at	m/s ²
ŵ	UZRT, WR	Heave acceleration, linear acceler- ation along body <i>z</i> -axis	dw / dt	m/s ²
V	V	Linear velocity of origin in body axes		m/s
$V_{\mathrm{A}}, V_{\mathrm{0}}$	VA, V0	Approach speed		m/s
V_{u}	V(URT)	Generalized velocity		m/s

Version 2017

Ships in General Manoeuvrability and Sea Keeping Manoeuvrability

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit
				1
\dot{V}_{u}	V(URT)	Generalized acceleration		m/s ²
$V_{\rm F}$	VF	Flow or current velocity		m/s
$V_{\rm WR}$	VWREL	Relative wind velocity		m/s
$V_{\rm WT}$	VWABS	True wind velocity		m/s
Ψ	YA	Course angle or heading		rad
χ	YX	Yaw angle		rad
$d_{\mathrm{t}\psi}$	YART	Rate of change of course	$d\psi / dt$	rad/s
$\Psi_{\rm O}$	YAOR	Original course		rad
θ	PI	Pitch angle		rad
ϕ	RO	Roll angle		rad
2.4.1.3 Flo	ow Angles etc.			
α	AAPI	Pitch angle	Angle of attack in pitch on the hull	rad
β	AADR	Drift angle	Angle of attack in yaw on the hull	rad
$\beta_{ m WR}$	ANWIRL	Angle of attack of relative wind		rad
δ	ANCS	Angle of a control surface, rudder angle, helm angle		rad
δ_0	ANRU0	Neutral rudder angle		rad
$\delta_{ m EFF}$	ANRUEF	Effective rudder inflow angle		rad
$\delta_{ m FB}$	ANFB	Bow fin angle		rad
$\delta_{ m FS}$	ANFS	Stern fin angle		rad
$\delta_{ m R}$	ANRU	Rudder angle		rad
$\delta_{ m RO}$	ANRUOR	Rudder angle, ordered		rad
Ψc	COCU	Course of current velocity		rad
ΨwA	COWIAB	Absolute wind direction	see also section 3.4.2, Wind	rad
$\psi_{\rm WR}$	COWIRL	Relative wind direction		rad

2.4.1.4 Forces and Derivatives

		Roll moment on body, moment		
Κ	MX	about body <i>x</i> -axis		Nm
м	MX	Pitch moment on body, moment		Nm
Μ	MY	about body <i>y</i> -axis		Nm
Ν	MZ	Yaw moment on body, moment		Nm
1	IVIZ	about body <i>z</i> -axis		11111
N _r NR	NR	Derivative of yaw moment with	$\partial N / \partial r$	Nms
		respect to yaw velocity		14113
N _r NR	NRRT	Derivative of yaw moment with	$\partial N / \partial \dot{\mathbf{r}}$	Nms ²
		respect to yaw acceleration	010 / 01	1 (1113
N_{v}	NV	Derivative of yaw moment with	$\partial N / \partial v$	Ns
110	1.,,	respect to sway velocity		115
$N_{\dot{v}}$	NVRT	Derivative of yaw moment with	$\partial N / \partial \dot{v}$	Nms ²
1.1		respect to sway acceleration		
N_{δ}	ND	Derivative of yaw moment with	$\partial N / \partial \delta$	Nm
		respect to rudder angle	011700	
$Q_{ m FB}$	QFB	Torque of bow fin		Nm
Q _{FB} Qr	QRU	Torque about rudder stock		Nm
$Q_{ m FS}$	QFS	Torque of stern fin		Nm
X	FX	Surge force on body, force along		Ν
Λ	ГЛ	body <i>x</i> -axis		1N
X _R	XRU	Longitudinal rudder force		Ν
X_u	XU	Derivative of surge force with re-	$\partial X / \partial u$	Ns/m
Λ_{u}	AU	spect to surge velocity	UA / UU	IN S/ III

Version 2017

Ships in General Manoeuvrability and Sea Keeping Manoeuvrability

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Ivanie	Explanation	Unit
	ſ		1	
X _{ii}	XURT	Derivative of surge force with re- spect to surge acceleration	∂X / ∂ <i>ü</i>	Ns²/m
Y	FY	Sway force, force in direction of body axis y		Ν
Y _r	YR	Derivative of sway force with re- spect to yaw velocity	$\partial Y / \partial r$	Ns
Y _R	YRU	Transverse rudder force		Ν
Y _r	YRRT	Derivative of sway force with re- spect to yaw acceleration	$\partial Y / \partial \dot{r}$	Ns ²
Y_{v}	YV	Derivative of sway force with re- spect to sway velocity	$\partial Y / \partial v$	Ns/m
Y i	YVRT	Derivative of sway force with re- spect to sway acceleration	$\partial Y / \partial \dot{v}$	Ns²/m
Y_{δ}	YD	Derivative of sway force with re- spect to rudder angle	$\partial Y / \partial \delta$	N
Ζ	FZ	Heave force on body, force along body <i>z</i> -axis		Ν
	near Models			
Cr	CRDS	Directional stability criterion	$Y_v (N_r - mux_G) - N_v (Y_r - mu)$	N^2s^2
$L_{ m b}$, $l_{ m b}$	LSB	Static stability lever	N_v / Y_v	m
$L_{ m d}$, $l_{ m d}$	LSR	Damping stability lever	$(N_r - mux_G)/(Y_r - mu)$	m
Т	TIC	Time constant of the 1 st order manoeuvring equation		s
T_1	TIC1	First time constant of manoeu- vring equation		s
T_2	TIC2	Second time constant of manoeu- vring equation		s
<i>T</i> ₃	TIC3	Third time constant of manoeu- vring equation		S
Κ	KS	Gain factor in linear manoeuvring equation		1/s
P_n	PN	P-number, heading change per unit rudder angle in one ship length		1
	rning Circles		1	
$D_{\rm C}$	DC	Steady turning diameter		m
D _C '	DCNO	Non-dimensional steady turning diameter	$D_{\rm C}$ / $L_{\rm PP}$	1
D_0	DC0	Inherent steady turning diameter $\delta_{\rm R} = \delta_0$		m
D_0'	DC0N	Non-dimensional inherent steady turning diameter	$D_0 / L_{\rm PP}$	1
lr	LHRD	Loop height of $r \cdot \delta$ curve for unstable ship		rad/s
l_{δ}	LWRD	Loop width of $r \cdot \delta$ curve for unstable ship		rad
r _C	OZCI	Steady turning rate		1/s
r _C '	OZCINO	Non-dimensional steady turning rate	$r_C L_{\rm PP} / U_{\rm C}$ or $2 L_{\rm PP} / D_{\rm C}$	m
R_C	RCS	Steady turning radius		m
<i>t</i> 90	TI90	Time to reach 90 degree change of heading		s
t_{180}	TI180	Time to reach 180 degree change of heading		S

Version 2017

Ships in General Manoeuvrability and Sea Keeping Manoeuvrability

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Ivanie	Explanation	Unit
			1	
$U_{\rm C}$	UC	Speed in steady turn		m/s
X090	X090	Advance at 90° change of heading		m
x_{0180}	X0180	Advance at 180° change of head- ing		m
$x_{0\max}$	XMX	Maximum advance		m
<i>Y</i> 090	Y090	Transfer at 90° change of heading		m
Y0180	Y0180	Tactical diameter (transfer at 180° change of heading)		m
y _{0max}	Y0MX	Maximum transfer		m
βc	DRCI	Drift angle at steady turning		rad
2.4.1.7 Zi	g-Zag Manoeuvi	res		
t _a	TIA	Initial turning time		S
t _{c1}	TIC1	First time to check yaw (starboard))	S
t _{c2}	TIC2	Second time to check yaw (port)		S
t _{hc}	TCHC	Period of changes in heading		S
t _r	TIR	Reach time		S
y0max	Y0MX	Maximum transverse deviation		m
$\delta_{ m max}$	ANRUMX	Maximum value of rudder angle		rad
$\psi_{\rm S}$	PSIS	Switching value of course angle		rad
ψ_{01}	PSI01	First overshoot angle		rad
ψ_{02}	PSI02	Second overshoot angle		rad
2.4.1.8 St	opping Manoeuv	vres		
SF	SPF	Distance along track,		m
	VOE	track reach		
x_{0F}	XOF	Head reach		m
YOF	YOF	Lateral deviation		m
t _F	TIF	Stopping time		S

Ships in General

2.4 Manoeuvrability and Sea Keeping

2.4.2 Sea Keeping

ITTC	Computer	Namo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

2

2.4.2 Sea Keeping

Related information is to be found in Chapter 3 on General Mechanics in Sections 3.1.2 on Time and Frequency Domain Quantities, 3.1.3 on Stochastic Processes, 3.2.1 on Inertial Properties, 3.2.2 on Loads, 3.2.3 on Rigid Body Motions, and 3.4.1 on Waves.

FS	AFS	Projected area of stern fins	m^2
		Attitudes of the floating $i = 1, 2, 3, e.g.$ Euler angles of roll	1
li	AT(I)	system pitch, and yaw, respectively	' rad
	FR	Frequency 1/T	Hz
3	FE	Frequency of wave encounter $1/T_{\rm E}$	Hz
;		Natural frequency of heave $1/T_z$	Hz
)		Natural frequency of pitch $1/T_{\theta}$	Hz
0		Natural frequency of roll $1/T_{\varphi}$	Hz
ř.	FS(2)	Wave excited lateral shear force Alias horizontal!	N
N	FS(3)	Wave excited normal shear force Alias vertical!	N
	MB(3),	Wave excited lateral bending mo	
$I_{\rm L}$	FS(6)	ment Alias horizontal!	Nm
	MB(2),	Wave excited normal bending mo-	
$I_{\rm N}$	FS(5)	ment Alias vertical!	Nm
_	MT(1),		
I_{T}	FS(4)	Wave excited torsional moment	Nm
		Mean increased rate of revolution	
$l_{\rm AW}$	NAW	in waves	1/s
AW	PAW	Mean power increased in waves	W
AW PAW	QAW	Mean torque increased in waves	Nm
ZAW		Mean resistance increased in	14111
R _{AW}	RAW	waves	Ν
$S_{\eta}(f), S_{\eta\eta}(f),$	EWSF,	Wave elevation auto spectral den-	
$S_{\eta}(f), S_{\eta\eta}(f),$ $S_{\eta}(\omega), S_{\eta\eta}(\omega)$	EWSP, EWSC	sity sity	m ² s
$\eta(\omega), \beta_{\eta\eta}(\omega)$	LWSC	Absolute displacement of the ship $i = 1, 2, 3$:surge, sway,	
i	X(I)	at the reference point i^{-1} , 2, 3 .surge, sway, and heave respectively	m
		Generalized displacement of a $u = 16$ surge, sway, heave, roll,	
u	X(U)	ship at the reference point $u = 10$ surge, sway, heave, ron, pitch, yaw	m, rad
7	TAW	Mean thrust increase in waves	N
AW			
-	TC	Wave period	S
e	TE	Wave encounter period	S
r Z	TNHE	Natural period of heave	S
θ	TNPI	Natural period of pitch	S
φ	TNRO	Natural period of roll	S
$V_z(\omega),$		Amplitude of frequency response $z_a(\omega) / \zeta_a(\omega)$ or	1
$A_{z\zeta}(\omega)$		function for translatory motions $z_a(\omega) / \eta_a(\omega)$	-
<i>Υ</i> _{θζ} (ω),		Amplitude of frequency response $\Theta_a(\omega) / \zeta_a(\omega)$ or	1
$h_{ heta \zeta}(\omega)$		function for rotary motions $\Theta_a(\omega) / (\omega^2 / (g\zeta_a(\omega)))$	ļ
		$\Lambda_{_{x}}=rac{\omega_{_{E}}}{\omega_{_{x}}}$ $\Lambda_{_{ heta}}=rac{\omega_{_{E}}}{\omega_{_{\theta}}}$ $\Lambda_{_{\phi}}=rac{\omega_{_{E}}}{\omega_{_{\phi}}}$	
		ω_z $\omega_{_ eta}$ $\omega_{_arphi}$	
4		Turing factor	
1		Tuning factor T_{a} T_{c} T_{c}	7
		$\Lambda_z = \frac{T_z}{T_E} \Lambda_{_\theta} = \frac{T_{_\theta}}{T_E} \Lambda_{_\phi} = \frac{T_{_\theta}}{T_E}$	φ 1
		$T_{_{E}}$ $T_{_{E}}$ $T_{_{E}}$ $T_{_{E}}$	F

ITTC	Symbols
------	---------

Ships in General Manoeuvrability and Sea Keeping Sea Keeping

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
μ		Wave encounter angle	Angle between ship positive <i>x</i> axis and positive direction of waves (long crested) or dominant wave direction (short crested)	rad

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing

ITTC	Computer	Namo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

2.4.3 Large Amplitude Motions Capsizing

2.4.3 Larg	ge Amphilude r	Notions Capsizing		
A		Assumed centre of gravity above keel used for cross curves of sta- bility - I99/1.2.4.1		1
\overline{AB}	XAB	Longitudinal centre of buoyancy from aft perpendicular - I99/1.2.4.2	Distance of centre of buoyancy from aft perpendicular	m
A _C		Area of deck available to crew		m ²
\overline{AF}	XAF	Distance of the centre of flotation from after perpendicular		m
\overline{AG}_{L}	XAG	Longitudinal centre of gravity from aft perpendicular	Distance of centre of gravity from aft perpendicular	m
$\overline{AG}_{\mathrm{T}}$	YAG	Transverse distance from assumed centre of gravity A, to actual cen- tre of gravity G		m
\overline{AG}_{V}	ZAG	Vertical distance from assumed centre of gravity A, to actual cen- tre of gravity G		m
$A_{\rm LV}$	AHLV	Lateral area of hull above water		m²
$A_{ m RL}$		Positive area under righting lever curve		m²
$A_{ m SI}$ $I_{ m AS}$	ASI	Attained subdivision index		1
$A_{\rm S}$	AS	Area of sails in profile according to ISO 8666		m²
$A_{ m V}$	AV	Projected lateral area of the por- tion of the ship and deck cargo above the waterline - IMO/IS, IMO/HSC'2000		m²
\overline{AZ}	YAZ	Righting arm based on horizontal distance from assumed centre of gravity A, to Z	Generally tabulated in cross curves of stability	m
В		Centre of buoyancy	Centroid of the underwater vol- ume	
$B_{\rm CB}$		Beam between centres of buoy- ancy of side hulls		m
BM	ZBM	Transverse metacentre above cen- tre of buoyancy	Distance from the centre of buoy- ancy CB to transverse metacentre M $\overline{BM} = \frac{I_T}{\nabla} = \overline{KM} - \overline{KB}$	m
\overline{BM}_{L}	ZBML	Longitudinal metacentre above centre of buoyancy	$\overline{BM}_{L} = \overline{KM}_{L} - \overline{KB}$	m
b		Centre of flotation of added buoy- ancy layer or centre of lost buoy- ancy of the flooded volume		
b		Maximum tank breadth		m
CD		Crew density	Proportion of boat plan needed for crew	
C_H		Height coefficient, depending on the height above sea level of the structural member exposed to the wind		1

Version 2017

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
Symbol	Symbol		Explanation	Unit
$C_{ m Lcpi}$		Crew limit	Maximum number of persons on	
СЕсрі			board	
			Trimming moment divided by	
C_{MTL}	CMTL	Longitudinal trimming coefficient	change in trim which approxi-	1
C_{MTL}	CIVITL	- I99/1.2.4.3	mately equals	1
			\overline{BM}_L / L	
		Shape coefficient, depending on		
$C_{\rm s}$		the shape of the structural member		1
		exposed to the wind		
d	Т	Draught, moulded, of ship hull -		m
u	1	I99/1.2.1		m
d		Density coefficient for submerged		1
u		test weights		1
F		Centre of flotation of the water		
		plane		
F		Wind force - IMO/IS		
			From the freeboard markings to	
f	FREB	Freeboard	the freeboard deck, according to	m
		Y to the test of the	official rules	
\overline{FB}	XFB	Longitudinal centre of buoyancy,	Distance of centre of buoyancy	m
T D		$L_{\rm CB}$, from forward perpendicular	from forward perpendicular	
\overline{FF}	XFF	Longitudinal centre of flotation,	Distance of centre of floatation	m
		$L_{\rm CF}$, from forward perpendicular	from forward perpendicular	
\overline{FG}	XFG	Longitudinal centre of gravity, from forward perpendicular	Distance of centre of gravity from forward perpendicular	m
G		Centre of gravity of a vessel		
0		Centre of gravity of an added or		
g		removed weight (mass)		1
		Vertical stability lever caused by a		
GG_1	GGV	weight shift or weight addition	$KG_1 = KG_0 + GG_1$	m
		Horizontal stability lever caused		
$\overline{GG}_{\mathrm{H}}$	GGH	by a weight shift or weight addi-		m
00m		tion		
		Longitudinal stability lever caused		
\overline{GG}_{L}	GGL	by a weight shift or weight addi-		m
_		tion		
$\overline{GG}_{\rm V}$	GGV	Vertical stability lever caused by a	$\overline{KG}_1 = \overline{KG}_0 + \overline{GG}_1$	m
00v	001	weight shift or weight addition		111
			Distance of centre of gravity to the	
			metacentre	
GM	GM	Transverse metacentric height	GM = KM - KG	m
			(not corrected for free surface ef-	
			fect)	
	CMEEE	Effective transverse metacentric	\overline{GM} Corrected for free surface	
GM eff	GMEFF	height	and/or free communication effects	m
			Distance from the centre of gravity	
			<i>G</i> to the longitudinal metacentre	
$\overline{GM_L}$	GML	Longitudinal metacentric height	$M_{\rm L}$	m
L				
			$GM_L = KM_L - KG$	
	67	D: 1.4	$\overline{GZ} = \overline{AZ} - \overline{AG}_{\rm V} \sin \varphi$	
GZ	GZ	Righting arm or lever		m
			$AG_{\mathrm{T}} \cos \varphi$	

Version 2017

ITTC

Symbol

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing

	Computer Symbol	Name	Definition or Explanation
		Arm of static stability corrected for free surfaces - IMO/table	
[GZMAX	Maximum righting arm or lever	
		Maximum tank height	
		Height of centre of area of A_{SP} above waterline at SSM	
		Heeling lever (due to various rea- sons) - IMO/HSC'2000	

\overline{GZ}		Arm of static stability corrected		m
	CTM A X	for free surfaces - IMO/table		
\overline{GZ}_{MAX}	GZMAX	Maximum righting arm or lever		m
h		Maximum tank height		m
$h_{\rm CE}$		Height of centre of area of A_{SP} above waterline at SSM		m
HL		Heeling lever (due to various rea- sons) - IMO/HSC'2000		m
$h_{ m LP}$		Height of waterline above centre of area of immersed profile		m
Κ		Keel reference		
KA	ZKA	Assumed centre of gravity above moulded base of keel	Distance from the assumed centre of gravity A to the moulded base of keel or K	m
\overline{KB}	ZKB	Centre of buoyancy above moulded base of keel	Distance from the centre of buoy- ancy <i>B</i> to the moulded base of keel or <i>K</i>	m
\overline{KG}	ZKG	Centre of gravity above moulded base of keel	Distance from the centre of gravity G to the moulded base of keel or K	m
\overline{Kg}	ZKAG	Vertical centre of gravity of added or removed weight above moulded base of keel	Distance from the assumed centre of gravity, g , to the moulded base of keel or K	m
KM	ZKM	Transverse metacentre above moulded base of keel	Distance from the transverse meta- centre M to the moulded base of keel or K	m
\overline{KM}_{L}	ZKML	Longitudinal metacentre above moulded base of keel	Distance from the longitudinal metacentre $M_{\rm L}$ to the moulded base of keel or K	m
k		Roll damping coefficient express- ing the effect of bilge keels		1
L		Length of the vessel on the water- line in maximum load condition - IMO/IS		m
l		Arm of dynamic stability cor- rected for free surfaces - IMO/table		m
l	XTA	Longitudinal trimming arm	$X_{\rm CG} - X_{\rm CB}$	m
l		Maximum tank length		m
ls		Actual length of enclosed super- structure extending from side to side of the vessel		m
$l_{ m w}$		Wind heeling lever		m
М		Metacentre of a vessel	See subscripts for qualification	
т	SHIPMA	Ship mass	<i>W/g</i>	kg
M _C		Maximum offset load moment due to crew		Nm
$M_{ m c}$		Minimum capsizing moment as determined when account is taken of rolling		Nm
$M_{ m FS}$		Free surface moment at any incli- nation		Nm
$m_{\rm LCC}$		Mass in light craft condition		kg

SI-

Unit

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
			1	-
$m_{\rm LDC}$		Mass in loaded displacement con- dition according to		kg
$m_{\rm MTL}$		Maximum total load (mass)		kg
$M_{ m R}$		Heeling moment due to turning		Nm
			$\Delta \overline{GZ}$. Other moments such as	
$M_{ m S}$	MS	Moment of ship stability in gen- eral	those of capsizing, heeling, etc. will be represented by M_S with ad- ditional subscripts as appropriate.	Nm
m _{SSC}		Mass in standard sailing condi- tions according to		kg
M _{TC}	MTC	Moment to change trim one centi- metre		Nm/cm
M _{TM}	MTM	Moment to change trim one meter	ΔC_{MTL}	Nm/m
	111111	Maximum heeling moment due to		
$M_{ m W}$		wind		Nm
$M_{ m v}$		Dynamically applied heeling mo- ment due to wind pressure		Nm
\overline{OG}		Height of centre of gravity above waterline		m
$P_{\rm V}$		Wind pressure		Ра
r		Effective wave slope coefficient		1
R _{SI}	RSI	Required subdivision index		1
S		Wave steepness		1
STIX	STIX	Actual stability index value ac- cording to		1
STIX	STIXR	Required stability index value, see		1
Т	YHA	Equivalent transverse heeling arm	Heeling moment/ Δ	m
TL		Turning lever		m
t _s t _{KL}	TRIM	Static trim	$T_{\rm A}$ - $T_{\rm F}$ - $d_{\rm KL}$	m
V		Tank total capacity		m ³
V_0		Speed of craft in the turn - IMO/HSC'2000 Service speed - IMO/IS		m/s
VW		Wind speed used in calculation		m/s
W	SHIPWT	Ship weight	mg	N
x _{CB}	XACB	Longitudinal centre of floatation of added buoyant layer	Longitudinal distance from refer- ence point to the centre of the added buoyant layer, b	m
$X_{ m CB}$ $L_{ m CB}$	ХСВ	Longitudinal centre of buoyancy (L_{CB})	Longitudinal distance from refer- ence point to the centre of buoy- ancy, B	m
$X_{ m CF}$ $L_{ m CF}$	XCF	Longitudinal centre of flotation $(L_{\rm CF})$	Longitudinal distance from refer- ence point to the centre of flota- tion, F	m
XCG	XACG	Longitudinal centre of gravity of added weight (mass)	Longitudinal distance from refer- ence point to the centre of gravity, g, of an added or removed weight (mass)	m

Version 2017

Version 2017

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit
				-
$X_{\rm CG}$		Longitudinal centre of gravity	Longitudinal distance from refer-	
LCG	XCG	(L _{CG})	ence point to the centre of gravity,	m
			G	
X_1, X_2		Roll damping coefficients		1
x _D		Distance of down flooding open-		m
		ing from end of boat		
$Y_{\rm CG,}$	YCG	Lateral displacement of centre of	Lateral distance from a reference	m
УСG	100	gravity (Y _{CG})	point to the centre of gravity, G	
уд		Distance of down flooding open-		m
		ing from gunwale		
ур'		Distance of down flooding open-		m
		ing off centreline		
Z		Intersection of righting arm with		
	ZRA	line of action of the centre of		
		buoyancy		
		Vertical distance from the centre		
Ζ		of A to the centre of the underwa-		
		ter lateral area or approximately to		m
		a point at one half the draught -		
		IMO/IS		
Z, h		Vertical distance from the centre		m
		of A to the waterline		
ZD		Height above waterline of down		m
		flooding opening	~	
ZSA	ZSA	Static sinkage at AP	Caused by loading	m
ZSF	ZSF	Static sinkage at FP	Caused by loading	m
ZS	ZS	Mean static sinkage	$(z_{SF}+z_{SA})/2$	m
δ		Tank block coefficient		1
$\delta t_{ m KL}$	DTR	Change in static trim		m
Δ	DISPF	Displacement (buoyant) force	$g ho \nabla$	Ν
Δ_m	DISPM	Displacement mass	$\rho \nabla$	kg
\overline{V}	DISPVOL	Displacement volume	$\Delta/(\rho g)$	m ³
$V_{\rm fw}$	DISVOLFW	Displacement volume of flooded		m³
		water	$\Delta_{\rm fw}/(ho g)$	
ϕ	HEELANG	Heel angle		rad
ϕ_0		Heel angle during offset load tests		rad
φ_0		Maximum permitted heel angle		Tuu
$\phi_{0(\text{REQ})}$ ϕ_{D} $\phi_{D(\text{REQ})}$		during		rad
		Actual down flooding angle ac-		
		cording to		rad
		Required down flooding angle,		
		see		rad
<i>ф</i> DC <i>ф</i> DH		Down flooding angle to non-quick		<u>† .</u>
		draining cockpits		rad
		Down flooding angle to any main		<u> </u>
		access hatchway		rad
de	HEELANGF	Heel angle at flooding		rad
$\phi_{ m F}$	TIELLAINOF	Angle of heel at which maximum		
$\phi_{ m GZMAX}$		righting moment occurs		rad
		• •		and a
<i>¢</i> _R		Assumed roll angle in a seaway		rad
∕¢vs	HEELANGV	Heel angle for vanishing stability		rad
$\phi_{ m W}$		Heel angle due to calculation wind		rad

Version 2017

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Ivanie	Explanation	Unit
	D) (U/O	X7 1 / · · · 1 · 1 ·	The ratio of the volume of flood-	1
μ	PMVO	Volumetric permeability	ing water in a compartment to the total volume of the compartment	1
$ heta_{ m c}$		Capsizing angle under the action of a gust of wind IMO/IS		rad
$\phi_{ m m}$		Heel angle corresponding to the maximum of the statical stability curve		rad
$\theta_{\rm S}$	TRIMS	Static trim angle	$\tan^{-1}((z_{SF}-z_{SA})/L)$	rad
ρ	RHO	(Liquid) mass density		kg/m³
$ ho_{\mathrm{A}}$	RHOA DNA	(Air) mass density		kg/m³
$ ho \otimes$	DNWA	(Water) mass density		kg/m³
2.4.4 Syn	nbols for Attribu	ites and Subscripts		
A	Aft	-		
E	Entrance			
-	-			

A	Aft
E	Entrance
F	Fore
R	Run
Ζ	Heave
θ	Pitch
φ	Roll

3 Special Craft

3.1 Planing and Semi-Displacement Vessels

3.1.1 Geometry and Hydrostatics

74

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Ivaille	Explanation	Unit

3. SPECIAL CRAFT

3.1 Planing and Semi-Displacement Vessels

3.1.1 Geometry and Hydrostatics

See also Section 1.2.1, Hull Geometry and Section 1.2.2 Propulsor Geometry

		r, man Geometry and Section 1.2.2 (10)		
$A_{ m P}$	APB	Planing bottom area	Horizontally projected planing bottom area (at rest), excluding area of external spray strips	m ²
B_{LCG}	BLCG	Beam at longitudinal position of the centre of gravity Breadth over spray strips meas- ured at transverse section contain- ing centre of gravity		m
$B_{\rm PC}$	BPC	Beam over chines	Beam over chines, excluding ex- ternal spray strips	m
$B_{\rm PA}$	BPA	Mean breadth over chines	$A_{\rm P}/L_{\rm P}$	m
$B_{\rm PT}$	BPT	Transom breadthBreadth over chines at transom, excluding external spray strips		m
B_{PX}	BPX	Maximum breadth over chines cluding external spray strips		m
L _{SB}	LSB			m
$L_{\rm PR}$	LPRC	Projected chine length	Length of chine projected in a plane parallel to keel	m
β	BETD	Deadrise angle of planing bottom	Angle between a straight line ap- proximating body section and the intersection between basis plane and section plane	rad
$\beta_{\rm M}$	BETM	Deadrise angle at midship section	<u>^</u>	rad
$\beta_{\rm T}$	BETT	Deadrise angle at transom		rad
ESH	EPSSH	Shaft angle	Angle between shaft line and ref- erence line (positive, shaft inclined downwards)	rad

Version 2017

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.2 Geometry and Levers, Underway

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

3.1.2 Geometry and Levers, Underway 3.1.2.1 Geometry, Underway

3.1.2.1 Ge	eometry, Underw	ay		
$d_{ m TR}$	DTRA	Immersion of transom, underway	Vertical depth of trailing edge of boat at keel below water surface level	m
$h_{ m P}$	HSP	Wetted height of strut palms (flange mounting)		
$h_{\rm R}$	HRU	Wetted height of rudders		m
L _C	LC	Wetted chine length, underway		m
l _{CP}	LCP	Lever of resultant of pressure forces, underway	Distance between centre of pres- sure and aft end of planing surface	m
L _K	LK	Wetted keel length, underway		m
L _M	LM	Mean wetted length, underway	$(L_{\rm K} + L_{\rm C}) / 2$	m
S _{WHP}	SWHP	Wetted area underway of planing hull	Principal wetted area bounded by trailing edge, chines and spray root line	m ²
$S_{ m WB}$	SWB	Wetted bottom area, underway	Area bounded by stagnation line, chines or water surface underway and transom	m ²
$S_{ m WHE}$	SWHE	Wetted hull area, underway	Total wetted surface of hull un- derway, including spray area and wetted side area, w/o wetted tran- som area	m ²
$S_{ m WHS}$	SWSH	Area of wetted sides Wetted area of the hull side ab the chine or the design water li		m ²
S _{WS} , S _S	SWS	Area wetted by spray	Wetted area between design line or stagnation line and spray edge	m ²
$\alpha_{ m B}$	ALFSL	Angle of stagnation line	Angle between projected keel and stagnation line in a in plane nor- mal to centre plane and parallel to reference line	rad
$\alpha_{\rm BAR}$	ALFBAR	Barrel flow angle	Angle between barrel axis and as- sumed flow lines	rad
$\varepsilon_{\mathrm{W}L}$	EPSWL	Wetted length factor	$L_{\rm M}$ / $L_{\rm WL}$	1
€ws	EPSWS	Wetted surface area factor	$S \land S_0$	1
$ heta_{\mathrm{DWL}},$	TRIMDWL	Running trim angle based on de- sign waterline	Angle between design waterline and running waterline (positive bow up)	rad
$\theta_{\rm S}, \theta_0$	TRIMS	Static trim angle	Angle between ship design water- line and actual water line at rest (positive bow up) $\tan^{-1}((z_{SF} - z_{SA}) / L)$	rad
$ heta_V$, $ heta_{ m D}$	TRIMV	Running (dynamic) trim angle	Angle between actual water line at rest and running water line (posi- tive bow up) $\tan^{-1}((z_{VF} - z_{VA}) / L)$	rad
λ_{W}	LAMS	Mean wetted length-beam ratio	$L_{\rm M}$ / ($B_{\rm LCG}$)	1
τ	TRIMDWL	Running trim angle based on de- sign waterline Angle between design waterline and running waterline (positive bow up)		deg
$ au_{ m DWL}$	TAUDWL	Reference line angle	Angle between the reference line and the design waterline	rad
$ au_{ m R}$	TAUR	Angle of attack relative to the ref- erence line	Angle between the reference line and the running waterline	rad

Version 2017

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.2 Geometry and Levers, Underway

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$arphi_{ m SP}$	PHISP	Spray angle	Angle between stagnation line and keel (measured in plane of bottom)	rad
δ_{λ}	DLAM	Dimensionless increase in total friction area	Effective increase in friction area length-beam ratio due to spray contribution to drag	1
3.1.2.2 Le	vers, Underway			1
e _A	ENAPP	Lever of appendage lift force N_A	Distance between N_A and centre of gravity (measured normally to N_A)	m
$e_{ m B}$	ENBOT	Lever of bottom normal force $N_{\rm B}$	Distance between $N_{\rm B}$ and centre of gravity (measured normally to $N_{\rm B}$)	m
e _{PN}	ENPN	Lever of propeller normal force N_{PN}	Distance between propeller centre- line and centre of gravity (meas- ured along shaft line)	m
e _{PP}	ENPP	Lever of resultant of propeller pressure forces $N_{\rm PP}$	Distance between N_{PP} and centre of gravity (measured normally to N_{PP})	m
eps	ENPS	Lever of resultant propeller suction forces N_{PS}	Distance between N_{PS} and centre of gravity (measured normal to N_{PS})	m
e _{RP}	ENRP	Lever of resultant of rudder pres- sure forces N_{RP}	Distance between N_{RP} and centre of gravity (measured normal to N_{RP})	m
fаа	FRAA	Lever of wind resistance R_{AA}	Distance between R_{AA} and centre of gravity (measured normal to R_{AA})	m
f _{AP}	FRAP	Lever of appendage drag $R_{\rm AP}$	Distance between R_{AP} and centre of gravity (measured normal to R_{AP})	m
fғ	FRF	Lever of frictional resistance $R_{\rm F}$	Distance between $R_{\rm F}$ and centre of gravity (measured normal to $R_{\rm F}$)	m
fк	FRK	Lever of skeg or keel resistance $R_{\rm K}$	Distance between $R_{\rm K}$ and centre of gravity (measured normal to $R_{\rm K}$)	m
fR	FDRR	Lever of augmented rudder drag $\Delta R_{\rm RP}$	Distance between $\Delta R_{\rm RP}$ and centre of gravity (measured normal to $\Delta R_{\rm RP}$)	m
fs	FSL	Lever of axial propeller thrust	Distance between axial thrust and centre of gravity (measured nor- mal to shaft line)	m
fт	FRT	Lever of total resistance R _T	Distance between $R_{\rm T}$ and centre of gravity (measured normal to $R_{\rm T}$)	m

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.3 Resistance and Propulsion

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

3.1.3 Resistance and Propulsion See also Sections 2.3.1 on Hull Resistance

		1 on Hull Resistance		
C_{L0}	CL0D	Lift coefficient for zero deadrise	$\Delta / (B_{\rm CG}^2 q)$	1
C_{Leta}	CLBET	Lift coefficient for deadrise sur- face	$\Delta / (B_{\rm CG}^2 q)$	1
C_V	CSP	Froude number based on breadth	$V/(B_{\rm CG} g)^{1/2}$	1
C_{Δ}	CDL	Load coefficient	$\Delta / (B_{\rm CG}^3 \rho g)$	1
$L_{ m VHD}$	LVD	Vertical component of hydrody- namic lift		Ν
Lvs	LVS	Hydrostatic lift	Due to buoyancy	N
F_{TA}	FTAPP	Appendage drag force (parallel to reference line)	Drag forces arising from append- ages inclined to flow, assumed to act parallel to the reference line	N
F_{TB}	FTBOT	Bottom frictional force (parallel to reference line)	Viscous component of bottom drag forces assumed acting paral- lel to the reference line	Ν
F_{TK}	FTKL	Keel or skeg drag force (parallel to reference line)	Drag forces arising from keel or skeg, assumed to act parallel to the reference line	Ν
F_{TRP}	FTRP	Additional rudder drag force (par- allel to reference line)	Drag forces arising from influence of propeller wake on the rudder assumed to act parallel to the ref- erence line	N
$N_{ m A}$	NAPP	Appendage lift force (normal to reference line)	Lift forces arising from append- ages inclined to flow, assumed to act normally to reference line	Ν
$N_{ m B}$	NBOT	Bottom normal force (normal to reference line)	Resultant of pressure and buoyant forces assumed acting normally to the reference line	Ν
N_{PP}	NPP	Propeller pressure force (normal to reference line)	Resultant of propeller pressure forces acting normally to the refer- ence line	N
$N_{ m PS}$	NPS	Propeller suction force (normal to reference line)	Resultant of propeller suction forces acting normally to the refer- ence line	N
$N_{ m RP}$	NRP	Rudder pressure force (normal to reference line)	Resultant of rudder pressure forces acting normally to the reference line	N
R _K	RKEEL	Keel drag		N
R_{π}	RPI	Induced drag	$g \rho \nabla tan \tau$	N
R _{PAR}	RPAR	Parasitic drag	Drag due to inlet and outlet open- ings	N
R_{PS}	RSP	Pressure component of spray drag		N
R _T	RT	Total resistance	Total towed resistance	Ν
$R_{\rm VS}$	RSV	Viscous component of spray drag	$C_{\rm F} S_{\rm WS} q_{\rm S}$	N
$V_{\rm BM}$	VBM	Mean bottom velocity	Mean velocity over bottom of the hull	m/s
$V_{ m SP}$	VSP	Spray velocity	Relative velocity between hull and spray in direction of the spray	m/s

3 Special Craft3.2 Multi-Hull Vessels

3.2.1 Geometry and Hydrostatics

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit
			*	

3.2 Multi-Hull Vessels (Add trimaran symbols)

3.2.1 Geometry and Hydrostatics See also Section 2.2.1. Hull Geo

Se	ee also Section 2.2.1,			1
A_{I}	AIA	Strut-hull intersection area		m ²
$B_{ m B}$	BB	Box beam	Beam of main deck	m
$B_{\rm S}$	BS	Hull spacing	Distance between hull centre lines	m
B_{TV}	BTUN	Tunnel width	Minimal distance of the demihulls at the waterline	m
$D_{ m H}$	DHUL	Hull diameter	Diameter of axis symmetric sub- merged hulls	m
$D_{\rm X}$	DX	Hull diameter at the longitudinal position "X"		m
$H_{ m DK}$	HCLDK	Deck clearance	Minimum clearance of wet deck from water surface at rest	m
H _{SS}	HSS	Strut submerged depth	Depth of strut from still water line to strut-hull intersection	m
$i_{\rm EI}$	ANENIN	Half angle of entrance at tunnel (inner) side	Angle of inner water line with ref- erence to centre line of demihull	rad
i _{EO}	ANENOU	Half angle of entrance at outer side	Angle of outer water line with ref- erence to centre line of demihull	rad
L _{CH}	LCH	Length of centre section of hull	Length of prismatic part of hull	m
L _{CS}	LCS	Length of centre section of strut	Length of prismatic part of strut	m
$L_{ m H}$	LH	Box length	Length of main deck	m
$L_{ m NH}$	LNH	Length of nose section of hull	Length of nose section of hull with variable diameter	m
L _{NS}	LNS	Length of nose section of strut	Length of nose section of strut with variable thickness	m
Ls	LS	Strut length	Length of strut from leading to trailing edge	m
$L_{\rm SH}$	LSH	Length of submerged hull		m
ts	TSTR	Maximum thickness of strut		m

Special Craft Multi-Hull Vessels

3.2.2 Resistance and Propulsion

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

3.2.2 Resistance and Propulsion

3.2.2.1 Resistance Components See also Section 2.3.1 on Hull Resistance

$R_{ m FMH}$	RFMH	Frictional resistance of multi-hull vessel		Ν
$R_{ m FINT}$	RFINT	Frictional resistance interference correction	$R_{\rm FMH}$ - $\Sigma R_{\rm F}$	Ν
$R_{\rm RMH}$	RRMH	Residuary resistance correction of multi-hull	R _{TMH} - R _{FMH}	Ν
$R_{ m RI}$	RRINT	Residuary resistance interference correction	$R_{\rm RMH}$ - $\Sigma R_{\rm R}$	Ν
R _{TMH}	RTMH	Total resistance of multi-hull ves- sel		N
R _{TI}	RTINT	Total resistance interference cor- rection	R_{TMH} - ΣR_{T}	Ν

3 Special Craft3.3 Hydrofoil Boats3.3.1 Geometry and Hydrostatics

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

3.3 Hydrofoil Boats

3.3.1 Geometry and Hydrostatics See Sections 2.2.1 and 2.2.4

	e Sections 2.2.1 and			1 -
$A_{\rm F}$	AFO	Foil area (general)	Foil area in horizontal plane	m^2
$A_{ m FT}$	AFT	Total foil plane area		m^2
$B_{ m FOA}$	BFOA	Maximum vessel breadth includ- ing foils		m
$b_{\rm S}$	BST	Span of struts		m
$b_{ m ST}$	BSTT	Transverse horizontal distance of struts		
<i>c</i> _C	CHC	Chord length at centre plane		m
CF	CFL	Chord length of flap		m
СM	CHM	Mean chord length		m
CS	CSTR	Chord length of a strut		m
C _{SF}	CHSF	Chord length of strut at intersec- tion with foil		m
c_{T}	CHTI	Chord length at foil tips		m
$W_{ m F}$	WTF	Weight of foil		N
$\alpha_{\rm c}$	ALFTW	Geometric angle of twist		rad
$ heta_{ m DH}$	DIHED	Dihedral angle		rad
$V_{ m F}$	DISVF	Foil displacement volume		m ³
	eometry, Under	*		
$A_{\rm FE}$	AFE	Emerged area of foil		m ²
$A_{\rm FF}$	ASFF	Submerged area of front foil		m ²
$A_{\rm FR}$	ASFR	Submerged area of rear foil		m ²
$A_{\rm FS}$	AFS	Submerged foil area		m ²
A _{FST0}	AFSTO	Submerged foil plan area at take- off speed		m ²
A_{SS}	ASS	Submerged strut area		m ²
$b_{\rm w}$	BSPW	Foil span wetted		m
<i>CP</i> F	CPFL	Distance of centre of pressure on a foil or flap from leading edge		m
<i>Fr_L</i>	FNFD	Froude number based on foil dis- tance	$V / (g L_{\rm F})^{1/2}$	1
Fr _c	FNC	Froude number based on chord length	$V/(g c_{\rm M})^{1/2}$	1
$h_{\rm CG}$	HVCG	Height of centre of gravity foil- borne	Distance of centre of gravity above mean water surface	m
$h_{ m F}$	HFL	Flight height	Height of foil chord at foilborne mode above position at rest	m
h _K	HKE	Keel clearance	Distance between keel and mean water surface foilborne	m
$l_{\rm F}$	LEFF	Horizontal distance of centre of pressure of front foil to centre of gravity		m
l _{FR}	LEFR	Horizontal distance between cen- tres of pressure of front and rear $l_{\rm F} + l_{\rm R}$ foils		m
l _R	LERF	Horizontal distance of centre of pressure of rear foil to centre of gravity		m
$T_{ m F}$	TFO	Foil immersion	Distance between foil chord and mean water surface	m

Version 2017

Special Craft Hydrofoil Boats Geometry and Hydrostatics

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit
$T_{ m FD}$	TFD	Depth of submergence of apex of a dihedral foil	Distance between foil apex and mean water surface	m
$T_{\rm FM}$	TFOM	Mean depth of foil submergence		m
$\alpha_{\rm IND}$	ALFIND	Downwash or induced angle		rad
$\alpha_{ m M}$	ALFM	Angle of attack of mean lift coeffi- cient for foils with twist		rad
αs	AFS	Angle of attack for which flow separation (stall) occurs		rad
$\alpha_{\rm TO}$	ATO	Incidence angle at take-off speed		rad

3 Special Craft3.3 Hydrofoil Boats3.3.2 Resistance and Propulsion

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

3.3.2 Resistance and Propulsion See also Section 2.3.1 Hull Resistance

B.3.2.1 B	asic Quantities			1
$D_{ m F}$	DRF	Foil drag	Force in the direction of motion of an immersed foil	Ν
$D_{\rm FR}$	DFA	Drag force on rear foil	$C_{DF}A_{FR}q$	Ν
$D_{\rm FF}$	DFF	Drag force on front foil	$C_{DF}A_{FF}q$	Ν
D_{I}	DRIND	Induced drag	For finite span foil, the component of lift in the direction of motion	N
$D_{\rm INT}$	DRINT	Interference drag	Due to mutual interaction of the boundary layers of intersecting foil	N
$D_{ m P0}$	DRF0	Profile drag for angle of attack equal to zero lift	Streamline drag	N
Ds	DRSP	Spray drag	Due to spray generation	Ν
D _{ST}	DRST	Strut drag		Ν
$D_{ m W}$	DRWA	Wave drag	Due to propagation of surface waves	N
$D_{ m V}$	DRVNT	Ventilation drag	Due to reduced pressure at the rear side of the strut base	N
$L_{\rm F}$	LF	Lift force on foil	$C_L A_{\rm FT} q$	Ν
$L_{\rm FF}$	LFF	Lift force on front foil	$C_L A_{\rm FF} q$	N
L _{FR}	LFR	Lift force on rear foil	$C_L A_{\rm FR} q$	N
L_0	LF0	Profile lift force for angle of attack of zero		N
Lto	LT0	Lift force at take off	$C_{LTO}A_{FT}q$	Ν
М	MSP	Vessel pitching moment		Nm

3 Special Craft3.3 Hydrofoil Boats3.3.2 Resistance and Propulsion

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

3.3.2.2 Derived Quantities

J.J.Z.Z D		}		
C_{DF}	CDF	Drag coefficient of foil	$D_{\rm F}/(A_{\rm FS} q)$	1
C_{DI}	CDI	Induced drag coefficient	$D_{\rm I}/(A_{\rm FS} q)$	1
C_{DINT}	CDINT	Interference drag coefficient	$D_{\rm INT} / (A_{\rm FS} q)$	1
C_{D0}	CDO	Section drag coefficient for angle of attack equal to zero	$D_{ m P}/(A_{ m FS} q)$	1
C_{DS}	CDSP	Spray drag coefficient	$D_{\rm S}/(A_{\rm FS} q)$	1
C_{DVENT}	CDVENT	Ventilation drag coefficient	$D_{\rm V}/(A_{\rm FS} q)$	1
C_{DW}	CDW	Wave drag coefficient	$D_{\rm W}/(A_{FS} q)$	1
$C_{L\rm F}$	CLF	Foil lift coefficient	$L_{\rm F}/(A_{\rm FS} q)$	1
C_{L0}	CLO	Profile lift coefficient for angle of attack equal to zero	$L_0/(A_{\rm FS} q)$	1
C_{LTO}	CLTO	Lift coefficient at take-off condi- tion	$L_{ m TO}/(A_{ m FS}q)$	1
C_{LX}	CLA	Slope of lift curve	$dC_L/d\alpha$	1
C_M	СМ	Pitching moment coefficient	$M/((A_{\rm FF} + A_{\rm FR})(l_{\rm F} - l_{\rm R})q)$	1
$M_{ m F}$	MLF	Load factor of front foil	$L_{\rm FF}/\Delta$	1
M _R	MLR	Load factor of rear foil	$L_{\rm FR}$ / Δ	1
ε _F	EPSLDF	Lift/ Drag ratio of foil	L/D	1

3 Special Craft 3.4 ACV and SES 3.4.1 Geometry and Hydrostatics

ITTC	Computer	Namo	Definition or	SI-
Symbol	Symbol	Iname	Explanation	Unit

3.4 ACV and SES

3.4.1 Geometry and Hydrostatics See also Section 1.2.1

See	also Section 1.2.1			
$A_{\rm C}$	CUA	Cushion area	Projected area of ACV or SES cushion on water surface	m ²
B _C	BCU	Cushion beam	SES cushion beam measured be- tween the side walls	m
B _{WLT}	BWLT	Total waterline breadth of SES	At the water line	m
H _{CG}	HVCG	Height of centre of gravity above mean water plane beneath craft		m
$h_{\rm BS}$	HBS	Bow seal height	Distance from side wall keel to lower edge of bow seal	m
H _{SK}	HSK	Skirt depth		m
$h_{\rm SS}$	HSS	Stern seal height	Distance from side wall keel to lower edge of stern seal	m
L _B	LB	Deformed bag contact length		m
Lc	LAC	Cushion length		m
L _E	LACE	Effective length of cushion	$A_{\rm C}/B_{\rm C}$	m
S _{H0}	SSH0	Wetted area of side hulls at rest off cushion		m ²
C	SSHC	Wetted area of side hulls under	Total wetted area of side walls un-	m ²
$S_{ m SHC}$	SSIL	way on cushion	der way on cushion	m
S _{SH}	SSH	Wetted area of side hulls under way off cushion	Total wetted area of side walls un- der way off cushion	m ²
Х _Н , <i>L</i> _Н	XH, LH	Horizontal spacing between inner and outer side skirt hinges or at- tachment points to structure	needs clarification	m
Xs, Ls	XS, LS	Distance of leading skirt contact point out-board or outer hinge of attachment point to structure	needs clarification	m
Z _н , Н _Н	ZH, HH	Vertical spacing between inner and outer side skirt hinges or at- tachment points to structure	needs clarification	m
$\delta B_{\rm C}$	DBCV	Increase in cushion beam due to water contact		m
EWS	EPSWS	Wetted surface factor	$S_{\rm SHC}$ / $S_{\rm SH0}$	1
$\theta_{\rm B}$	TETB	Bag contact deformation angle		rad
$\theta_{\rm F}$	TETF	Finger outer face angle		rad
$ heta_{ m W}$	TETW	Slope of mean water plane for sur- face level beneath cushion periph- ery		rad
ØA	DNA	(ACV and SES) Mass density of air	Mass of air per unit volume	kg/m ³
ζc	ZETAC	Height of cushion generated wave above mean water plane at leading edge side of the skirt		m

3 Special Craft 3.4 ACV and SES 3.4.1 Geometry and Hydrostatics

ITTC	Computer	Nomo	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit
Symbol	Symbol		Explanation	Ollit

3.4.2 Resistance and Propulsion See also Section 2.3.1 on Hull Resistance

C_{Δ}	CLOAD	Cushion loading coefficient	$\Delta / (g \rho_{\rm A} A_{\rm C}^{3/2})$	1
C_{PR}	CPR	Aerodynamic profile drag coefficient	$R_0 / (\rho_{\rm A} V_{ m R}^2 A_{ m C} / 2)$	1
$C_{ m WC}$	CWC	Cushion wave making coefficient		1
p_{B}	PBM	Mean bag pressure		Pa
$p_{\rm BS}$	PBS	Bow seal pressure	Pressure in the bow seal bag	Pa
$p_{\rm CE}$	PCE	Mean effective skirt pressure		Pa
$p_{\rm CU}$	PCU	Cushion pressure	Mean pressure in the cushion	Pa
$p_{\rm FT}$	PFT	Fan total pressure		Pa
p_{LR}	PLR	Cushion pressure to length ratio	$P_{\rm CU}/L_{\rm C}$	Pa/m
$p_{\rm SK}$	PSK	Skirt pressure in general		Pa
$p_{\rm SS}$	PSS	Stern seal pressure	Pressure in the stern seal bag	Pa
$P_{\rm FCU}$	PFCU	Power of lift fan		W
$P_{\rm FSK}$	PFSK	Power of skirt fan		W
$Q_{\rm BS}$	QBS	Bow seal air flow rate	Air flow rate to the bow seal	m ³ /s
$Q_{\rm CU}$	QCU	Cushion air flow rate	Air flow rate to cushion	m ³ /s
$Q_{\rm SS}$	QSS	Stern seal air flow rate	Air flow rate to the stern seal	m ³ /s
Q_{T}	QT	Total air volume flow		m ³ /s
Q_{TS}	QTS	Total air volume flow of skirt		m ³ /s
R _{AT}	RAT	Total aerodynamic resistance	$R_M + R_0$	N
R _H	RH	Hydrodynamic resistance	$R_{\rm W} + R_{\rm WET}$	N
R_M	RM	Intake momentum resistance in general	$ ho_{ m A} Q_{ m T} V_{ m A}$	Ν
R_{MCU}	RMCU	Intake momentum resistance of cushion	$ ho_{\mathrm{A}} Q_{\mathrm{CU}} V_{\mathrm{A}}$	N
R _{ASK}	RASK	Intake momentum resistance of skirt	$ ho_{\mathrm{A}} Q_{\mathrm{TS}} V_{\mathrm{A}}$	N
$R_{\rm WET}$	RWET	Resistance due to wetting		N
T _C	TC0	Cushion thrust		N

ITTC	Computer		Definition on	CT.	
Version 2017		3.5.1	Resistance and Propulsion		86
		3.5	Ice going Vessels		
ITTC Symbols		3	Special Craft		

ITTC	Computer	Namo	Definition or	SI-
Symbol	Symbol	Inallie	Explanation	Unit

3.5 Ice Going Vessels

3.5.1

Resistance and Propulsion (See Figure 3.4, p 225 and Figure 3.8, p 231 of Vol. 1 of the *Proceedings of the 21st ITTC*)

CI	CI	Coefficient of net ice resistance	$R_{\rm I}/(\rho_I g h^2 B)$	1
$C_{\rm IW}$	CIW	Coefficient of water resistance in the presence of ice	$R_{\rm IW} / (S q_{\rm IW})$	1
$F_{\rm IN}$	FNIC	Normal ice force on a body	Projection of hull - ice interaction force on the external normal	Ν
$F_{ m IT}$	FTIC	Tangential ice force on a body	Projection of the hull - ice interac- tion force on the direction of mo- tion	N
Frī	FNIC	Froude number based on ice thick- ness	$V / (g h_{\rm I})^{1/2}$	1
F_{XI} F_{YI} F_{ZI}	FXIC FYIC FZIC	Components of the local ice force		N N N
fīD	CFRD	Coefficient of friction between surface of body and ice (dynamic)	Ratio of tangential force to normal force between two bodies (dy- namic condition)	1
fis	CFRS	Coefficient of friction between surface of body and ice (static)	The same as above (static condi- tion)	1
h_{I}	HTIC	Thickness of ice		m
$h_{ m SN}$	HTSN	Thickness of snow cover		m
K_{QIA}	KQICMS	Average coefficient of torque in ice	Q_{IA} / ($\rho_{\rm W}$ n_{IA}^2 D^5)	1
<i>K</i> _{TIA}	KTICMS	Average coefficient of thrust in ice	$T_{IA} / (\rho_{\rm W} n_{IA}^2 D^4)$	1
n _{IA}	FRICMS	Average rate of propeller revolu- tion in ice		Hz
P _{DI}	PDI	Delivered power at propeller in ice	$2 \pi Q_{\text{IA}} n_{\text{IA}}$	W
Q_{IA}	QIMS	Average torque in ice		Nm
R _I	RI	Net ice resistance	$R_{\rm IT}$ - $R_{\rm IW}$	Ν
R _{IT}	RIT	Total resistance in ice	Ship towing resistance in ice	Ν
R _{IW}	RIW	Hydrodynamic resistance in pres- ence of ice	Total water resistance of ship in ice	N
$T_{\rm IA}$	TIMS	Average total thrust in ice		Ν
$\eta_{\rm ICE}$	ERIC	Relative propulsive efficiency in ice	$\eta_{\rm ID} / \eta_{\rm D}$	1
$\eta_{ m ID}$	EFDIC	Propulsive efficiency in ice	$R_{\rm IT} V / (2 \pi n_{\rm IA} Q_{\rm IA})$	1

Version 2017

3 Special Craft3.6 Sailing Vessels3.6.1 Geometry and Hydrostatics

ITTC	Computer	Nama	Definition or	SI-
Symbol	Symbol	Name	Explanation	Unit

3.6 Sailing Vessels

3.6.1 Geometry and Hydrostatics

See also Section 2.2.1 on Hull Geometry

		5		
A_{J}	ASJ	Area of jib or genoa		m ²
$A_{\rm LK}$	ALK	Lateral area of keel		m ²
$A_{ m LT}$	ALT	Total lateral area of yacht		m ²
$A_{\rm m}$	ASM	Area of mainsail		m ²
A _N	ASN	Normalized sail area		m ²
A _{SP}	ASSP	Area of spinnaker		m ²
$A_{\rm S}, S_A$	AS	Sail area in general	(P E + I J) / 2	m ²
B _{OA}	BOA	Beam, overall		m
C_{pi}	CPI	Center of pressure for A _i Main-		
Ē	EM	sail base		m
Ι	Ι	Fore triangle height		m
J	J	Fore triangle base		m
Р	Р	Mainsail height		m
T	LEFF	Effective length for Reynolds		
$L_{ m EFF}$		Number		m
C	SC	Wetted surface area of canoe		m ²
$S_{\rm C}$		body		m²
S _K	SK	Wetted surface area of keel		m ²
S _R	SR	Wetted surface area of rudder		m²
T _C	TCAN	Draught of canoe body		m
$T_{\rm EFF}$	TEFF	Effective draught	$F_{\rm H}/(\rho V_{\rm B}^2 R)^5$	m
Z _{CE}	ZCE	Height of centre of effort of sails above waterline in vertical cen-		
ZCE	ZCE	tre plane		m
$V_{\rm C}$	DVCAN	Displaced volume of canoe body		m ³
$V_{\rm K}$	DVK	Displaced volume of keel		m ³
$V_{\rm R}$	DVR	Displaced volume of rudder		m ³
$\Delta_{\rm C}$	DFCAN	Displacement force (weight) of		Ν
<u>д</u> С	DICAN	canoe body		11
$\varDelta_{\rm K}$	DFK	Displacement force (weight) of		Ν
		keel		
$\Delta_{\rm R}$	DFR	Displacement force (weight) of		Ν
		rudder		

3 Special Craft3.6 Sailing Vessels3.6.2 Resistance and Propulsion

ITTC Definition or SI-Computer Name Symbol Symbol Explanation Unit

3.6.2 Resistance and Propulsion

5.0.2 Resi	istance and Pro			
$C_{ m FU}$	CFU	Frictional resistance coefficient (upright)	$R_{ m FU}$ / (S q)	1
$C_{ m RU}$	CRU	Residuary resistance coefficient (upright)	$R_{\mathrm{RU}} / (S q)$	1
$C_{ m TU}$	CTU	Total resistance coefficient (up- right)	R_{TU} / (S q)	1
$C_{ m WU}$	CWU	Wave resistance coefficient (up- right)		1
$C_{\mathrm{T} arphi}$	СТРНІ	Total resistance coefficient with heel and leeway	$R_{\mathrm{T}\varphi}/(S q)$	1
C_{I}		Induced resistance coefficient		1
C_{x}, C_{y}, C_{z}		Force coefficients		1
$F_{ m H}$		Heeling force of sails		Ν
$F_{\rm R}$		Driving force of sails		N
$F_{\rm V}$		Vertical force of sails		N
Н		Side force		N
L _{HY}		Hydrodynamic lift force		Ν
R _{AW}		Mean added resistance in waves		Ν
$R_{\rm FU}$		Friction resistance (upright)		Ν
$R_{\rm RU}$		Residuary resistance (upright)		Ν
		Resistance increase due to side) Y
$R_{\rm I}$		(induced resistance)		Ν
R _{TU}	RTU	Total resistance (upright)		Ν
$R_{T\varphi}$	RTUH	Total resistance when heeled	$R_{ m TU}+R_{arphi}$	Ν
R_{arphi} , $R_{ m H}$	RTUHA	Resistance increase due to heel (with zero side force)		N
X, Y,Z		Components of resultant force along designated axis		N
V	V	Vessel velocity		m/s
V _{WR}	VWR	Apparent wind velocity		m/s
$V_{\rm WT}$	VWT	True wind velocity		m/s
V _{mc}	VMC	Velocity made good on course		m/s
$V_{ m mg}$	VMG	Velocity made good to windward (contrary to wind direction)		m/s
$\beta_{\rm L}$	BETAL	leeway angle		rad
β_{aw}	BETWA	apparent wind angle (relative to boat course)		rad
$\beta_{\rm tw}$	BETWT	true wind angle (relative to boat course)		rad

4. BACKGROUND AND REFERENCES4.1 Symbols and Terminology Group

The tasks of the former Symbols and Terminology Group (SaT) have been handed over to the Quality Systems Group in 2002.

4.2 Description of the List of Symbols

4.2.1 Classification

The prime concern of the QS Group was to revise and try to complement the list of ITTC Standard Symbols sticking to the system for the classification of concepts.

With this regard, the following design requirements and goals have been maintained:

- 1. a coherent document, meeting the present and possibly the future requirements of the ITTC community in general and particular user groups
- 2. an open ended matrix structure that can be easily expanded as requirements arise, without the need of restructuring and repetition or too many explicit cross-references
- 3. minimized departures from the well established and widely accepted previous list of symbols

On the other hand, to facilitate the practical use of the list, a second version in which the symbols are arranged in alphabetic order was prepared. Symbols which have been listed several times in the matrix structured document have been maintained and for each symbol the field in which it is used is given in italic letters prior to the meaning of the symbol.

4.2.2 Structure of the Lists

The concepts related to a given subject area or model are designated by the ITTC Symbol and called by their Name. Their meaning can in principle only be concluded from the context of the model. The logically consistent, so called 'implicit' definition is derived from a definitely defined statement of the model, ideally a generally accepted system or an equivalent, e.g. a drawing.

The problem is that traditionally in lists of symbols, as in dictionaries, these explicit models are missing for various reasons. One reason is that many subject areas under discussion are far from being developed and understood to the extent necessary. A consequence of this situation is that the symbols proposed are not always as coherent as would be necessary for advanced and systematic work, for which explicit models and adequate notations are essential.

The problem under discussion is of course the same in national and international standards. However there is an accepted international standard which deals with the general principles concerning physical quantities, equations, quantity and unit symbols, and coherent unit systems for general use within the various fields of science and technology (ISO 31.

4.2.3 Organization of the matrix structured list

As has been emphasized the development of symbols is a continuing process and as the subject develops, further amendments and additions, as approved by the Conference, will be included in future editions of the list.

In order to avoid any extra problems the symbols are arranged in alphabetical order in each subject area as in previous lists. Continuous page numbering was discarded in earlier versions. The idea was to establish a loose leaf organization as the most appropriate, in view of new draughts to be incorporated.

In view of the tremendous effort which explicit mathematical models, explanations, and sketches take for their preparation, the present QS Group can only follow the former SaT Group and state that the Technical Committees and other interested parties are urged to provide further material for review by the QS Group and future inclusion into the list.

It has been noted that some users dislike the disruption of the list of symbols by lengthy explanations. The present QS Group feels that the subject and the sensible use of the symbols require such explanations, also as the fundamentals of the theory of science and terminology often are not taught to students of naval architecture and marine engineering. However the arrangement has been changed so that these explanations can be visited by using hyperlinks and the list is not disrupted any more.

5. PRINCIPLES OF NOTATION

In Fig 1 the principles of notation in according to ISO 31 are shown.

Symbols representing physical quantities normally are one Latin or Greek letter with Subscripts for further identification. They are written in *italic* style letters.

Numbers are normally written in **roman** style letters. For more details, look at the list below or in the Excerpts of ISO 31 below or in standard itself.

Superscripts signify operators e.g.

• exponentiation

- the various aspects of complex quantities
- the various aspects of spectra and
- the various aspects of random quantities and stochastic processes e.g. probability operators.

Subscripts signify identifiers

- matrix components,
- identifiers tested, e.g. ship S or model M, appendages (App)or the various bodies in a multi-body problem,
- identifiers of coordinate systems and of the reference points, quantities(*L*_{PP})

Symbols for physical units	italic, one letter, except dimensionless quanti-	A (e.g. Area in m ²)
	ties	
Symbols for characteristic numbers	2 letters italic	Re, Fr
Numbers	roman, generally	10 ³
Symbols representing numbers	italic	Xij
Units	roman, lower case unless derived from name	m, Pa
Prefix of units	roman	μm
Symbols for chemical elements	roman	H ₂ O
Symbols for universal constants	italic	$g = 9,80665 \text{ m/s}^2$

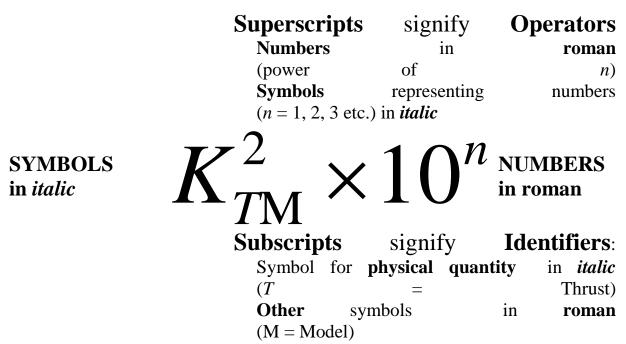


Fig. 1

5.1 Excerpts of ISO 31

1 Scope

This part of ISO 31 gives general information about principles concerning physical quantities, equations, quantity and unit symbols, and coherent unit systems, especially the International System of Units, SI.

The principles laid down in this part of ISO 31 are intended for general use within the various fields of science and technology and as a general introduction to the other parts of ISO 31.

2. Quantities and units

2.1 Physical quantity, unit and numerical value

In ISO 31 only physical quantities used for the quantitative description of physical phenomena are treated. Conventional scales, such as the Beaufort scale, Richter scale and colour intensity scales, and quantities expressed as the results of conventional tests, e.g. corrosion resistance, are not treated here, neither are currencies nor information contents.

Physical quantities may be grouped together into categories of quantities which are mutually comparable. Lengths, diameters, distances, heights, wavelengths and so on would constitute such a category. Mutually comparable quantities are called "quantities of the same kind".

If a particular example of a quantity from such a category is chosen as a reference quantity, called the *unit*, then any other quantity from this category can be expressed in terms of this unit as a product of this unit and a number. This number is called the *numerical value* of the quantity expressed in this unit.

In formal treatments of quantities and units, this relation may be expressed in the form

$A = \{A\} - [A]$

where A is the symbol for the physical quantity, [A] the symbol for the unit and $\{A\}$ symbolizes the numerical value of the quantity A expressed in the unit [A]. For vectors and tensors the components are quantities which may be expressed as described above.

If a quantity is expressed in another unit which is k times the first unit, then the new numerical value becomes 1/k times the first numerical value; the physical quantity, which is the product of the numerical value and the unit, is thus independent of the unit.

REMARK ON NOTATION FOR NUMERICAL VALUES

It is essential to distinguish between the quantity itself and the numerical value of the quantity expressed in a particular unit. The numerical value of a quantity expressed in a particular unit could be indicated by placing braces (curly brackets) around the quantity symbol and using the unit as a subscript. It is, however, preferable to indicate the numerical value explicitly as the ratio of the quantity to the unit.

2.2 Quantities and equations

2.2.1 Mathematical operations with quantities

Two or more physical quantities cannot be added or subtracted unless they belong to the same category of mutually comparable quantities.

Physical quantities are multiplied or divided by one another according to the rules of algebra; the product or the quotient of two quantities, *A* and *B*, satisfies the relations

 $AB = \{A\} \{B\} - [A] [B]$

Thus, the product $\{A\}$ $\{B\}$ is the numerical value $\{AB\}$ of the quantity AB, and the product [A] [B] is the unit [AB] of the quantity AB. Similarly, the quotient $\{A!/\{B\}\}$ is the numerical value $\{A/B\}$ of the quantity A/B, and the quotient [A]/[B] is the unit [A/B] of the quantity A/B.

2.2.2 Equations between quantities and equations between numerical values

Two types of equation are used in science and technology: *equations between quantities*, in which a letter symbol denotes the physical quantity (i.e. numerical value \times unit), and *equations between numerical values*. Equations between numerical values depend on the choice of units, whereas equations between quantities have the advantage of being independent of this choice. Therefore the use of equations between quantities should normally be preferred.

2.2.3 Empirical constants

An empirical relation is often expressed in the form of an equation between the numerical values of certain physical quantities. Such a relation depends on the units in which the various physical quantities are expressed.

An empirical relation between numerical values can be transformed into an equation between physical quantities, containing one or more empirical constants. Such an equation between physical quantities has the advantage that the form of the equation is independent of the choice of the units. The numerical values of the empirical constants occurring in such an equation depend, however, on the units in which they are expressed, as is the case with other physical quantities.

2.2.4 Numerical factors in quantity equations

Equations between quantities sometimes contain *numerical factors*. These numerical factors depend on the definitions chosen for the quantities occurring in the equations.

EXAMPLE

$$E_k = \frac{1}{2} m v^2$$

2.2.5 Systems of quantities and equations between quantities; base quantities and derived quantities

Physical quantities are related to one another through equations that express laws of nature or define new quantities.

For the purpose of defining unit systems and introducing the concept of dimensions, it is convenient to consider some quantities as mutually independent, i.e. to regard these as *base quantities*, in terms of which the other quantities can be defined or expressed by means of equations; the latter quantities are called *derived quantities*.

It is a matter of choice how many and which quantities are considered to be base quantities.

The whole set of physical quantities included in ISO 31 is considered as being founded on seven base quantities: length L, mass M, time T, electric current I, thermodynamic temperature Θ , amount of substance N and luminous intensity J.

In the field of mechanics a system of quantities and equations founded on three base quantities is generally used. In ISO 31-3, the base quantities used are length, mass and time.

In the field of electricity and magnetism a system of quantities and equations founded on four base quantities is generally used. In ISO 31-5, the base quantities used are length, mass, time and electric current.

In the same field, however, systems founded on only three base quantities, length, mass and time, in particular the "Gaussian" or symmetric system, have been widely used. (See ISO 31-5:1992, annex A.)

2.2.6 Dimension of a quantity

Any quantity Q can be expressed in terms of other quantities by means of an equation. The expression may consist of a sum of terms. Each of these terms can be expressed as a product of powers of base quantities A, B, C, ... from a chosen set, sometimes multiplied by a numerical factor ξ , i.e. $\xi A^{\alpha}B^{\beta}C^{\gamma}$..., where the set of exponents (α , β , γ ...) is the same for each term.

The *dimension* of the quantity Q is then expressed by the dimensional product

 $\dim Q = A^{\alpha}B^{\beta}C^{\gamma} ..$

where A, B, C, ... denote the dimensions of the base quantities A, B, C, ..., and where α , β , γ are called the *dimensional exponents*.

A quantity all of whose dimensional exponents are equal to zero is often called a *dimensionless* quantity. Its dimensional product or dimension is $A^0 B^0 C^0 \dots = 1$. Such a quantity of *dimension one* is expressed as a number.

In the system founded on the seven base quantities length, mass, time, electric current, thermodynamic temperature, amount of substance and luminous intensity, the base dimensions may be denoted by L, M, T, I, O, N and J respectively and the dimension of a quantity Q becomes in general

 $\dim Q = L^{\alpha} M^{\beta} T^{\gamma} I^{\delta} \Theta^{\varepsilon} N^{\zeta} J^{\eta}.$

EXAMPLES

Quantity	Dimension
velocity	LT ⁻¹
angular velocity	T-1
force	LMT ⁻²
energy	L ² MT ⁻²
relative density	1

2.3 Units

2.3.1 Coherent unit systems

Units might be chosen arbitrarily, but making an independent choice of a unit for each quantity would lead to the appearance of additional numerical factors in the equations between the numerical values.

It is possible, however, and in practice more convenient, to choose a system of units in such a way that the equations between numerical values have exactly the same form (including the numerical factors) as the corresponding equations between the quantities. A unit system defined in this way is called *coherent* with respect to the system of quantities and equations in question. The SI is such a system. The corresponding system of quantities is given in ISO 31-1 to ISO 31-10 and in ISO 31-12 and ISO 31-13.

For a particular system of quantities and equations, a coherent system of units is obtained by first defining units for the base quantities, the *base units*. Then for each derived quantity, the definition of the corresponding *derived unit* in terms of the base units is given by an algebraic expression obtained from the dimensional product (see 2.2.6) by replacing the symbols for the base dimensions by those of the base units. In particular, a quantity of dimension one acquires the unit 1. In such a coherent unit system no numerical factor other than the number 1 ever occurs in the expressions for the derived units in terms of the base units.

2.3.2 SI units and their decimal multiples and sub-multiples

The name *International System of Units* (Système International d'Unités), with the international abbreviation SI was adopted by the 11th

General Conference on Weights and Measures (Conférence Générale des Poids et Mesures, CGPM) in 1960.

This system includes

- base units

- derived units including supplementary units

which together form the coherent system of SI units.

2.3.2.1 Base units

The seven base units are listed in Table 1.

Table 1 - SI base units

	SI base unit	
Base quantity	Name	Symbol
length	metre	m
mass	kilogram	kg
time	second	s
electric current	ampere	А
thermodynamic tempera- ture	kelvin	К
amount of substance	mole	mol
luminous intensity	candela	cd

2.3.2.2 Derived units including supplementary units

The expressions for the coherent derived units in terms of the base units can be obtained from the dimensional products by using the following formal substitutions:

$L \rightarrow m$	$I \rightarrow A$
$M \rightarrow kg$	$\Theta \rightarrow K$
$T \rightarrow s$	N →mol
	$J \rightarrow cd$

In 1960, the CGPM classified the SI units radian, rad, and steradian, sr, for plane angle and solid angle respectively as "supplementary units".

In 1980, the *International Committee for Weights and Measures* (Comité International des Poids et Mesures, CIPM) decided to interpret the class of supplementary units in the SI as a class of dimensionless derived units for which the CGPM allows the freedom of using or not using them in expressions for SI derived units.

Although, as a consequence of this interpretation, the coherent unit for plane angle and for solid angle is the number 1, it is convenient to use the special names radian, rad, and steradian, sr, instead of the number 1 in many practical cases.

Table 2 - SI derived units with special names, including SI supplementary units

5 Principles of Notation

Version 2017

5.1 Excerpt of ISO 31

	SI derived unit		
Derived quantity	Special name	Symbol	Expressed in terms of SI base units and SI derived units
plane angle	radian	rad	1 rad = 1 m/m = 1
solid angle	steradian	sr	$1 \text{ sr} = 1 \text{ m}^2 / \text{m}^2 = 1$
frequency	hertz	Hz	$1 \text{ Hz} = 1 \text{ s}^{-1}$
force	newton	Ν	$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2$
pressure,	pascal	Ра	$1 Pa = 1 N/m^2$
stress			
energy,	joule	J	1 J = 1 N - m
work,			
quantity of heat			
power,	watt	W	1 W = 1 J/s
radiant flux	1h	C	1 C = 1 A - s
electric charge, quantity of electricity	coulomb	C	1 C = 1 A - S
electric potential,	volt	v	1 V = 1 W/A
potential difference,	von	v	1 V = 1 W/A
tension,			
electromotive force			
capacitance	farad	F	1 F = 1 C/V
electric resistance	ohm	S2	$1\Omega = 1 \text{ V/A}$
electric conductance	siemens	S	$1 \text{ S} = 1 \Omega^{-1}$
magnetic flux	weber	Wb	$1 \text{ Wb} = 1 \text{ V} \cdot \text{s}$
magnetic flux density	tesla	Т	$1 T = 1 Wb/m^2$
inductance	henry	Н	1 H = 1 Wb/A
Celsius temperature	degree	°C	1 °C = 1 K
*	Celsius')		
luminous flux	lumen	Im	$1 \ \mathrm{lm} = 1 \ \mathrm{cd} \ . \ \mathrm{sr}$
illuminance	lux	Ix	$1 lx = 1 lm/m^2$

1) Degree Celsius is a special name for the unit kelvin for use in stating values of Celsius temperature. (See also ISO 31-4:1992, items 4-1.a and 4-2.a.)

EXAMPLES

Quantity	Symbol for SI unit expressed in terms of the seven base units (and the supplementary units in some cases)
velocity angular velocity	m/s rad/s or s ⁻ '
force	kg . m/s ²
energy	$kg \cdot m^2/s^2$
relative density	1

For some of the SI derived units, special names and symbols exist; those approved by the CGPM are listed in tables 2 (and 3).

It is often of advantage to use special names and symbols in compound expressions for units.

2.3.2.3 SI prefixes

In order to avoid large or small numerical values, decimal multiples and sub-multiples of the SI units are added to the coherent system within the framework of the SI. They are formed by means of the prefixes listed in Table 4.

Factor	Prefix	
	Name	Symbol
10 ²⁴	yotta	Y
10 ²¹	zetta	Z
10 ¹⁸	exa	E
1015	peta	Р
1012	tera	Т
10^{9}	giga	G
10^{6}	mega	М
10 ³	kilo	k
10 ²	hecto	h
10	deca	da
10-1	deci	d
10-2	centi	с
10-3	milli	m
10-6	micro	μ
10-9	nano	n
10-12	pico	p f
10-15	femto	f
10-18	atto	a
10-21	zepto	Z
10-24	yocto	у

For information about the use of the prefixes, see 3.2.4.

The SI units and their decimal multiples and submultiples formed by use of the prefixes are specially recommended.

2.3.3 The unit one

The coherent SI unit for any quantity of dimension one is the unit one, symbol 1. It is generally not written out explicitly when such a quantity is expressed numerically.

EXAMPLE

Refractive index $n = 1,53 \times 1 = 1,53$

In the case of certain such quantities, however, the unit 1 has special names that could be used or not, depending on the context.

EXAMPLES	
Plane angle	$\alpha = 0.5 \text{ rad}$
=0,5 ,	
Solid angle	$\Omega = 2,3 \text{ sr}$
= 2,3	

Decimal multiples and sub-multiples of the unit one are expressed by powers of 10. They shall not be expressed by combining the symbol 1 with a prefix.

In some cases the symbol % (per cent) is used for the number 0,01.

NOTES

3 In some countries the symbol % o ("per mill", or per thousand) is used for the number 0,001. This symbol should be avoided.

4 Since per cent and per mill are numbers it is in principle meaningless to speak about percentage by mass or percentage by volume. Additional information, such as % (m/m) or % (V/V), should not therefore be attached to the unit symbol. The preferred way of expressing a mass fraction is: "the mass fraction is 0,67" or "the mass fraction is 67 %", and the preferred way of expressing a volume fraction is: "the volume fraction is 0,75" or "the volume fraction is 75 %". Mass and volume fractions can also be expressed in the form 5 μ g/g or 4,2 ml/m3.

Abbreviations such as ppm, pphm and ppb shall not be used.

2.3.4 Other unit systems and miscellaneous units

The CGS system of mechanical units is a coherent system the base units of which are centimetre, gram and second for the three base quantities length, mass and time.

In practice this system was enlarged by adding the kelvin, the candela and the mole as base units for the base quantities thermodynamic temperature, luminous intensity and amount of substance.

Units used in electricity and magnetism have been defined in the CGS system in several ways depending on the system of quantities and equations chosen. The "Gaussian" or symmetric CGS system, coherent with the "Gaussian" or symmetric system of quantities and equations founded on three base quantities, has been widely used. For further information on this system, see ISO 31-5:1992, Annex A.

The special names and symbols for derived CGS units such as dyne, erg, poise, stokes, gauss, oersted and maxwell shall not be used together with the Sl.

Table 5 - Units used with the SI

Quantity	Unit		
	Name	Symbol	Definition
time	minute hour day	min h d	1 min= 60s 1 h = 60 min 1 d = 24 h
plane angle	degree minute second	0 1 11	$1^{\circ} = (\pi/180) \text{rad} = (n/180) \text{ rad} = (1/60)^{\circ}$ $1'' = (1/60)^{\circ}$
volume	litre	I, L ¹⁾	$11 = 1 \text{ dm}^3$ $= 1 \text{ dm}$
mass	tonne ²⁾	t	$1 t = 10^3 kg$
¹⁾ The two symbols for litre are on an equal footing. The CIPM will, however, make a survey on the development			

of the use of the two symbols in order to see if one of the two may be suppressed.

²⁾ Also called the metric ton in the English language.

 Table 6 - Units used with the SI, whose values in SI units
 are obtained experimentally

	Unit		
Quantity	Name	Symbol	Definition
energy	electronvolt	eV	The electronvolt is the kinetic energy acquired by an electron in passing through a potential difference of 1 volt in vacuum: $1 \text{ eV} \approx 1,602 177 \times 10^{-19} \text{ J.}$
mass	unified atomic mass unit	u	The unified atomic mass unit is equal to $(1/12)$ of the mass of an atom of the nuclide ¹² C: 1u \approx 1,660 540 ×10 ⁻²⁷ kg.

In other parts of ISO 31, the special names for the derived CGS units are given in informative annexes which are not integral parts of the standards.

There are certain units outside the SI which are recognized by the CIPM as having to be retained for use together with the SI, e.g. minute, hour and electronvolt. These units are given in Tables 5 and 6.

Other coherent systems of units have been defined, e.g. a system based on the units foot, pound and second and a system based on the units metre, kilogram-force and second.

Apart from these, other units have been defined which do not belong to any coherent system, e.g. the atmosphere, **the nautical mile** and the curie.

3 Recommendations for printing symbols and numbers

3.1 Symbols for quantities

3.1.1 Symbols

The symbols for physical quantities are generally single letters of the Latin or Greek alphabet, sometimes with subscripts or other modifying signs. These **symbols** are printed in *italic* (sloping) type (irrespective of the type used in the rest of the text).

The symbol is not followed by a full stop except for normal punctuation, e.g. at the end of a sentence.

NOTES

5 Symbols for quantities are given in ISO 31-1 to ISO 31-10 and in ISO 31-12 and ISO 31-13.

6 Notations for vectorial and other non-scalar quantities are given in ISO 31-11, on mathematical signs and symbols.

7 Exceptionally, symbols made up of two letters are sometimes used for combinations of dimension one of quantities (e.g. Reynolds number, *Re*). If such a two-letter symbol appears as a factor in a product, it is recommended that it be separated from the other symbols.

3.1.2 Rules for the printing of subscripts

When, in a given context, different quantities have the same letter symbol or when, for one quantity, different applications or different values are of interest, a distinction can be made by use of subscripts.

The following principles for the printing of subscripts are recommended:

A subscript that represents a symbol for a physical quantity is printed in italic (sloping) type.

Other subscripts are printed in roman (upright) type.

EXAMPLES

Uprig	ght subscripts	Slopin	g subscripts
$m{C}_{ m g}$	(g gas)	C_p	(p: pressure)
g_n	(n: normal)	$\sum_{n} a_n \delta_n$	(n: running num-
			ber)
μ_r	(r: relative)	$\sum a_x b_x$	(x: running num-
			ber)
$E_{\mathbf{k}}$	(k: kinetic)	g_{ik}	(<i>i</i> , <i>k</i> : running num-
		-	bers)
χe	(e: electric)	p_x	(x:x-coordinate)
$T_{1/2}$	(1/2: half)	l_{λ}	(λ wavelength)

NOTES

8 Numbers as subscripts should be printed in roman (upright type. However, letter symbols representing numbers are generally printed in italic (sloping) type.

3.1.3 Combination of symbols for quantities; elementary Operations with quantities

When symbols for quantities are combined in a product, this process of combination may be indicated in one of the following ways:

 $ab, a b, a \cdot \bullet b, a \times b$

NOTES

10 In some fields, e.g. in vector analysis, distinction is made between $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$.

11 For multiplication of numbers, see 3.3.3.

12 In systems with limited character sets a dot on the line may be used instead of a half-high dot.

Division of one quantity by another may be indicated in one of the following ways:

 $\frac{a}{b}$, a/b or by writing the product of a and b^{-1} ,

e.g. $a \cdot b^{-1}$

3.2 Names and symbols for units

3.2.1 International symbols for units

When international symbols for units exist, they, and no other, shall be used. They shall be printed in roman (**upright**) type (irrespective of the type used in the rest of the text), shall remain unaltered in the plural shall be written without a final full stop (period) except for normal punctuation, e.g. at the end of a sentence.

Any attachment to a unit symbol as a means of giving information about the special nature of the quantity or context of measurement under consideration is incorrect.

EXAMPLE

 $U_{\rm max} = 500 \text{ V} \text{ (not } U = 500 \text{ V}_{\rm max} \text{)}$

The unit symbols shall in general be printed in lower case letters except that the first letter is printed in upper case when the name of the unit is derived from a proper name.

EXAMPLES

m	metre
S	second
А	ampere
Wb	weber

3.2.2 Combination of symbols for units

When a compound unit is formed by multiplication of two or more units, this should be indicated in one of the following ways:

N·m, N m

NOTES

13 In systems with limited character sets a dot on the line may be used instead of a half high dot.

14 The latter form may also be written without a space, provided that special care is taken when the symbol for one of the units is the same as the symbol for a prefix.

EXAMPLE

mN means millinewton, not metre newton.

When a compound unit is formed by dividing one unit by another, this should be indicated in one of the following ways:

 $\frac{m}{s}$ m/s m·s⁻¹

A solidus (/) shall not be followed by a multiplication sign or a division sign an the same line unless parentheses are inserted to avoid any ambiguity. In complicated cases negative powers or parentheses shall be used.

3.2.3 Printing of symbols for units

No recommendation is made or implied about the font of upright type in which symbols for units are to be printed.

NOTE 15 In this series of publications the font used in such cases is generally that of the associated text, but this does not constitute a recommendation.

3.2.4 Printing and use of prefixes

Symbols for prefixes should be printed in roman (upright) type without a space between the symbol for the prefix and the symbol for the unit. Compound prefixes shall not be used.

EXAMPLE

Write nm (nanometre) for 10⁻⁹ m, not mµm.

The symbol of a prefix is considered to be combined with the single unit symbol to which it is directly attached, forming with it a new symbol (for a decimal multiple or sub-multiple) which can be raised to a positive or negative power, and which can be combined with other unit symbols to form symbols for compound units (see 3.2.2).

EXAMPLES

 $1 \text{ cm}^3 = (10^{-2}\text{m})^3 = 10^{-6} \text{m}^3$ 1 $\mu \text{s}^{-1} = (10^{-6} \text{ s})^{-1} = 10^{6} \text{ s}^{-1}$ 1 kA/m = (10³A)/m = 10³ A/m

NOTE 16 For historical reasons the name of the base unit or mass, the kilogram, contains the name of the SI prefix ,"kilo". Names of the decimal multiples and sub-multiples of the unit of mass are formed by adding the prefixes to the word ,,gram", e.g. milligram (mg) instead of microkilogram (μ kg).

3.3 Numbers

3.3.1 Printing of numbers

Numbers should generally be printed in roman (upright) type.

To facilitate the reading of numbers with many digits, these may be separated into suitable groups, preferably of three, counting from the decimal sign towards the left and the right; the groups should be separated by a small space, and never by a comma or a point, or by any other means.

3.3.2Decimal sign

The decimal sign is a comma on the line.

If the magnitude of the number is less than unity, the decimal sign should be preceded by a zero.

NOTE 17 In documents in the English language. a dot is often used instead of a comma. If a dot is used, it should be on the line. In accordance with an ISO Council decision, the decimal sign is a comma in ISO documents.

3.3.3 Multiplication of numbers

The sign for multiplication of numbers is a cross (\times) or a dot half-high (\cdot).

NOTES

18 If a dot half-high is used as the multiplication sign, a comma should be used as the decimal sign. If a dot is used as the decimal sign, a cross should be used as the multiplication sign.

19. In ISO documents, the dot is not used directly between numbers to indicate multiplication.

3.4 Expressions for quantities

The symbol of the unit shall be placed after the numerical value in the expression for a quantity, leaving a space between the numerical value and the unit symbol. It should be noted that, in accordance with this rule, the symbol °C for degree Celsius shall be preceded by a space when expressing a Celsius temperature.

The only exceptions to this rule are for the units degree, minute and second for plane angle, in which case there shall be no space between the numerical value and the unit symbol.

If the quantity to be expressed is a sum or a difference of quantities then either parentheses shall be used to combine the numerical values, placing the common unit symbol after the complete numerical value, or the expression shall be written as the sum or difference of expressions for the quantities.

EXAMPLES

l = 12 m - 7 m = (12 - 7) m = 5m $t = 28.4 \text{ °C} \pm 0.2 \text{ °C} = (28.4 \pm 0.2) \text{ °C}$ (not 28.4 ± 0.2 °C) $\lambda = 220 \times (1 \pm 0.02) \text{ W/(m·K)}$

3.5 Symbols for chemical elements and nuclides

Symbols for chemical elements shall be written in roman (upright) type (irrespective of the type used in the rest of the text). The symbol is not followed by a full stop except for normal punctuation, e.g. at the end of a sentence.

EXAMPLES

H He C Ca

A complete list of the symbols for the chemical elements is given in ISO 31-8:1992, annex A, and 150 31-9:1992, annex A.

The attached subscripts or superscripts specifying a nuclide or molecule shall have the following meanings and positions.

The nucleon number (mass number) of a nuclide is shown in the left superscript position, e.g. ^{14}N

The number of atoms of a nuclide in a molecule is shown in the right subscript position, e.g. $^{14}\mathrm{N}_{2}$

The proton number (atomic number) may be indicated in the left subscript position, e.g. $_{64}Gd$

If necessary, a state of ionization or an excited state may be indicated in the right superscript position.

EXAMPLES

State of ionization: Na⁺

	PO_4^{3-} or $(PO_4)^{3-}$
Electronic excited state:	He*', N0*'
Nuclear excited state:	$^{110}Ag^{*}, ^{110}Ag^{m}$

3.6 Mathematical signs and symbols

Mathematical signs and symbols recommended for use in the physical sciences and technology are given in 1S031-11.

alpha А а Aа В beta В β β Γ Г gamma γ γ delta Δ δ Δ δ epsilon Е 3 EЗ zeta Ζ ζ Ζ ζ Н Н eta η η Θ θ, θ Θ theta *θ, Э* Ι iota Ι ι l Κ K kappa κ κ lambda Λ λ Λ λ Μ Mmu μ μ Ν Ξ nu ν N v xi ξ Ξ ξ omicron 0 0 0 0 П П pi π π Р Р rho ρ ρ, Σ Σ sigma σ σ Т Т tau τ τ Y Y upsilon υ v Φ Φ phi φ φ chi Х X χ χ Ψ Ψ psi ψ ψ

Ω

ω

omega

Ω

ω

3.7 Greek alphabet (upright and sloping types)

99

5.1 Excerpt of ISO 31

5.2 Computer Symbols

Wherever possible the symbols in the second column of the tables have been chosen so that their meaning is readily apparent. They have been constructed from the CCITT International Telegraph Alphabet, restricted character set. They are therefore suitable for use in a wide range of situations e. g.: Telex messages, letters, computer printouts etc.

To ensure that the symbols can be used in a wide range of programming languages they currently have been kept to less than six characters long. The symbols should be used as defined, and, in accordance with modern programming practice, should have their type explicitly declared before use. The following rules were applied in the derivation of the symbols:

- 1. Only upper case letter A Z and digits 0 9 have been used.
- 2. Formerly Greek letters have been spelled out, if necessary in abbreviated form or with changed spelling. This practice is considered obsolete.

- 3. The Froude 'circular' symbols are defined by the prefix CIRC.
- 4. All symbols start with a letter.
- 5. Qualifiers and operators, preferably two characters, are currently suffixed to the main symbol line, without spacing.
- 6. No one computer compatible symbol should be used for different concepts in a given context. This goal has not been completely achieved for the whole list. Ad hoc solutions have been attempted but discarded as unsatisfactory.
- 7. Since the computer compatible symbols have been proposed as the basis of attribute names for data exchanges, the above rules will probably be further developed in the near future.

A final remark on the Computer Symbols: in the computer, the letter O and figure 0 (zero) have fundamentally different meanings, but owing to their resemblance they can be easily confused. Thus it is necessary to distinguish rigorously between them. As a matter of fact there are contradictory conventions being widely used.

5.3 Documentation

5.3.1 ITTC Documents

- 1. International Towing Tank Conference, Standard Symbols 1971, BSRA Technical Memorandum No.400, August 1971.
- 2. International Towing Tank Conference, Standard Symbols 1976. BSRA T.M. No.500, 1976.
- 3. ITTC Dictionary of Ship Hydrodynamics. RINA Maritime Technology Monograph No.6, 1978.
- Translation of Overall Index of Titles of Dictionary of Ship Hydrodynamics., Vol. 1: CETENA, Genova, 1984, Vol. 2: University of Tokyo, 1984.
- Bibliography and Proposed Symbols on Hydrodynamic Technology as Related Model Tests of High Speed Marine Vehicles. Prep. by 17th ITTC High-Speed Marine Vehicle Committee. SPPA Maritime Research and Consulting. Rep. No.101, 1984.

5.3.2 Translations

A number of translations of the List of ITTC Standard Symbols into languages other than English have been made including French, German, Italian, Japanese, Russian, Spanish and Chinese. For obvious reasons these translations are no longer up-to-date as the present accepted list in English and the Russian one.

- 1. French Translation of ITTC Standard Symbols 1971., Association Francaise de Normalisation (AFNOR).
- International vereinbarte Buchstabensymbole und Bezeichnungen auf dem Gebiet der Schiffshydrodynamik. Collatz, G. Schiff und Hafen 27 (1975) No.10.
- Italian Translation of ITTC Standard Symbols 1971. Luise E. Appendix II, Report of Presentation Committee. Proceedings 14th ITTC, Vol. 4, Ottawa 1975.

- 4. Japanese Translation of ITTC Standard Symbols. Transactions of the Society of Naval Architects of Japan, No.538, April 1974.
- 5. Russian Translation of ITTC Standard Symbols 1971. Brodarski Institute Publication No.28, Zagreb 1974.
- Simbolos Internacionales en Arquitectura Naval. Asociacion de Investigacion de la Construccion Naval, Publication 7/75, Juli 1975, Madrid.
- 7. Report of Information Committee, Proc. 17th ITTC, Göteborg 1984.
- 8. Chinese Translation of ITTC Standard Symbols. China Ship Scientific Research Centre, Wuxi.

5.3.3 Other References

Apart from the organizations represented on the ITTC these symbols have been recommended for use in technical writing on naval architecture by a number of organizations concerned with marine matters including The Royal Institution of Naval Architects, the American Society of Naval Architects and Marine Engineers and the American, British, Canadian, Australian, and Italian Navies. Where possible, the symbols for Section 3.4.1, Waves are consistent with the IAHR/PIANC List of Sea State Parameters, Supplement to Bulletin No 52, January 1986.

In 1985 the Draught International Standard ISO/DIS 7463 Shipbuilding - Symbols for Computer Applications - has been published. The symbols are based on the list approved by the ITTC in Ottawa 1975 and a related list produced by the ISSC in 1974, inconsistencies having been removed. The ISO/TC8/SC15 has been notified that major changes of the ITTC Symbols are under discussion. Subsequently processing of ISO/DIS 7463 has not been postponed, but the standard has been published as ISO 7463 in 1990.