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CFD Verification

1 PURPOSE OF PROCEDURE

The Purpose of the procedure is to ensure to
get high Quality CFD solutions.

2 CFD VERIFICATION

A. Procedures following ASME guidelines 2-5,
verification analysis refers to documentation of
order-of-accuracy, effects of artificial dissipation,
grid dependence, and iterative convergence for a
given application. Since the flows of interest here
are steady, guideline 6 does not apply.

Guideline 2 requires that the method be at least
second-order accurate in space. Order-of-
accuracy is an important property that describes
the rate at which the method should converge, as
the grid is refined, to the exact numerical
solution. The order may, for some methods, be
expressed for each term in the governing
equations (i.e., term-by-term as suggested by
guideline 1) or be determined a posteriori
through a careful grid study. The former
approach, which for finite-difference methods is
derived from the leading truncated terms in the
Taylor-series approximation of the partial
derivatives, suffers from several major
deficiencies: not all methods are amenable to
such analysis (e.g., finite-analytic discretization);
it is overly optimistic for problems using non-
orthogonal and stretched grids; and for mixed-
order methods, it fails to determine the spatial
variation of order due to the changing balance
between inertia, viscous, pressure, and turbulent
forces. In contrast, the latter approach, which is

subsequently discussed, gives the actual overall
order-of-accuracy and is not method specific.

In its most general form, spatial overall
order-of-accuracy may be expressed as a three-
dimensional quantity (i.e., in each of the co-
ordinate directions p[1, p[1, p[1) for both point
wise (e.g., individual velocity profiles, pressure
distributions, wave elevations) and integral (e.g.,
resistance coefficients) variables. To determine
order, solutions on seven grids must be obtained
and be in the asymptotic range. The grids are
generated using grid doubling (or halving)
independently in each direction and the solutions

5
on each may be referred to as J; (i.e.,
BT L TS SIS T30 T3 ) where j =123

corresponds to fine-, medium-, and coarse-grid
solutions, respectively. Note, for convenience,

ff:f v ,ff | correspond to the same solution. The
asymptotic range is achieved when the solutions
are grid convergent such that the grid
convergence parameter, defined as the relative
change between grids

sh= (- Y5 o

is monotonically decreasing at the rate / (i.e.,
e ~r'es - - -
23 12'), where r is the grid-refinement ratio
and p is the order-of-accuracy. Each solution
may be expressed in a three-dimensional Taylor-
series expansion. If the grids are analytical (i.e.,
transformation metrics are identical at common
points between coarse, medium and fine grids),
the seven Taylor series may be manipulated to
derive analytical expressions for order accuracy
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If it is further assumed, as is commonly done
in practice, that the order is uniform in all
directions, only three solutions on grids doubled
(or halved) in each direction are required to
determine p from (2.2). A grid-doubling
approach has the additional benefit of enabling
the use of Richardson extrapolation to produce a
high-order solution benchmark (order 3p on

coarse grid)
=)
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The benchmark can then be used for
determining the magnitude of numerical error
relative to the benchmark and for evaluating grid
dependence. The primary difficulty in
determining order-of-accuracy is the requirement
of achieving the asymptotic range for all
solutions. For RANS methods, this is due to
having to resolve a range of length scales (i.e.,
viscous sub-layer, turbulent boundary-layer,
bow, shoulder, and transom waves, etc.) on a
highly stretched, non-orthogonal grid and the
effect of varying the grid number by a factor of 4
in each direction.

:fz(Hr; ).

(2.3)

Guideline 3 requires that inherent or explicit
artificial dissipation must be assessed and
minimized. Inherent dissipation arises due to
truncation errors in the discretization scheme and

is represented by even-ordered terms on the
right-hand side of the modified equation (i.e., the
actual equation solved by the difference scheme
including the terms which contribute to the
dissipation and dispersion errors). Since inherent
dissipation is a function of discretization and grid
size, it can only be minimized through grid
convergence studies (Guideline 4). If the
discretization scheme is amenable to von
Neumann analysis, and derivation of the
modified equation, the inherent dissipation and
its functional relationship to grid size and time
step may be quantified. Unfortunately, due to
nonlinearities, three-dimensionality, boundary
conditions, and multi-level schemes of practical
Navier-Stokes methods, application of these
analysis methods are difficult, and for some
solution schemes may not be possible (e.g., finite
element and finite analytic schemes). Explicit
dissipation, on the other hand, is purposely added
to some methods to damp oscillations and
maintain stability. As such, minimization of
errors due to excessive dissipation may be
quantified through a parametric study wherein
solution convergence and/or sensitivity with
respect to the magnitude of the dissipation is
established.

Guideline 4 requires that grid independence or
convergence be established. To rigorously meet
this requirement, all grid parameters which affect
the solution should be independently studied.
Typical grid parameters include: grid type (C-
type, H-type, O-type); number of points;
clustering near walls and leading and trailing
edges; aspect ratio; location of exit and outflow
boundaries; and minimum-spacing requirements
for turbulence models. For each, grid
convergence 1is indicated by small and
monotonically decreasing @& (2.1). The
magnitude of &= provides a measure of the grid
convergence and, as shown in (2.2), the
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convergence of &~ is related to the order-of-
accuracy. Similarly, as discussed with regard to
order-of-accuracy, three-dimensional and/or
averaged e may be calculated for both pointwise
and integral values. For three-dimensional &-
seven grids are required to independently

determine €12°€23  Here however, a grid
doubling approach is not required. Instead, non-
integer refinement (1 < » < 2) may be used.
Unfortunately, as r approaches 1, &  will
become arbitrarily small and as such loses
validity in assessing grid dependence. Therefore,
a grid convergence index (GCI) (Roache, 1994a),
which is a better measure of change between
solutions and defined as

i

should be used. Note that the value 3 in (2.4)
comes from simply making second-order
methods with grid doubling the standard (i.e., for
r=2and p =2, GCI = & ). For independent co-
ordinate refinement, the total GCI can be
determined by simply adding the contribution
from each direction

GCIE = 3‘85’2‘

(2.4)

GClI,, = GCI}, + GCI} + GCI 2.5)

As a minimum requirement and an
alternative to the three dimensional GCI, the
averaged GCI may be determined with three
solutions on grids which have been refined
simultaneously in all directions. If the grids have
a different » in each direction, a conservative
GCI should be based on the smallest directional
r. Finally, by calculating GCI for both pointwise
and integral quantities, the grid convergence for
each variable and region of the flow may be
assessed. The primary difficulty in displaying

grid convergence is in obtaining solutions in the
asymptotic range. Although the GCI requires
order-of-accuracy, either a p may be assumed if
the order is not known, or @& may be used
instead of GCI with the understanding that non-
integer refinement directly affects the magnitude
of &~. Finally, the practicability of three
dimensional GCI and a 7-grid convergence study
has yet to be evaluated.

Guideline 5 requires that iterative convergence
must be addressed. Since direct solution of the
linear equations that result from discretization is
prohibitive, iterative solution techniques are
used, in general, in most implicit CFD methods.
Convergence error is due to stopping the iteration
process and is defined as

(2.6)

where ¢ 5 1s the numerical solution at the nth

iteration and ¢ is the exact numerical solution to
the discretized equations. Theoretically, iteration

should continue until 5 is equal to machine
zero. However, in practice, grid complexity (i.e.,
amount of stretching and non-orthogonality)
affects the rate of convergence such that for real-

istic applications, driving i, to machine zero is
not possible. Therefore, minimization of conver-
gence errors requires that appropriate measures
of convergence be used and estimation of the
uncertainty created by stopping. Convergence
may be assessed using two methods: residuals
defined as the difference between iterations or
the imbalance of the discretized equations with

the current-iteration ¢’ s. Based upon either of
these methods, the iteration process is stopped
when the residuals/imbalance reach an accepta-
bly small value (i.e., a convergence criterion).
Also, since the magnitude of the residuals is in-
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fluenced by time step, under-relaxation, and ini- models) and numerical (i.e., iterative
tial conditions, it is often required that the residu- convergence, grid convergence, temporal

als also drop a specified number of orders-of-
magnitude. To estimate the uncertainty created
by stopping the iteration process, two approaches
are used. First, the convergence history of the
solution variables (e.g., resistance, surface pres-
sure, friction velocity) can be studied to show
that for the given residual status, the solution is
either invariant with further iteration or contains
persistent oscillations. Second, equation imbal-
ance may be used as a direct indication of the
&£

iteration error “i. since it can easily be shown

that since ? exactly satisfies the discretized
equations, the imbalance with ¢" is the same as

1 back-substituted into the discretized equa-
tions.

Guideline 6 requires that for transient
calculations, phase error must be assessed and
minimized. As mentioned in discussion of
Guideline 3, von Neumann analysis and
derivation of the modified equation may be used
to determine the magnitude and terms
contributing to the dispersion, or phase, error.
Also, as previously discussed, these methods are
best applied to simple finite-difference schemes
and that for practical methods and problems, grid
dependence and parametric studies are typically
used to quantify phase error in conjunction with
benchmark data.

In conclusion, it should be emphasized that
the purpose of validation analysis is to assure
high-quality solutions through estimation of
uncertainty. Karniadakis (1995) has proposed a
"numerical error bar" method which includes all
contributions to the overall solution uncertainty.
Based upon the present discussion, the total error
bar would be comprised of modelling (i.e.,
turbulence, free-surface, and boundary-condition

discretization, and artificial dissipation) errors
and each component would be assessed through
the appropriate validation and/or verification
analysis.

B. Implementation Recommendations
Implementation recommendations are divided
into 5 steps.

1) Grid design and identification of
important parameters. For surface-ship and
submarine flows, the important parameters
include: grid number (for both RANS and
free-surface grids); bow, stern, centerplane,
free-surface, and sonar-dome leading- and
trailing-edge clustering; location of inlet,
outer, and outflow boundaries; and
minimum-Y" studies. Previous experience is
often useful in limiting the scope of
parameter variation.

2) Convergence studies. For each grid
parameter, a 3-grid refinement study should
be conducted. Iterative convergence must be
demonstrated and uncertainty established for
all solutions through the use of residuals and
convergence behaviour of the solution.
Pressure and wall-shear stress on the body
surface and wake-centreline velocity should
be plotted over the last 1000 or so iterations.
Based upon both integral (i.e., resistance
coefficients) and point wise (i.e., surface
pressure, wall-shear stress, and selected
boundary-layer profiles) quantities,
determine grid convergence by calculating e
and/or GCI.

3) Artificial dissipation. If explicit artificial
dissipation is used, show convergence of
solutions, and/or stability limits, with respect
to magnitude. Minimally select three values
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of dissipation and calculate the change
between solutions in a fashion similar to
calculating the grid convergence parameter
P,

4) Establish uncertainties and assemble
numerical error bar. Based upon steps 1-3,
establish uncertainty due to iterative
convergence, grid convergence, and artificial
dissipation.

5) Order-of-accuracy and  Richardson-
extrapolated benchmark. If grid doubling
was not used in the grid-convergence studies,
a new set of grids and solutions for either the
three-dimensional (7 grids) or averaged (3
grids) order-of-accuracy determination must
be generated. If all solutions are in the
asymptotic range, calculate order using (2.1)
for integral and pointwise quantities. With
the true order-of-accuracy, recalculate the
GCI's.  Finally, calculate  high-order
benchmark using Richardson extrapolation
(2.2) and determine grid dependence for both
integral and pointwise quantities through
comparison to the benchmark.

In conclusion, steps 1-4 are required to estab-
lish uncertainty, which should be quoted, but due
to time and cost constraints, the scope of the un-

certainty analysis may be limited. Step 5 is also
useful since p is needed for calculation of CGI,
Richardson extrapolation provides a high-order
benchmark, and, maybe most importantly,
knowledge of true order-of-accuracy on stretched
and non-orthogonal grids should be useful in
guiding future CFD developments.

3 PARAMETERS

3.1 Parameters to be Taken into Account

3.2 Recommendations of ITTC for Parame-
ters
None

4 VALIDATION

4.1 Uncertainty Analysis
None

4.2 Benchmark Tests
None
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1. Code Verification 2. Numerical Verification 3. Experimental Uncertainty 4. Comparison with experiment

Figure 1 - CFD Validation




