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CFD Verification 
 
 
1 PURPOSE OF PROCEDURE 
 

The Purpose of the procedure is to ensure to 
get high Quality CFD solutions. 

 
 
2 CFD VERIFICATION 
 
A.  Procedures following ASME guidelines 2-5, 
verification analysis refers to documentation of 
order-of-accuracy, effects of artificial dissipation, 
grid dependence, and iterative convergence for a 
given application. Since the flows of interest here 
are steady, guideline 6 does not apply. 
 
Guideline 2 requires that the method be at least 
second-order accurate in space. Order-of-
accuracy is an important property that describes 
the rate at which the method should converge, as 
the grid is refined, to the exact numerical 
solution. The order may, for some methods, be 
expressed for each term in the governing 
equations (i.e., term-by-term as suggested by 
guideline 1) or be determined a posteriori 
through a careful grid study. The former 
approach, which for finite-difference methods is 
derived from the leading truncated terms in the 
Taylor-series approximation of the partial 
derivatives, suffers from several major 
deficiencies: not all methods are amenable to 
such analysis (e.g., finite-analytic discretization); 
it is overly optimistic for problems using non-
orthogonal and stretched grids; and for mixed-
order methods, it fails to determine the spatial 
variation of order due to the changing balance 
between inertia, viscous, pressure, and turbulent 
forces. In contrast, the latter approach, which is 

subsequently discussed, gives the actual overall 
order-of-accuracy and is not method specific. 
 

In its most general form, spatial overall 
order-of-accuracy may be expressed as a three-
dimensional quantity (i.e., in each of the co-
ordinate directions p�, p�, p�) for both point 
wise (e.g., individual velocity profiles, pressure 
distributions, wave elevations) and integral (e.g., 
resistance coefficients) variables. To determine 
order, solutions on seven grids must be obtained 
and be in the asymptotic range. The grids are 
generated using grid doubling (or halving) 
independently in each direction and the solutions 

on each may be referred to as  f j
ξ i

 (i.e., 
f1

ξ , f 2
ξ , f3

ξ , f1
η, f 2

η , f3
η, f1

ζ , f 2
ζ , f 3

ζ
) where j =1,2,3 

corresponds to fine-, medium-, and coarse-grid 
solutions, respectively. Note, for convenience, 
f1

ξ , f 1
η , f1

ζ

1 correspond to the same solution. The 
asymptotic range is achieved when the solutions 
are grid convergent such that the grid 
convergence parameter, defined as the relative 
change between grids  
 
ε12

ξ i

= f1
ξ i

− f 2
ξ i( ) f1

ξ i

                  (2.1) 
 
is monotonically decreasing at the rate rp (i.e., 
ε23

ξ i

≈ r pε12
ξ i

), where r is the grid-refinement ratio 
and p is the order-of-accuracy. Each solution 
may be expressed in a three-dimensional Taylor-
series expansion. If the grids are analytical (i.e., 
transformation metrics are identical at common 
points between coarse, medium and fine grids), 
the seven Taylor series may be manipulated to 
derive analytical expressions for order accuracy 



ITTC – Recommended 
Procedures and Guidelines 

7.5 – 03 
01 – 04 

Page 3 of 7 

 

CFD, General  
CFD Verification 

Effective Date 
1999 

Revision
00 

 
 
 
 

pξ i

=

ln
f 2

ξ i

− f3
ξ i( )

f1
ξ i

− f 2
ξ i( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

ln 2( )
=

ln ε23
ξ i

ε12
ξ i

f 1
ξ i

f 2
ξ i

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

ln 2( ) .       (2.2) 
 

If it is further assumed, as is commonly done 
in practice, that the order is uniform in all 
directions, only three solutions on grids doubled 
(or halved) in each direction are required to 
determine p from (2.2). A grid-doubling 
approach has the additional benefit of enabling 
the use of Richardson extrapolation to produce a 
high-order solution benchmark (order 3p on 
coarse grid) 
 
f 2

2 p = f1 1+ 1
r p −1

⎛ 
⎝ 

⎞ 
⎠ − f 2

1
r p −1

⎛ 
⎝ 

⎞ 
⎠ 

f 3
2 p = f 2 1+

1
r p −1

⎛ 
⎝ 

⎞ 
⎠ − f 3

1
r p −1

⎛ 
⎝ 

⎞ 
⎠ 

f 3
3p = f2

2p 1 +
1

r p −1
⎛ 
⎝ 

⎞ 
⎠ − f3

2p 1
r p −1

⎛ 
⎝ 

⎞ 
⎠          (2.3) 

 
The benchmark can then be used for 

determining the magnitude of numerical error 
relative to the benchmark and for evaluating grid 
dependence. The primary difficulty in 
determining order-of-accuracy is the requirement 
of achieving the asymptotic range for all 
solutions. For RANS methods, this is due to 
having to resolve a range of length scales (i.e., 
viscous sub-layer, turbulent boundary-layer, 
bow, shoulder, and transom waves, etc.) on a 
highly stretched, non-orthogonal grid and the 
effect of varying the grid number by a factor of 4 
in each direction. 
 
Guideline 3 requires that inherent or explicit 
artificial dissipation must be assessed and 
minimized. Inherent dissipation arises due to 
truncation errors in the discretization scheme and 

is represented by even-ordered terms on the 
right-hand side of the modified equation (i.e., the 
actual equation solved by the difference scheme 
including the terms which contribute to the 
dissipation and dispersion errors). Since inherent 
dissipation is a function of discretization and grid 
size, it can only be minimized through grid 
convergence studies (Guideline 4).  If the 
discretization scheme is amenable to von 
Neumann analysis, and derivation of the 
modified equation, the inherent dissipation and 
its functional relationship to grid size and time 
step may be quantified.  Unfortunately, due to 
nonlinearities, three-dimensionality, boundary 
conditions, and multi-level schemes of practical 
Navier-Stokes methods, application of these 
analysis methods are difficult, and for some 
solution schemes may not be possible (e.g., finite 
element and finite analytic schemes). Explicit 
dissipation, on the other hand, is purposely added 
to some methods to damp oscillations and 
maintain stability. As such, minimization of 
errors due to excessive dissipation may be 
quantified through a parametric study wherein 
solution convergence and/or sensitivity with 
respect to the magnitude of the dissipation is 
established. 
 
Guideline 4 requires that grid independence or 
convergence be established. To rigorously meet 
this requirement, all grid parameters which affect 
the solution should be independently studied. 
Typical grid parameters include: grid type (C-
type, H-type, O-type); number of points; 
clustering near walls and leading and trailing 
edges; aspect ratio; location of exit and outflow 
boundaries; and minimum-spacing requirements 
for turbulence models. For each, grid 
convergence is indicated by small and 
monotonically decreasing  (2.1). The 
magnitude of  provides a measure of the grid 
convergence and, as shown in (2.2), the 
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convergence of  is related to the order-of-
accuracy. Similarly, as discussed with regard to 
order-of-accuracy, three-dimensional and/or 
averaged e  may be calculated for both pointwise 
and integral values. For three-dimensional   
seven grids are required to independently 

determine  Here however, a grid 
doubling approach is not required. Instead, non-
integer refinement (1 < r < 2) may be used. 
Unfortunately, as r approaches 1,   will 
become arbitrarily small and as such loses 
validity in assessing grid dependence. Therefore, 
a grid convergence index (GCI) (Roache, 1994a), 
which is a better measure of change between 
solutions and defined as 

ε12
ξ i

,ε23
ξ i

 

⎟
⎠
⎞⎜

⎝
⎛ −= 13 1212

iii prGCI
ξξξ ε

                         (2.4) 
 
should be used. Note that the value 3 in (2.4) 
comes from simply making second-order 
methods with grid doubling the standard (i.e., for 
r = 2 and p = 2, GCI =  ).  For independent co-
ordinate refinement, the total GCI can be 
determined by simply adding the contribution 
from each direction 
 
GCI12 = GCI12

ξ + GCI12
η + GCI12

ζ
               (2.5) 

 
As a minimum requirement and an 

alternative to the three dimensional GCI, the 
averaged GCI may be determined with three 
solutions on grids which have been refined 
simultaneously in all directions. If the grids have 
a different r in each direction, a conservative 
GCI should be based on the smallest directional 
r. Finally, by calculating GCI for both pointwise 
and integral quantities, the grid convergence for 
each variable and region of the flow may be 
assessed. The primary difficulty in displaying 

grid convergence is in obtaining solutions in the 
asymptotic range. Although the GCI requires 
order-of-accuracy, either a p may be assumed if 
the order is not known, or   may be used 
instead of GCI with the understanding that non-
integer refinement directly affects the magnitude 
of . Finally, the practicability of three 
dimensional GCI and a 7-grid convergence study 
has yet to be evaluated. 
 
Guideline 5 requires that iterative convergence 
must be addressed. Since direct solution of the 
linear equations that result from discretization is 
prohibitive, iterative solution techniques are 
used, in general, in most implicit CFD methods. 
Convergence error is due to stopping the iteration 
process and is defined as  
 
ε it

n = φ n − ˜ φ                                             (2.6) 
 
where φ n

2 is the numerical solution at the nth 

iteration and 
˜ φ  is the exact numerical solution to 

the discretized equations. Theoretically, iteration 
should continue until ε it

n

3 is equal to machine 
zero. However, in practice, grid complexity (i.e., 
amount of stretching and non-orthogonality) 
affects the rate of convergence such that for real-
istic applications, driving ε it

n

4 to machine zero is 
not possible. Therefore, minimization of conver-
gence errors requires that appropriate measures 
of convergence be used and estimation of the 
uncertainty created by stopping. Convergence 
may be assessed using two methods: residuals 
defined as the difference between iterations or 
the imbalance of the discretized equations with 
the current-iteration φ n

5. Based upon either of 
these methods, the iteration process is stopped 
when the residuals/imbalance reach an accepta-
bly small value (i.e., a convergence criterion). 
Also, since the magnitude of the residuals is in-
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fluenced by time step, under-relaxation, and ini-
tial conditions, it is often required that the residu-
als also drop a specified number of orders-of-
magnitude. To estimate the uncertainty created 
by stopping the iteration process, two approaches 
are used. First, the convergence history of the 
solution variables (e.g., resistance, surface pres-
sure, friction velocity) can be studied to show 
that for the given residual status, the solution is 
either invariant with further iteration or contains 
persistent oscillations. Second, equation imbal-
ance may be used as a direct indication of the 
iteration error ε it

n
. since it can easily be shown 

that since 
˜ φ  exactly satisfies the discretized 

equations, the imbalance with φ
n
 is the same as 

ε it
n
 back-substituted into the discretized equa-

tions. 
 
Guideline 6 requires that for transient 
calculations, phase error must be assessed and 
minimized. As mentioned in discussion of 
Guideline 3, von Neumann analysis and 
derivation of the modified equation may be used 
to determine the magnitude and terms 
contributing to the dispersion, or phase, error. 
Also, as previously discussed, these methods are 
best applied to simple finite-difference schemes 
and that for practical methods and problems, grid 
dependence and parametric studies are typically 
used to quantify phase error in conjunction with 
benchmark data. 
 

In conclusion, it should be emphasized that 
the purpose of validation analysis is to assure 
high-quality solutions through estimation of 
uncertainty. Karniadakis (1995) has proposed a 
"numerical error bar" method which includes all 
contributions to the overall solution uncertainty.  
Based upon the present discussion, the total error 
bar would be comprised of modelling (i.e., 
turbulence, free-surface, and boundary-condition 

models) and numerical (i.e., iterative 
convergence, grid convergence, temporal 
discretization, and artificial dissipation) errors 
and each component would be assessed through 
the appropriate validation and/or verification 
analysis. 
B. Implementation Recommendations  
Implementation recommendations are divided 
into 5 steps. 
 
1)  Grid design and identification of 

important parameters.  For surface-ship and 
submarine flows, the important parameters 
include: grid number (for both RANS and 
free-surface grids); bow, stern, centerplane, 
free-surface, and sonar-dome leading- and 
trailing-edge clustering; location of inlet, 
outer, and outflow boundaries; and 
minimum-Y+ studies. Previous experience is 
often useful in limiting the scope of 
parameter variation. 

 
2)  Convergence studies.  For each grid 

parameter, a 3-grid refinement study should 
be conducted. Iterative convergence must be 
demonstrated and uncertainty established for 
all solutions through the use of residuals and 
convergence behaviour of the solution. 
Pressure and wall-shear stress on the body 
surface and wake-centreline velocity should 
be plotted over the last 1000 or so iterations. 
Based upon both integral (i.e., resistance 
coefficients) and point wise (i.e., surface 
pressure, wall-shear stress, and selected 
boundary-layer profiles) quantities, 
determine grid convergence by calculating e 
and/or GCI. 

 
3)  Artificial dissipation.  If explicit artificial 

dissipation is used, show convergence of 
solutions, and/or stability limits, with respect 
to magnitude. Minimally select three values 
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of dissipation and calculate the change 
between solutions in a fashion similar to 
calculating the grid convergence parameter 

. 
 
4)  Establish uncertainties and assemble 

numerical error bar. Based upon steps 1-3, 
establish uncertainty due to iterative 
convergence, grid convergence, and artificial 
dissipation. 

 
5)  Order-of-accuracy and Richardson-

extrapolated benchmark.  If grid doubling 
was not used in the grid-convergence studies, 
a new set of grids and solutions for either the 
three-dimensional (7 grids) or averaged (3 
grids) order-of-accuracy determination must 
be generated. If all solutions are in the 
asymptotic range, calculate order using (2.1) 
for integral and pointwise quantities. With 
the true order-of-accuracy, recalculate the 
GCI's. Finally, calculate high-order 
benchmark using Richardson extrapolation 
(2.2) and determine grid dependence for both 
integral and pointwise quantities through 
comparison to the benchmark. 

 
In conclusion, steps 1-4 are required to estab-

lish uncertainty, which should be quoted, but due 
to time and cost constraints, the scope of the un-

certainty analysis may be limited. Step 5 is also 
useful since p is needed for calculation of CGI, 
Richardson extrapolation provides a high-order 
benchmark, and, maybe most importantly, 
knowledge of true order-of-accuracy on stretched 
and non-orthogonal grids should be useful in 
guiding future CFD developments. 

 
 

3 PARAMETERS 
 
3.1 Parameters to be Taken into Account 
 
 
3.2 Recommendations of ITTC for Parame-

ters 
None 
 
 
4 VALIDATION 
 
4.1 Uncertainty  Analysis 
None 
 
 
4.2 Benchmark Tests 
None 
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Figure 1 - CFD Validation
 

 


