Table of Contents

1. PURPOSE OF PROCEDURE………..2
2. PARAMETERS…………………..2
 2.1 Data Reduction Equations………2
 2.2 Definition of Variables …………2
3. DESCRIPTION OF PROCEDURE…2
 3.1 Model and Installation………..3
 3.1.1 Model……………………3
 3.1.2 Test condition ……………3
 3.1.3 Installation ……………….3
 3.2 Measurement Systems…………….4
 3.3 Instrumentation …………..5
 3.3.1 Resistance…………………5
 3.3.2 Speed ………………………5
 3.3.3 Sinkage and Trim ………..5
 3.3.4 Temperature ……………….5
 3.4 Calibration ………………5
 3.4.1 General remarks …………5
 3.4.2 Resistance dynamometer…..6
 3.4.3 Sinkage and trim transducers……………….6
 3.4.4 Speed ……………………….6
 3.4.5 Thermometer………………..6
3.5 Test Procedure and Data Acquisition ………….6
 3.5.1 Method ……………………..6
 3.5.2 Range and Interval …………6
 3.5.3 Speed ……………………….6
 3.5.4 Measured Quantities……….7
3.6 Data Reduction and Analysis……7
 3.6.1 Analysis of Model Scale Results ………………..7
 3.6.2 Form Factor…………………….8
 3.6.3 Blockage Corrections……….8
3.7 Documentation …………………10
4. VALIDATION……………………11
 4.1 Uncertainty Analysis ………….11
 4.2 Benchmark Tests………………11
5. REFERENCES …………………11
Resistance Test

1. PURPOSE OF PROCEDURE

The purpose of the procedure is to ensure consistency of methodology and the acquisition of correct results for deep-water resistance tests of conventional displacement vessels and sinkage and trim measurements in Towing Tank tests. The procedure addresses model scale only and does not consider extrapolation and full scale prediction.

2. PARAMETERS

2.1 Data Reduction Equations

Total Resistance Coefficient
\[C_T = \frac{R_T}{\frac{1}{2} \rho SV^2} \]

Residual Resistance Coefficient
\[C_R = C_{TM} - C_{FM}(1 + k) \]

Frictional Resistance Coefficient; ITTC Model-Ship Correlation Line
\[C_F = \frac{0.075}{(\log_{10} Re - 2)^2} \]

Froude Number
\[Fr = \frac{V}{\sqrt{gL}} \]

Depth Froude Number
\[Fr_d = \frac{V}{\sqrt{gh}} \]

Reynolds Number
\[Re = \frac{VL}{\nu} \]

Speed correction due to blockage
\[\Delta V \]

Blockage Parameter
\[m = \frac{A_X}{A} \]

2.2 Definition of Variables

- **R_T**: Total resistance (N)
- **V**: Speed (m/s)
- **L_WL**: Length on waterline (m)
- **L_OS**: Length overall submerged (m)
- **L**: Representative length [normally L_WL for F_n and L_OS for R_n] (m)
- **L_CB**: Longitudinal centre of buoyancy
- **z_v**: Running sinkage (m)
- **t_s**: Static trim (m)
- **t_v**: Running trim (m)
- **S**: Wetted surface area (m²)
- **t**: Tank water temperature (°C)
- **h**: Depth of water (m)
- **A_X**: Maximum sectional area of the model (for blockage correction) (m²)
- **A**: Sectional area of the tank (m²)
- **B**: Breadth (m)
- **V**: moulded displacement volume of the model (m³)
- **C_B**: Block coefficient
- **(1+k)**: Form factor
- **g**: Gravity constant (m/s²)
- **\rho**: Mass density of water (kg/m³)
- **\nu**: Kinematic viscosity (m²/s)

Subscript M signifies model scale value

3. DESCRIPTION OF PROCEDURE

Resistance tests are conducted to provide data from which the resistance of the model hull at any desired speed may be determined. For this purpose, the model resistance and its speed through the water are simultaneously measured. The running attitude of the model,
i.e. the sinkage fore and aft or the running trim and sinkage are usually also measured.

The resistance (or drag) is the horizontal component of the force opposing the steady forward motion of the model hull. The resistance is determined by measuring a tow force.

3.1 Model and Installation

3.1.1 Model

The model should be manufactured according to the ITTC Recommended Procedure 7.5-01-01-01, Ship Models with particular attention being paid to model manufacturing tolerances, surface finish, appendage manufacture, and the size and positioning of turbulence stimulation.

The model should generally be as large as possible for the size of the towing tank with respect to wall effects, shallow water, model mass and the maximum speed of the towing carriage.

3.1.2 Test condition

Models should be tested in one or both of the following conditions:

1. Naked resistance of the model without any appendages, to determine the resistance coefficients of the basic form. If any appendage is included as a part of the hull it should be clearly stated. Rudders should be present in the resistance test if they form a streamlined extension of a skeg, and might also be included in other cases.

Inclusive resistance of the model hull with its appendages, to determine the increase in resistance coefficients due to the appendages. All fixed appendages, except those which are considered as propulsors, should be fitted to the model. Movable appendages or control surfaces should not be included in the standard inclusive resistance test. Bilge keels should not be fitted in the inclusive test if their resistance is expected to be small; their wetted area will however be included in the subsequent prediction procedure. A clear statement should be made of the appendages fitted for any specific test.

3.1.3 Installation

The model should be run at the correct calculated displacement. For model installation and trimming see ITTC Recommended Procedure 7.5-01-01-01, Ship Models.

The tow force should, where possible, be in the line of the propeller shaft and at the L_{CB} in order to avoid artificial trim effects. The model should be attached to the measuring head of the resistance dynamometer by a connection which can transmit and measure only a horizontal tow force, even though raked propeller shafts or heavy running trim result in the line of action of the thrust not being horizontal.

Guides may be fitted to prevent the model from yawing or swaying; these should not restrain the model in any other direction of movement, nor be able to impose any force or moment on the model which would cause it to roll or heel. The arrangement of any such guides that include sliding or rolling contacts should be such as to introduce the least possible friction forces. The model should be posi-
tioned such that it is in the centreline of the tank and parallel to the carriage rails.

If any instruments carried in the model are linked to the carriage by flexible cables, great care should be taken to ensure that the cables do not impose any force on the model: in practice the cables should therefore hang vertically from the carriage. Care should also be taken to balance any instruments that must have attachments to both the model and the carriage (e.g. mechanical trim recorders).

3.2 Measurement Systems

Fig. 1 shows a typical measurement system.

The following quantities are measured:
- Model speed
- Total resistance
- Sinkage fore and aft (or running trim and sinkage)
- Water temperature (for calculation of viscosity)
3.3 Instrumentation

The quoted bias accuracies are for indicative purposes only. Uncertainty analysis should be used to derive the actual requirements.

3.3.1 Resistance

The resistance dynamometer should measure the horizontal tow force to within 0.2% of the maximum capacity of the dynamometer or 0.05 N, whichever is the larger. This does not necessarily imply that the resistance itself is measured to within the same tolerance of its true value.

3.3.2 Speed

Ideally the speed of the model through the water should be measured directly throughout the measuring run. Since this is in general impractical, one of the following two methods may be employed:

(i) the speed of the towing carriage relative to the ground should be measured.

(ii) the speed of the towing carriage relative to the water should be measured by a current meter far in front of the model. In this case the current meter wake and waves should be minimised.

The speed of the model should be measured to within 0.1% of the maximum speed or to within 3 mm/sec, whichever is the larger.

3.3.3 Sinkage and Trim

Sinkage fore and aft may be measured with mechanical guides, potentiometers, encoders, LDVTs or with remote (laser or ultrasonic) distance meters. The running trim is calculated from the measured running sinkage fore and aft. The sinkage fore and aft should be measured to within 1.0 mm.

3.3.4 Temperature

The water temperature should be measured at a depth near half of the model draught using a thermometer.

3.4 Calibration

3.4.1 General remarks

All devices used for data acquisition should be calibrated regularly. For calibration, the measured quantities should be either substituted by calibrated weights and pulses or checked by other measuring devices which have already been calibrated. Calibration diagrams, where the measured quantities (output values) are plotted versus the calibration units (input units), may be useful to check the calibration itself as well as the linearity of the instruments. Calibration should generally be in accordance with ITTC Recommended Procedure 7.6-01-01.

The calibration of the resistance dynamometer and the sinkage and/or trim sensors should be checked immediately prior to the testing. The calibrations should preferably include as much of the measurement chain as possible (amplifier, filter, A/D converter). If the check indicates that the required accuracies cannot be met, the calibration should be renewed or the instrument replaced and the check repeated. Daily checking of a pulse counter for speed measurements is usually not required. Instead, the check on this device is covered by calibrations carried out at regular intervals.
3.4.2 Resistance dynamometer
The calibration of the resistance dynamometer should be carried out by the use of calibrated weights as an input to the instrument.

3.4.3 Sinkage and trim transducers
The calibration of linear measuring devices should be performed with a calibrated ruler.

3.4.4 Speed
The calibration of the carriage speed will depend mainly on how the carriage speed is measured. The carriage speed should be calibrated regularly and respective records should be stored.

3.4.5 Thermometer
Thermometers should be calibrated according to common standards and/or following the advice of the manufacturer.

3.5 Test Procedure and Data Acquisition

3.5.1 Method
Before the test begins, zero readings of all instruments are taken. Zeros should be checked between runs to ensure no drift has occurred. The model is towed at speeds giving the same Froude numbers as for the full scale ship.

The model speed is selected and the model accelerated to that speed. If the model has been held during initial acceleration, it is released as soon as the selected speed has been reached. The mean values are derived afterwards from the time series, selecting a time window with the criterion that after the mean measurement values have stabilised a period of at least five oscillations should be used for the average that is entered into the result. Maximum and minimum values together with mean and standard deviations should be stored for each run. This process is repeated at other selected speeds covering the required range, avoiding continuous progression from one limit to the other. For example, runs at alternate speeds from the lowest speed to the highest followed by highest speed to the lowest filling in the gaps.

There should be sufficient waiting time between consecutive runs to achieve similar conditions for each of the runs and to obtain consistency in results. This waiting time will depend on the geometry of the test facility, the type and size of model and model speed. The waiting times should be recorded.

3.5.2 Range and Interval
The speed range should extend from at least 5% below the lowest speed at which reliable data is required to at least 5% above the highest speed required. This range should be covered by a suitable number of speeds. Low speeds may also be used for the derivation of form factors. Care should be taken to ensure that there is sufficient number of speeds to define humps or hollows and other rapidly changing features of the curve.

3.5.3 Speed
The following aspects should be noted when measuring speed:
Attention should be paid to residual currents in the towing tank near the surface, which are caused by previous tests. It is not unusual to exclude the first run of the day if no active artificial circulating device is available. This has however not always shown to be necessary and can be tested with uncertainty analysis. For more information see Uncertainty Analysis, Example for Resistance test, provided in QM 7.5-02-01-02.

It is essential that the speed of the model through the water should be constant throughout that part of the test run during which resistance is measured, and for a significant distance before measuring begins. Steadiness of carriage speed is an essential element in achieving steady model speed, but is not necessarily sufficient since the rate of change of the initial acceleration and the moment and manner of release of the model may interact with the model-dynamometer system and cause it to oscillate.

During the measuring run, the carriage speed should normally not vary by more than 0.1% of the mean speed or 3 mm/s, whichever is the larger. The cyclic characteristics of the carriage speed control system should be such as not to synchronise with the natural frequency of the model dynamometer system.

3.5.4 Measured Quantities

During each run the measured values of model speed and resistance (and when necessary sinkage and trim) should be recorded continuously.

Water temperature should be measured at a depth near half of the model draught. If there is a non-homogeneous temperature in the tank it should be recorded. Temperature measurements should be recorded at the beginning and end of each test sequence.

3.6 Data Reduction and Analysis

The speed, resistance, sinkage and trim and other continuously recorded quantities of the test should be the mean value derived from an integration of the instantaneous measured values over the same measuring interval, with the zero measurements being subtracted from the average values.

Total resistance and residuary resistance coefficients, together with Froude Number, are calculated for each speed using the data reduction equations given in Section 2.1.

3.6.1 Analysis of Model Scale Results

Resistance R_{TM} measured in the resistance tests is expressed in the non-dimensional form

$$C_{TM} = \frac{R_{TM}}{\frac{1}{2} \rho_{M} S_{M} V_{M}^2}$$

Model wetted surface area, to be used in the analysis, is calculated from the model body plan to the still waterline. The transom area is not included in the wetted surface area. The surface areas of the appendages are calculated separately and added to model surface area for appended resistance tests. The speed should, if necessary, be corrected for blockage according to the equations given in Section 3.6.3. Values of water density and viscosity should be determined according to ITTC Recommended Procedure 7.5-02-01-03.
The residuary resistance of the ship is calculated from the model resistance tests assuming the form factor to be independent of scale and speed. The residual resistance can therefore be calculated as:

\[C_R = C_{TM} - C_{FM}(1+k) \]

Where \(C_{FM} \) is derived from the ITTC – 1957 correlation line. If appendages are present and their resistance scaled separately the residual resistance can be calculated as:

\[C_R = C_{TM} - C_{AppM} - C_{FM}(1+k) \]

\(C_{AppM} \) is the model appendage resistance coefficient and can be derived by calculation or from the difference in resistance by testing with and without appendages.

The form factor is determined from low speed tests as described in Section 3.6.2.

The \(C_R \) or \(C_T \) curve is the best basis for judging if a sufficient number of test points have been obtained in order to define humps and hollows. The resistance curve should be faired in order to facilitate reliable interpolation to obtain the resistance at the required speeds. The smoothing should be carried out with care in order not to remove humps and hollows. An acceptance criterion for the test might be derived based on the scatter in the \(C_R \) or \(C_T \) curve.

3.6.2 Form Factor

The recommended method for experimental evaluation of the form-factor is that proposed by Prohaska. If no separation is present, the total resistance can be written, to a first approximation, as

\[C_{TM}(Re, Fr) = (1+k)C_{FM}(Re) + C_w(Re) \]

If the wave-resistance component in a low speed region (say \(0.1 < Fr < 0.2 \)) is assumed to be a function of \(Fr^4 \), the straight line plot of \(C_{TM}/C_{FM} \) versus \(Fr^4/C_{FM} \) will intersect the ordinate \((Fr =0) \) at \((1+k) \), enabling the form factor to be determined. In the case of a bulbous bow near the water surface these assumptions may not be valid and care should be taken in the interpretation of the results.

When using form factor methods for scaling the drag of appendages, the form factor increase due to fitting appendages should be determined from test results at higher speeds to avoid laminar flow.

\[\Delta k = d (C_{TM}(appended) - C_{TM}(barehull))/dC_{FM} \]

This procedure avoids the need for low speed testing to determine the form factor.

3.6.3 Blockage Corrections

The dimensions of the towing tank should be reported with the test result documentation (see Section 3.7). The dimensions should be large enough to avoid wall and blockage effects.

The following formulae are recommended for carrying out blockage corrections if they are necessary. For easy use and comparison the correctors are listed in their simplest form as given by the respective author, after neglecting second order terms or being simplified other-
wise. Detailed information may be found in the original papers. The formulae are based on mean-flow theory:

1. **Schuster**

\[
\frac{\Delta V}{V} = \frac{m}{1 - m - Fr_{h}^{10}} + \left(1 - \frac{R_v}{R_T}\right)\frac{2}{3} Fr_{h}^{10}
\]

where \(m = \frac{A_x}{A} \), and \(R_v/R_T \) is the ratio of viscous to total resistance.

The second term is the shallow water influence on wave making resistance, converted to a speed correction where \(Fr_{h}^{10} \) is a good approximation of the hyperbolic function of the shallow water wave velocity within the range \(0 < Fr_{h} < 0.7 \).

2. **Scott**

\[
\frac{\Delta V}{V} = K_1 \nabla A^2 + B L^2 K_2 A^2
\]

The first term is the empirically improved version of Scott's original formula with \(K_1 \) as a function of \(Re \) and the form-parameter

![Figure 2](attachment:image.png)

Figure 2 Correction factor \(K_1 \) (Scott)
The second term is a function of Fr and form from experiments deduced to extend the range of applicability up to Fr = 0.38. K_2 is given in analytical form:

\[K_2 = 2.4(Fr - 0.22)^2 \text{ for } 0.22 < Fr < 0.38 \]
\[K_2 = 0 \text{ for } Fr < 0.22 \]

The validity of the formula is confirmed for the range of model size 3.5 m < L < 9 m, tanks of approximately 2:1 breadth to water depth ratio and speed range between 0.08 < Fr < 0.4.

3. Tamura

\[\frac{\Delta V}{V} = 0.67.m \left[\frac{L}{B} \right]^3 \cdot \frac{1}{(1 - Fr_k^2)} \text{ where } m = \frac{A_k}{A} \]

Generally, a blockage correction as a speed factor is preferable as it facilitates its application in resistance and propulsion tests. The influences on wake blockage or pressure defect at the propeller are however unknown and are not separately considered.

Of the different correctors the Scott corrector tends to fit most of the data best but its theoretical base may not be universally accepted. It does however seem to be the best method available and may be recommended for general use with the following limitations:
- Tanks of approximately 2:1 breadth to water depth ratio, model lengths between 3.5 m and 9.0 m and Froude number 0.08 to 0.4.

Based on the successful application of mean-flow theory in connection with shallow-water wave theory, with no need for empirical adjustment and its easy employment, the Schuster corrector is also recommendable as a blockage correction formula with good overall qualities, up to say Fr = 0.3.

Another method commonly used is that due to Tamura which also includes shallow water effects.

All the previous comments are related to normal routine tank work. For blockage corrections in shallow water tanks essentially diverging from 2:1 breadth to water depth ratio, blockage ratios much larger than 0.03 and model tests at depth Froude numbers higher than 0.7, the proposal by Graff (1969) may be suggested as a useful guide.

3.7 Documentation

The results from the test should be collated in a report, which should contain at least the following information:
- Model specification:
 - Identification (model number or similar)
 - Loading condition
 - Turbulence stimulation method
 - Model scale
 - Main dimensions and hydrostatics, included static wetted surface area (see recommendations of ITTC Standard Procedure 7.5-01-01, Ship Models)
- Particulars of the towing tank, including length, breadth and water depth
- Test date
- Parametric data for the test:
 - Water temperature
 - Water density
 - Kinematic viscosity of the water
Form factor (even if \((1+k)=1.0\) is applicable, this should be stated)

- For each speed, the following data should be given as a minimum:
 - Resistance of the model
 - Sinkage fore and aft, or sinkage and trim

4. VALIDATION

4.1 Uncertainty Analysis

Uncertainty analysis should be performed in accordance with ‘Uncertainty Analysis in EFD, Uncertainty Assessment Methodology’ as described in QM 7.5-02-01-01 and ‘Uncertainty Analysis in EFD, Guidelines for Towing Tank Tests’ as described in QM 7.5-02-01-02. In addition to the above an example ‘Uncertainty Analysis, Example for Resistance Test’ is provided in QM 7.5-02-02-02.

4.2 Benchmark Tests

Benchmark data are described and collected in ‘Benchmark Database for CFD, Validation for Resistance and Propulsion’, ITTC QM 7.5-03-02-02

5. REFERENCES

(4) ITTC 1975, 14th International Towing Tank Conference. Form factor according to Prohaska.

(5) ITTC 1999a, Resistance, Resistance test, 22nd International Towing Tank Conference, Seoul/Shanghai, Quality Manual, Procedure 4.9-03-02-01, Revision 00

