Table of Contents

1. PURPOSE OF PROCEDURE2
2. SCOPE ...2
3. GENERAL2
4. MEASUREMENT SYSTEMS3
 4.1 Target flow of measurement.....3
 4.2 Calibration3
 4.3 Flow visualization5
 4.4 Image detection5
 4.5 Data processing5
5. DATA FLOW IN MEASUREMENT SYSTEMS ..5
6. ERROR SOURCES AND PROPAGATION OF ERRORS5
 6.1 Calibration: α5
 6.1.1 Calibration board5
 6.1.2 Optical system5
 6.1.3 Experimental condition6
 6.2 Displacement of Particle Image: ΔX 7
 6.2.1 Visualization7
 6.2.2 Image detection7
 6.2.3 Data processing7
6.3 Time Interval: Δ.t8
 6.3.1 Delay generator8
 6.3.2 Pulse timing accuracy8
6.4 Experiment: Δ.u8
 6.4.1 Particle trajectory8
 6.4.2 Three-dimensional effects on perspective of velocity8
6.5 Measurement position: x8
 6.5.1 Centre position of correlation area: Xc, Xe8
 6.5.2 Non-uniformity of tracer particle distribution8
 6.5.3 Origin correlation9
 6.5.4 Magnification factor9
6.6 Measurement time: t9
7. SUMMARY OF UNCERTAINTIES ...9
8. LIST OF SYMBOLS11
9. REFERENCES12
Uncertainty Analysis: Particle Imaging Velocimetry (PIV)

1. PURPOSE OF PROCEDURE

The purpose of this procedure is to describe the method for uncertainty analysis on flow field measurement by means of particle image velocimetry (PIV). An example of uncertainty analysis (UA) procedure is presented, and it shows typical propagation of measurement uncertainties in PIV measurement.

2. SCOPE

The PIV measurement system consists of several sub-systems, and the evaluation of the measurement needs to consider the coupling between the sub-systems. The guideline of UA on PIV measurement has been proposed by the Visualization Society of Japan (VSJ, 2002) as a result of an organized project on PIV standardization (PIV-STD project, Nishio, et al., 1999). The present procedure was developed based on the guideline of VSJ recommendation. The present procedure is limited to the PIV measurement itself. The uncertainties of model test are not included. The total evaluation of the experiment should consider the contribution of model test uncertainty separately.

3. GENERAL

The PIV measurement detects the flow speed by means of the displacement of particle images ΔX, and the time interval of successive images Δt. The magnification factor α needs to be identified through the calibration, and it provides the physical amount of flow speed. The PIV measurement based on the visualized flow image, and the information of the image differs from the flow field due to the velocity lag of the tracer particle from acceleration and the projection procedure from the 3-D physical space to 2-D image plane. These uncertainty factors of flow visualization are consolidated in a parameter δu. The δu is generally hard to detect systematically generally, and it is usually categorized as an uncertainty factor rather than a measurement parameter. The principle of the PIV measurement on flow speed u can be described by Equation (1).

$$u = \alpha(\Delta X/\Delta t) + \delta u$$ \hspace{1cm} (1)

The PIV measurement system detects the displacement of particle image by means of the correlation of particle pattern in successive particle image. The image analysis of PIV started from the auto-correlation technique, which uses double exposed particle image (Adrian, 1986). It was expanded to the cross-correlation analysis (Kimura, et al., 1986, Keane, et al., 1991), and most commercial PIV systems are based on it. The correlation between successive particle images $f(X, Y)$, $g(X, Y)$ is evaluated by the correlation coefficient shown by Equation (2), and the normalized form shown by Equation (3) is usually used. The f_m and g_m and in Equation (3) show the averaged luminance value of correlation area. The maximum value of correlation coefficient gives the location of most similar particle pattern in $g(X, Y)$, and the relative position (ΔX, ΔY) shows the displacement of particle image.
Uncertainty Analysis
Particle Imaging Velocimetry

\[C_{fg}(\Delta X, \Delta Y) = \sum_{i=1}^{N} \sum_{j=1}^{N} f(X_i, Y_j)g(X_i + \Delta X, Y_j + \Delta Y) \]

\[R_{fg}(\Delta X, \Delta Y) = \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} [f(X_i, Y_j) - f_m]^2 [g(X_i + \Delta X, Y_j + \Delta Y) - g_m]^2} \]

Some of the measurement systems apply the fast Fourier Transform (FFT), which shortens the computational time (Raffel, et al., 1998). The distribution of correlation coefficient is obtained by Equations (4) and (5) by means of the FFT operator \(\mathcal{F} \).

\[S_{fg}(\xi, \eta) = \mathcal{F}^{-1}\{f(X,Y)\} \mathcal{F}^{-1}\{g(X,Y)\} \]

\[C_{fg}(X, Y) = \mathcal{F}^{-1}\{S_{fg}(\xi, \eta)\} \]

4. MEASUREMENT SYSTEMS

The target experiment and measurement procedure should be clarified before the uncertainty analysis begins. Table 1 shows the principal dimensions of target measurement, which consists of the following sub-systems: (1) Calibration, (2) Flow Visualization, (3) Image Detection, and (4) Data Processing.

4.1 Target flow of measurement.

The target flow field of the present case is a two-dimensional water flow such as the centre plane of a model ship wake. The measurement area is 320 x 330 mm², which is determined by the arrangement of camera and optical systems and that also depends on the capacity of laser power for illumination.

4.2 Calibration

The calibration was conducted by insertion of a calibration board at the same position as the laser light sheet. The distance of the reference point \(l_r \) and its distance on the image plane \(L_r \) were used to determine the magnification factor, \(\alpha \), as
\[\alpha = l_r \cos \theta / L_r \approx l_r (1 - \theta^2 / 2) / L_r \] (8)

where \(L_r \) was obtained by detecting the reference points in pixel units and \(\theta \) is a small angle between the light sheet and calibration board. This is the simplest method for the calibration.

Target Flow of Measurement

<table>
<thead>
<tr>
<th>Target flow</th>
<th>2-D water flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement facility</td>
<td>Circulating water channel</td>
</tr>
<tr>
<td>Measurement area</td>
<td>320 x 330 mm²</td>
</tr>
<tr>
<td>Uniform flow speed</td>
<td>0.5 m/s</td>
</tr>
</tbody>
</table>

Calibration

Distance of reference points	\(l_r \) 260 mm
Distance of reference image	\(L_r \) 823 pixels
Magnification factor	\(\alpha \) 0.316 mm/pixel

Flow Visualization

Tracer particle	Spherical nylon particle
Average diameter	\(d_p \) 0.05 mm
Standard deviation of diameter	\(s_p \) 0.005 mm
Average specific gravity	1.02
Light source	Double pulse Nd:YAG laser
Laser power	20 mJ
Thickness of laser light sheet	1.0 mm
Time interval	\(\Delta t \) 2.4 ms

Image Detection

| Camera |
Spatial resolution	1008 x 1018 pixels
Sampling frequency	30 Hz
Gray scale resolution	8 bit
Cell size	9 μm x 9 μm

Optical system

Distance from the target	\(l_t \) 1100 mm
Length of focus	60 mm
F number of lens	f 2.8
Perspective angle	\(\theta \) 16.7°

Data Processing

Pixel unit analysis	Cross correlation method
Correlation area size	32 x 32 pixels
Search area size	16 x 16 pixels
Sub-pixel analysis	3 points Gaussian fitting

Table 1: Principal dimensions of PIV measurement
4.3 Flow visualization.

Spherical nylon particles and laser light sheet were employed for the flow visualization. A double-pulse laser synchronizes to the CCD camera, and the frame straddling technique was applied to shorten the time interval of successive pair images.

4.4 Image detection.

The CCD camera (PIVCAM) recorded the images. It has high-spatial resolution of the captured image and can synchronize to the double-pulse laser. The optical system was designed for optimisation of the quality of the visualized image.

4.5 Data processing.

The direct cross-correlation method was applied in the pixel unit analysis, and it uses the correlation function obtained by Equation (3). A relatively large correlation area was selected for small mis-matching rate, and it affects the lower spatial resolution of the measurement. Three-point Gaussian fitting technique was selected for the sub-pixel analysis. It usually shows stable performance of analysis.

5. DATA FLOW IN MEASUREMENT SYSTEMS

The data flow in the measurement system is shown in Figure 1. The measurement starts from the digital image of the visualized flow field, the pulsing time of illumination, and the distance of reference points. The final targets of the measurement are the flow velocity, the measurement location, and the measurement time. Possible error sources are also shown in Figure 1, and the errors propagate to the final measured target through the data flow.

6. ERROR SOURCES AND PROPAGATION OF ERRORS

6.1 Calibration: \(\alpha \)

6.1.1 Calibration board.

Image distance of reference points: \(L_r \)

The distance of the reference points were measured on the image plane. If the position of the reference points were detected from a single point of image, the uncertainty band will be 0.5 pixels, and the total amount of uncertainty band will be 0.7 pixels. The sensitivity factor for \(\alpha \) will be from Equation (8)

\[
\frac{\partial \alpha}{\partial L_r} = -\frac{L}{L_r^2} = -3.84 \times 10^{-4} \text{ [mm/pixel]}^2
\]

Physical distance of reference points: \(l_r \)

The uncertainties of the physical length of the reference points affect the accuracy of the magnification factor. The well-controlled calibration board has less than a 20-\(\mu \text{m} \) error. The sensitivity factor of it will be from Equation (8)

\[
\frac{\partial \alpha}{\partial l_r} = -\frac{1}{L_r} = 1.22 \times 10^{-3} \text{ [1/pixel]}
\]

6.1.2 Optical system.

Image distortion: \(X_s, X_e \)

The image could be distorted by the aberration of lenses. The distortion of the image affects the error of magnification factor. The distortion of the image will be less than 0.5% of total length, and 0.005\(L_r = 4.1 \text{ pixel} \). The sensitivity factor will be given from Equation (8) by

\[
\frac{\partial \alpha}{\partial L_r} = -\frac{1}{L_r} = -3.84 \times 10^{-4} \text{ [mm/pixel]}^2
\]
Distortion and other error sources of CCD.

The distortion and other error factors from the CCD could cause errors of image detection. The uncertainty band caused by the accuracy of CCD is usually small, and it can be neglected in this case.

![Figure 1: Data flow of PIV measurement](image)

6.1.3 Experimental condition.

Reference board position.

The position of the reference board and the laser light sheet could be different. The difference could affect the accuracy of magnification factor. When the pinhole camera model is assumed, α can be described $\alpha = l_t/L_t = h/f$, where h and f show the distance from the target and the focus length in pixel unit respectively. The difference is less than $\Delta z_0 = 0.5$ mm, and the sensitivity coefficient is obtained as follows because the reduction equation is linear for l_t.

$$\frac{\partial \alpha}{\partial l_t} = l_t/(L_t \cdot l_t) = 2.87 \times 10^{-4} \text{ [1/pixel]}$$
Parallel reference board.

Ideally, the calibration board should be parallel to the laser light sheet for visualization. When the angle between original laser plane and calibration board deviates at most $\theta_1 = 2^\circ = 0.035$ rad from parallel, the sensitivity factor is from Equation (8)

$$\frac{\partial \alpha}{\partial \theta} = -l_r \cdot \theta / L_r = -0.011 \, \text{mm/pixel}$$

6.2 Displacement of Particle Image: ΔX

6.2.1 Visualization.

Laser power fluctuation

The spatial and temporal fluctuation of laser power could affect the detection of particle image position directly. The maximum uncertainty could be in the length of particle diameter. If the experimental condition is well controlled, uncertainty can be reduced to 1/10 of particle diameter. The displacement of the particle is obtained from two particle images, and the uncertainty band could be estimated as $\Delta x = 7.1 \times 10^{-3}$ mm, and the sensitivity factor is from Equation (6)

$$\frac{\partial \alpha}{\partial x} = 1 / \alpha = 3.16 \, \text{pixel/mm}.$$
Uncertainty Analysis
An Example for PIV Measurement

unit analysis could be estimated statistically, and it could be about 0.2 pixels.

Sub-pixel analysis.

The uncertainties of sub-pixel analysis depend on many factors such as the diameter of tracer particle, noise level of the image, and particle concentration. The system error of sub-pixel analysis can be estimated by means of standard image (Okamoto et al, 2000), and it could be about 0.03 pixels.

Other error sources may exist, which affect the results of image analysis, but those effects can be regarded as the indirect procedure. They may be included in the error rate of image analysis.

6.3 Time Interval: Δt.

6.3.1 Delay generator.

The delay generator controls the pulse timing, and the possible fluctuation will be 2 ns, which is obtained from the user manual. The sensitivity factor for the measurement time is 1.

6.3.2 Pulse timing accuracy.

The pulse laser itself has an uncertainty for the pulse timing. The uncertainty band for it will be 5 ns, which obtained form manual. The sensitivity factor for the measurement time is 1.

6.4 Experiment: δt.

6.4.1 Particle trajectory

The particle trajectory depends on the acceleration of flow field, and the tracer particles for liquid flow have usually very low velocity lag from acceleration of the fluid (Raffel, et al. 1998). When the particle diameter is 50 μm and the relative density is 1.02, nearly neutrally buoyant, the error from velocity lag is less than 0.01% of total velocity. Then in this case,

$$\delta u = 0.5 \times 1000 \times 0.0001 = 0.5 \text{ mm/s}$$

6.4.2 Three-dimensional effects on perspective of velocity

The perspective of out-of-plane velocity component affects the in-plane measured value. The measured velocity can be described as follows:

$$u_m = u + w \cdot \tan \theta$$

where w is the normal velocity component. Then $w \cdot \tan \theta$ indicates the error component. The perspective angle θ can be estimated by the distance from the target plane and the size of measurement area. When the out of plane component of velocity is assumed as 1.0% of uniform flow, the error could be estimated as

$$500 \times 0.01 \times \tan(160/1100) = 0.73 \text{ [mm/s]}$$

6.5 Measurement position: x

6.5.1 Centre position of correlation area: X_c

$$X_c$$

The centre position of correlation area is defined in pixel units, and it has at most 0.5 pixels uncertainty. The sensitivity coefficient is from Equation (6)

$$\frac{\partial x}{\partial X} = \alpha = 0.316 \text{ [mm/pixel]}$$

6.5.2 Non-uniformity of tracer particle distribution.

The flow speed is identified from the displacement of a particle image. When the particle distribution is not uniform in the correlation area, the centre position of the measured velo-
ity field could be apart from the centre of correlation area. The possibility of the bias will be at most one fourth of the correlation area size, and the sensitivity factor is from Equation (6)\[\frac{\partial x}{\partial X} = \alpha = 0.316 \text{ [mm/pixel]}\].

6.5.3 Origin correlation.

The \(X_0\) indicates the location of the origin on the image plane. The correlation between physical space and image plane should be identified for the definition of the coordinate system. The correlation could have uncertainty in the range of 2 pixels, and the sensitivity factor is from Equation (6)\[\frac{\partial x}{\partial X} = \alpha = 0.316 \text{ [mm/pixel]}\].

6.5.4 Magnification factor.

The coordinates of each measurement point are obtained by transferring the image position to physical space by Equation (6). The magnification factor appeared in Equation (6) has an uncertainty as described in Section 6.1. The sensitivity factor for the position is from Equation (6)\[\frac{\partial x}{\partial \alpha} = X \text{ [pixel]},\]
and it can be selected as the half-length of the image width.

6.6 Measurement time: \(t\)

The fluctuation of pulse time could be an error source of measurement from the time series analysis. The measurement time is defined by Equation (7), and the uncertainties of \(t_e\) and \(t_c\) are the same as \(\Delta t\) as described in Section 6.3.

7. SUMMARY OF UNCERTAINTIES

The uncertainties of measurement were summarized in Table 2 and Table 3. Root-sum-square is employed for the accumulation of uncertainties. Table 2 summarizes the propagation and accumulation of uncertainties for measurement parameters \(\alpha, \Delta X, \Delta t, \delta u\), and the final measurement target velocity \(u\). The uncertainty propagation to the measurement target position \(x\) and time \(t\) is also considered as shown in Table 3. The uncertainties of \(u, x\), and \(t\) are analysed independently. When accumulation for total performance of the measurement system by the uncertainty for the flow speed is needed, the following summation can be applied, where \(u_u, u_x,\) and \(u_t\) represent the uncertainties of \(u, x,\) and \(t\), respectively:

\[
u_c = \sqrt{(u_u)^2 + (u_x \frac{\partial u}{\partial x})^2 + (u_t \frac{\partial u}{\partial t})^2} \quad (10)
\]

When the combined uncertainties are considered, the major uncertainty sources may be evaluated. The largest uncertainty source in this case is the mis-matching uncertainty of \(\pm 0.20\) pixels, which appeared in the image analysis procedure. Its contribution to the uncertainty in velocity is \(\pm 26 \text{ mm/s}\) in comparison to the combined uncertainty for all elements of \(\pm 27 \text{ mm/s}\). The next two largest sources are the sub-pixel analysis, \(\pm 0.03\) pixels or \(\pm 4.0 \text{ mm/s}\), and the uncertainty of calibration caused by the lens aberration, \(\pm 4.11\) pixels or \(\pm 2.5 \text{ mm/s}\). This kind of analysis can contribute to the improvement of measurement systems. For this example, any significant improvement in uncertainty must focus on the mis-matching error. For the uniform flow, the expanded uncertainty in velocity is \((0.500 \pm 0.054) \text{ m/s}\) or \(\pm 11\%\) for a coverage factor of 2.
Uncertainty Analysis

An Example for PIV Measurement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Category</th>
<th>Error sources</th>
<th>(u(x_i)) (unit)</th>
<th>(c_i) (unit)</th>
<th>(c_i u(x_i)) (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) (mm/pix)</td>
<td>Calibration</td>
<td>Reference image</td>
<td>0.70 (pix)</td>
<td>3.84E-04 (mm/pix^2)</td>
<td>2.69E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical distance</td>
<td>0.02 (mm)</td>
<td>1.22E-03 (1/pix)</td>
<td>2.44E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image distortion by lens</td>
<td>4.11 (pix)</td>
<td>3.84E-04 (mm/pix^2)</td>
<td>1.57E-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image distortion by CCD</td>
<td>0.0056 (pix)</td>
<td>3.84E-04 (mm/pix^2)</td>
<td>2.15E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Board position</td>
<td>0.5 (mm)</td>
<td>2.84E-04 (1/pix)</td>
<td>1.42E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel board</td>
<td>0.035 (rad)</td>
<td>0.011 (mm/pix)</td>
<td>3.85E-04</td>
</tr>
<tr>
<td>(\Delta X) (pix)</td>
<td>Acquisition</td>
<td>Laser power fluctuation</td>
<td>0.0071 (mm)</td>
<td>3.16 (pix/mm)</td>
<td>0.0224</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image distortion by CCD</td>
<td>0.0056 (pix)</td>
<td>1.0</td>
<td>0.0056</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal view angle</td>
<td>0.035 (rad)</td>
<td>0.011 (mm/pix)</td>
<td>3.85E-04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduction</td>
<td>0.20 (pix)</td>
<td>1.0</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mis-matching error</td>
<td>0.03 (pix)</td>
<td>1.0</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-pixel analysis</td>
<td>0.204</td>
<td> </td>
<td>0.204</td>
</tr>
<tr>
<td>(\Delta t) (s)</td>
<td>Acquisition</td>
<td>Delay generator</td>
<td>2.00E-09 (s)</td>
<td>1.0</td>
<td>2.00E-09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pulse time</td>
<td>5.00E-09 (s)</td>
<td>1.0</td>
<td>5.00E-09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image interval</td>
<td>5.39E-09 (s)</td>
<td>1.2 (mm/s^2)</td>
<td>6.47E-09</td>
</tr>
<tr>
<td>(\delta u) (mm/s)</td>
<td>Experiment</td>
<td>Particle trajectory</td>
<td>0.05 (mm/s)</td>
<td>1.0</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-D effects</td>
<td>0.73 (mm/s)</td>
<td>1.0</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Table 2: Summary of uncertainties for velocity \(u \)

Parameter: \(\alpha \) Magnification factor

Parameter: \(\Delta X \) Image displacement

Parameter: \(\Delta t \) Image interval

Parameter: \(\delta u \) Experiment

Standard uncertainty: \(u(x_i) \)

Combined uncertainty: \(u_c \)

Sensitivity coefficient: \(c_i = \partial f/\partial x_i \)
Parameter	Category	Error sources	$u(x_i)$ (unit)	c_i (unit)	$c_iu(x_i)$ (unit)
X_s, X_e | Acquisition | Digital error | 0.5 (pix) | 0.316 (mm/pix) | 0.158
Non-uniformity of distribution | 8.0 (pix) | 0.316 (mm/pix) | 2.53
X_0 | Calibration | Origin correlation | 2.0 (pix) | 0.316 (mm/pix) | 0.632
α | Magnification factor | | 0.00178 (mm/pix) | 506.0 (pix) | 0.906

Combined uncertainty: $u_x = 2.76$ (mm)

Parameter	Category	Error sources	$u(x_i)$ (unit)	c_i (unit)	$c_iu(x_i)$ (unit)
t_s, t_e | Acquisition | Delay generator | 2.00E-09 (s) | 1.0 | 2.00E-09
Pulse time | 5.00E-09 (s) | 1.0 | 5.00E-09

Combined uncertainty: $u_t = 5.39E-09$ (s)

Standard uncertainty: $u(x_i)$
Sensitivity coefficient: $c_i = \partial f / \partial x_i$

Table 3: Summary of uncertainty for position, x, and time, t

8. **LIST OF SYMBOLS**

- C_{fg}: Covariance function of particle images f and g, Equation (2)
- c_i: Sensitivity coefficient, $c_i = \partial f / \partial x_i$
- d_p: Particle diameter, mm
- \mathcal{F}: Fourier transform operator
- f: Initial set of particle images
- g: Second set of particle images
- L_r: Distance of reference image, pixel
- l_r: Distance of reference point, mm
- l_t: Distance from target to lens, mm
- R_{fg}: Cross-correlation function particle images of f and g, Equation (3)
- S_{fg}: Spectrum of particle images f and g, Equation (4)
- s_p: Standard deviation of particle diameter, mm
- t: Time, s
- t_e: End time on second laser pulse, s
- t_s: Start time on first laser pulse, s
- u: Standard uncertainty
- u_x: Fluid velocity in axial direction, x, mm/s
- w: Fluid velocity in vertical direction, mm/s
- X: Axial coordinate of particle in image plane, pixel
- X_e: End location of particle, pixel
- X_s: Start location of particle, pixel
- x: Location of fluid particle in physical plane, mm
- Y: Vertical coordinate of particle in image plane, pixel
- α: Magnification factor, mm/pixel
- θ: Viewing angle, rad
9. REFERENCES

