

22–27 SEPTEMBER 2024 | HOBART TASMANIA AUSTRALIA

Report of the Quality Systems Group

Quality Systems Group

1. INTRODUCTION

1.1 Membership and Meetings

The members of the Quality Systems Group of the 30th ITTC are:

Prof. Marco Ferrando (Chair)

University of Genoa Via Balbi 5, 16126 Genoa, ITALY

Weimin Chen

Shanghai Ship and Shipping Research Institute (SSSRI) No. 600, Minsheng Road, Pudong New Area, Shanghai, CHINA

Gregory Grigoropoulos

National Technical University of Athens 9 Heroon Polytechniou, 15773 Zografou GREECE

Dr. Spyros Hirdaris, CEng FRINA FSNAME

ABS Hellenic SM LLC. 1, Sachtouri & Navarinou Str. | Kallithea, Athens – 176 74 | GREECE

Kwang-Jun Paik

Inha University

2N491, Inha-ro 100, Michuhol-gu, Incheon 22212, ROK

Chengsheng Wu China Ship Scientific Research Centre (CSSRC) No. 222, Shanshui East Road, Wuxi City, Jiangsu province, CHINA

Daisuke Kitazawa

University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778574, JAPAN

Prof. Tahsin Tezdogan

University of Southampton Boldrewood Campus, Burgess Road SO16 7QF Southampton, UK

Joel T. Park, Ph. D., FASME (Secretary)

Naval Surface Warfare Center Carderock Division (NSWCCD) 9500 MacArthur Boulevard Code 852, Bldg. 18, Rm 201F West Bethesda, MD 20817-5700, USA

Prof. Joel Sales Sena Jr.

LabOceano - Brazilian Ocean Technology Laboratory Parque Tecnológico do Rio, Rua Paulo Emídio Barbosa, 485 Quadra 7-a, Rio de Janeiro BRAZIL Quality Systems Group meetings have been held during the work period:

No in person meetings have been held. The work was performed by video conferences and mail exchange

1.2 Tasks

The recommendations for the work of the Quality Systems Group as given by the 29th ITTC were as follows:

- 1. During the first six months after the conference:
- A) Perform a detailed review of all ITTC Recommended Procedures and Guidelines for compliance with ITTC quality requirements with regard to format, references, symbols, terminology, uncertainty analysis and parameter lists.
- B) Either update the procedures in these aspects or cooperate with the relevant committee on these updates.
- C) Submit the updated procedures to the Advisory Council (AC) before 31.12.2021.
- 2. During the first six months after the conference:
- A) Perform a detailed review of all uncertainty analysis procedures for compliance with ITTC quality requirements about format, references, symbols, terminology and parameter lists.
- B) Check that all uncertainty analysis procedures contain a worked example based on the current versions of model test procedures.
- C) Cooperate with the relevant technical committees on updating the procedures, including a worked example.
- D) Submit a status report on this task to the Advisory Council before 31.12.2021, updating expected to be completed before 30.06.2022.

- 3. Review the titles and numbering of technical procedures and propose changes, if any, for approval by the Advisory Council before 31.12.2021.
- 4. Maintain the Register of ITTC Recommended Procedures and Guidelines.
- Introduce New Uncertainty Analyses Guidelines to include data anomalies in Machine Learning Algorithms for Autonomous and Intelligent ships.
- 6. Observe the development or revision of ISO Standards regarding Quality Control.
- 7. Update the ITTC Symbols and Terminology List.
- 8. Update the Uncertainty Analysis section of the Symbols & Terminology List.
- 9. Update the ITTC Dictionary of Hydromechanics.
- 10. Expand the content of current ITTC dictionary version, considering CFD, MASS, etc.
- 11. Support the technical committees dealing with stochastic processes with guidance on development, revision, and update of procedures for the inclusion of confidence bands on their computational and experimental results.
- 12. Observe BIPM/JCGM standards for uncertainty analysis, in particular the uncertainty analysis terminology.
- 13. Review developments in metrology theory and uncertainty analysis and issue appropriate procedures.
- 14. Setup an effective way to collect benchmark data.
- 15. Upload all the collected and verified benchmark data into the ITTC benchmark data repository.
- 16. Liaise with relevant technical committees to complete a questionnaire about the demand and use of benchmarks, not to be limited to model scale.
- 17. Cooperate with technical committees to establish the ITTC benchmarks, including definition, raw data, data format, etc.

18. Prepare a procedure on the internal calibration of steel rulers or a practical way to check length measurement.

2. PERFORMED TASKS

2.1 Perform a detailed review of all ITTC Recommended Procedures and Guidelines for compliance with ITTC quality requirements with regard to format, references, symbols, terminology, uncertainty analysis and parameter lists.

A detailed review of the documents under the paragraph 7.5 Process Control of the Quality Systems Manual - Version 2021 has been undertaken.

114 documents have been analysed and checked against procedure 4.2.3-01-01 Guide for the Preparation of ITTC Recommended Procedures.

Procedure 4.2.3-01-01 prescribed a rigid scheme for ITTC Procedures.

The outcome of the review is produced in detail in Appendix A. and summarized as follows:

No. of documents Structure of documents

14	slightly different
65	different

35 strongly different

and <u>not a single document is fully compliant</u> with the prescribed structure.

Following this, the AC decided to modify procedure 4.2.3-01-01 Guide for the Preparation of ITTC Recommended Procedures.

AC decided also that a complete revision of all procedures and guidelines to follow the ITTC standard would not be possible this term. It will be part of the Terms of Reference for the next term. As regards Procedures/guidelines missing the Parameters/Symbols paragraph AC decided to ask the concerned committees to fill in missing symbols in this term.

2.2 Perform a detailed review of all uncertainty analysis procedures for compliance with ITTC quality requirements about format, references, symbols, terminology and parameter lists.

A detailed review of the uncertainty analysis procedures under the paragraph 7.5 Process Control of the Quality Systems Manual - Version 2021 has been undertaken.

The elements of the review included the following six items:

- Format
- References
- Terminology
- Symbols
- Parameters List
- Example

A total of 113 procedures was reviewed and a summary is included in Appendix B. . Three of the six items (Example, Reference, and Symbol) are included as columns in the appendix. Additional discussion is in the Comment column.

2.3 Review the titles and numbering of technical procedures and propose changes, if any, for approval by the Advisory Council before 31.12.2021.

The review of numbering, titles, and classification of the documents under the paragraph 7.5 Process Control of the Quality Systems Manual - Version 2021 has been undertaken.

Procedures in the following table were found to have a wrong classification since their content is rather a Guideline than a Procedure.

7.5-02-01-03	Р	Fresh Water and Seawater Properties
7.5-02-05-04.1	Р	Excerpt of ISO 2631, Seasick- ness and Fatigue
7.5-03-02-02	Р	Benchmark Database for CFD Validation for Resistance and Propulsion

Following this their classification has been changed.

As regards Procedure

7.5-02-05-05	Р	Evaluation and Documentation of HSMV
--------------	---	--------------------------------------

the document is a rather a Guideline than a Procedure and its classification has been changed. The name was misleading and has been changed into: Evaluation and Documentation of High-Speed Marine Vehicle (HSMV) Manoeuvrability

Procedure

7.5-02-05-06	Р	HSMV Structural Loads
	•	

had a misleading name that has been changed into: High-Speed Marine Vehicle (HSMV) Model Tests for Prediction of Structural Loads

The AC concurred on the need to implement the proposed changes that are being finalised during this conference.

The Resistance and Propulsion committee suggested that guideline 7.5-02-03-02.5 Experimental Wake Scaling Methods could be renamed "Experimental Wake Scaling Methods for a Cavitation Test" and renumbered to sit within the 7.5-02-03-03 Cavitation section.

The suggestion was accepted and a new guideline 7.5-02-03-03.10 Experimental Wake Scaling Methods for a Cavitation Test has been added to the Register.

2.4 Maintain the Register of ITTC Recommended Procedures and Guidelines.

During the second meeting the Advisory Council decided that on the front page of all ITTC Recommended Procedures and Guidelines there should be a remark regarding copyright. Additional to this, there should be provided a placeholder for the DOI Number.

Following this request the front page of Procedures/Guidelines has been updated and substituted to the existing one in most of the updated documents.

Accordingly, also procedure 4.2.3-01-01 Guide for the Preparation of ITTC Recommended Procedures and Work instruction 4.2.3-01-03 Work Instruction for Formatting ITTC Recommended Procedures have been updated.

As an example of the new format requirements application Guideline 7.5-02-01-03 Fresh Water and Seawater Properties has been updated.

The revision of the Manual of ITTC Recommended Procedures and Guidelines included 81 documents:

- 2 existing procedures were deleted.
- 7 new Procedures/Guidelines have been approved.
- 72 existing procedures have been reviewed or updated.
- 34 cover pages have been updated to the new format.
- Procedures 7.5-02-02-01 Resistance Tests and 7.5-02-03-01.4 1978 ITTC Performance Prediction Method have been corrected for small typographic errors.

The table of "Revision Outcomes" is illustrated in Appendix C.

2.5 Introduce New Uncertainty Analyses Guidelines to include data anomalies in

Machine Learning Algorithms for Autonomous and Intelligent ships.

Task 5 has not been performed. This task was proposed by QSG following a suggestion of Ahmed Derradji-Aouat, the only QSG member with the relevant expertise. No member of the current QSG possess the required knowledge and AC agreed to postpone this task.

2.6 Observe the development or revision of ISO Standards regarding Quality Control.

The member of the QCG GG organized the 42nd ISO/TC8 Plenary Meeting in Athens during September 18-22, 2023. The active Sub-Committees (SC) and Working Groups (WG) and their context within ISO/TC8 are listed in the following two tables (the published standards of the SCs are given in parentheses):

SC1	Maritime Safety (56)
SC2	Marine Environment Protection (32)
SC3	Piping and Machinery (57)
SC4	Outfitting and Deck Machinery (80)
SC6	Navigation and Ship Operations (42)
SC7	Inland Navigation Vessels (34)
SC8	Ship Design (66)
SC11	Intermodal & Short Sea Shipping (8)
SC12	Large Yachts (12)
SC13	Marine Technology (15)
SC25	Maritime GHG reduction (4)
	GHG: Greenhouse gas
WG2	Special Offshore Structures and
WUS	Support Vessels
WG4	Maritime Security
WG6	Ship Recycling
WG8	Liquid and Gas Fuelled Vessels
WG10	Smart Shipping
WG11	Dredger
WG12	Aquatic Nuisance Species
WG14	Maritime Education and Training

During this meeting the development trends of maritime standards were discussed by representative of various stakeholders (shipowners, class societies, shipbuilders). Reduction of polluting emissions, alternative fuels, sustainable energy resources and automation affect directly ship operation. To this goal standards for the following items must be developed or updated:

- Alternative fuels (biofuels, synthetic fuels, green fuels, hydrogen, ammonia, methanol)
- Carbon capture on board
- Transportation of CO₂, or its transformation to other substances.
- Transportation of H₂, NH₃ and biofuels.
- Use of various Energy Saving Devices.
- Air-Assisted Propulsion (sails, kite, Flettner rotors)
- Alternative auxiliary propulsion devices (flapping foils, ducts etc.)
- Digitalization and onboard information
- AI-driven operations onboard
- Cyber-security in data handling and transfer
- Electrification in ship operation
- Other ISO/TCs of interest to ITTC are:
 - ISO/TC188 Small Craft (97 published standards; 14 of them refer on personal safety equipment)
 - ISO/TC204 Intelligent Transport Systems (340 published standards)
 - ISO /TC43 Acoustics (221 published standards)
 - ISO/TC067 Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries (203 published standards; 22 of them refer to Offshore structures and 6 to Arctic operations)

Finally, an ongoing discussion is occurring in the ISO/TC8/SC6/WG17 enhanced by representatives from ITTC for updating ISO15016:2015 on Speed/Power Trials Procedure & Analysis.

2.7 Update the ITTC Symbols and Terminology List.

During meeting 30:2 the Advisory Council decided that additional to the symbols in the symbols list also acronyms can be given. To this effect QSG has been requested to add a relevant column in the Symbols and Terminology List replacing the existing column named Computer Symbol.

An acronyms list is incompatible with the table format in ITTC (2021a). A separate table of acronyms has been prepared for ITTC (2021a):

Acronym	Definition				
AC	Advisory Council				
EC	Executive Council				
BIPM	Bureau International des Poids et Mesures				
CFD	Computational fluid dynamics				
EFD	Experimental fluid dynamics				
ESD	Energy Saving Device				
GUM	Guide to the expression of Uncer- tainty in Measurement				
HSMV	High-speed marine vehicle				
IMO	International Maritime Organization				
ISO	International Organization for Standardization				
JCGM	Joint Committee for Guides in Me- trology				
JCGM-WG1	JCGM Working Group 1				
JCGM-WG2	JCGM Working Group 2				
LDV	Laser Doppler velocimetry				
MSC	Marine Safety Committee				
NMI	National Metrology Institute				
PIV	Particle imaging velocimetry				
QSG	Quality Systems Group				
SPIV	Stereo-PIV				
TC	Technical committee				
UV	Underwater vehicle				
V&V	Verification and validation				
VIM	International vocabulary of metrol- ogy				
VIM	Vortex induced motion				
VIV	Vortex induced vibration				

A section on verification and validation (V&V) should be added. The V&V equation as provided by ASME (2009) is as follows:

$$E = S - D \tag{1}$$

where *E* is the validation error, *S* is the simulation result, and *D* is the experimental data. The V&V ITTC procedures appear to follow this definition but do not reference ASME (2009). The procedures should be consistent. In some locations the definition is reversed: E = D - S. Example V&V ITTC procedures are ITTC (2021b, c) 7.5-03-01-01 and 7.5-03-04-02. ITTC (2021c) 7.5-03-04-02 has been reviewed by QSG for the Manoeuvring Committee.

The equations written using Math Type were transformed into MS Equation format.

2.8 Update the Uncertainty Analysis section of the Symbols & Terminology List.

The uncertainty symbols list is on pages 5 through 12 in section 1.1.1 Uncertainty of ITTC (2021a). This table contains numerous errors and should be replaced with Annex J of JCGM 100:2008. This table has been revised to align with the contents of JCGM 100:2008-Annex J

2.9 Update the ITTC Dictionary of Hydromechanics.

The ITTC structured dictionary and alphabetical dictionary have been reviewed and the following corrections have been made:

The year of the version in the upper right corner was written as 202 or 2017, so it has been corrected to 2021. These dictionaries are updated this year, so finally they are revised to 2024.

Some formulas and variables were written in the old equation editor, so they were rewritten in the new equation editor. Also, some variables have been changed to italics. Some pages were written in two columns, so they were all changed to one column. The order of some figures has been adjusted accordingly.

Regarding links to figures, the links with misaligned figure numbers and links to different figures have been corrected. In Chapter 9, links to figures have been inserted as in the other chapters.

Some typos and omissions have been corrected.

The descriptions such as "(which see)" and others have been found. They will be removed as extraneous in the future.

2.10 Expand the content of current ITTC dictionary version, considering CFD, MASS, etc.

Explanation of keywords related to Computational Fluid Dynamics (CFD) has been add-ed. Keywords were extracted from 12 CFD-related procedures from 7.5-03-01-01 to 7.5-03-04-02. Keywords explained in other chapters of existing dictionaries were omitted. In the end, 76 keywords were extracted and explained with reference to specialized books on CFD. These keywords are first consolidated into ITTC structured dictionary, and the overall index of titles is updated. It is then integrated into the ITTC alphabetical dictionary.

2.11 Support the technical committees dealing with stochastic processes with guidance on development, revision, and update of procedures for the inclusion of confidence bands on their computational and experimental results.

No request has been received on this topic.

QSG assisted in reviewing procedure 7.5-02-05-03.3, revised by the Resistance and Propulsion Committee, as regard Uncertainty Analysis matters. QSG also assisted Specialist Committee on Ice about an UA procedure for ice resistance tests.

2.12 Observe BIPM/JCGM standards for uncertainty analysis, in particular the uncertainty analysis terminology.

The international standard for uncertainty analysis is the Guide to the expression of Uncertainty in Measurement or GUM. The GUM is managed by the Joint Committee for Guides in Metrology (JCGM) of the Bureau International des Poids et Mesures (BIPM) in Sèvres, France. The JCGM consists of two working groups. Working Group 1 (WG1) manages the GUM, while Working Group 2 (WG2) manages the International Vocabulary of Metrology (VIM).

The GUM consists of the following six (6) documents with details in the References. The web page for downloading JCGM documents is as follows:

https://www.bipm.org/en/committees/jc/jcgm/publications .

> JCGM 100:2008 JCGM 101:2008 JCGM 102:2011 JCGM 106:2012 JCGM GUM-1:2023 JCGM GUM-6:2020

WG1 is in the process of developing two revisions with a new numbering system. The following information is from the WG1 Newsletter dated May 2024. JCGM-1:2023 replaces JCGM 104:2009.

JCGM GUM-5:202x "Guide to the expression of uncertainty in measurement – Part 5: Examples of uncertainty evaluation." A draft is expected by spring 2024.

JCGM GUM-7:202x "Guide to the expression of uncertainty in measurement – Part 7: Propagation of distributions using a Monte

Carlo method." This document will be a re-publication of JCGM 101:2008. An advanced working draft is under discussion.

The JCGM 200:2012 (VIM) is being revised. A draft of the 4^{th} Edition dated July 2023 is being reviewed.

2.13 Review developments in metrology theory and uncertainty analysis and issue appropriate procedures.

New ITTC uncertainty procedures are not provided for this report. A number of journals contain information on metrology and an uncertainty analysis. The number of papers is very large. Summarizing the papers would be a challenge. The following is a list with links to some journals:

- 1. <u>Metrologia</u>. A journal of BIPM. Volumes 58-60 (2021-2023) has about 16 relevant articles: <u>https://iop-</u> science.iop.org/journal/0026-1394
- 2. <u>Journal of Verification, Validation, and</u> <u>Uncertainty Quantification</u>. A journal of the American Society of Mechanical Engineers (ASME): <u>https://asmedigitalcollection.asme.org/verification</u>
- 3. <u>Ocean Engineering</u>. An Elsevier publication: <u>https://www.sciencedi-</u> rect.com/journal/ocean-engineering

ASME has an annual conference on Verification, Validation, and Uncertainty Quantification (VVUQ). No technical papers are published. The web page for the most recent conference is <u>https://event.asme.org/VandV</u>

2.14 Setup an effective way to collect benchmark data.

2.14.1 Definition

Benchmark model, either physical or numerical, is a standardized model to calibrate the results from model test configuration or numerical simulations. The main significance of Benchmark model is to provide a recognized benchmark for evaluating and comparing the performance and effects of ships at various stages, including design, construction, and operation. It can serve as a foundation for researching and developing new methods, based on validation and verification.

Currently, ITTC is paying more attention on benchmark. "benchmark", the word became common in TOR, and most of the committee has at least one task related to benchmark.

General Terms: All committees shall endeavor to identify benchmark data and submit these to the ITTC Secretary for inclusion in the benchmark data repository on the ITTC website.

Resistance and Propulsion Committee: the committee report should include sections on new benchmark data; conduct a benchmark study.

Manoeuvring Committee: collect the benchmark data

Seakeeping Committee: the committee report should include sections on new benchmark data; organize a benchmark experimental campaign

Ocean Engineering Committee: the committee report should include sections on new benchmark data; develop specifications for a benchmark test, and the benchmark study may also include CFD comparisons

Stability in waves Committee: the committee report should include sections on new benchmark data; continue the identification of benchmark data for validation of stability-in-waves predictions

Full-Scale Ship Performance Committee: the committee report should include sections on new benchmark data; collect full scale data obtained through relevant benchmark tests Specialist Committee on Ocean Renewable Energy: Assess level of support for a benchmark study of comparisons

Specialist Committee on Cavitation and Noise: Review the currently available CFD benchmark data

Specialist Committee on Ice: continue work on uncertainty analysis including conducting benchmarking study among ice model basins.

Specialist Committee on Combined CFD and EFD Methods: review the outcome of ongoing CFD benchmark campaigns; develop a standard process of performing a CFD benchmark study within ITTC.

2.14.2 Data type

Regarding as the data type, it may combine with two aspects.

The first aspect is related to profession, which includes resistance, propulsion, seakeeping ability, manoeuvrability, cavitation, offshore, etc. All those typically include a complete set of design parameters, such as main dimensions, parameters, body lines, geometry, as well as major equipment and propulsion systems, like main engines, propulsion systems, and steering devices, etc. It also includes a series of data of ship performance which deprived from model test or numerical simulations, as well as sea trail data.

The second aspect is scope. That is international and regional benchmark for different purpose. International benchmarking data, as a second variant of a Korean VLCC KVLCC2, a Korean container ship KCS, a Japan Bulk Carrier JBC are widely used to verify the performance of new measuring system or new simulation method, while regional benchmarking data are normally for specific research or purpose, as Joint industry project. Some results from Joint Industrial Projects (JIP) could also be used widely after authorized.

2.14.3 Data source

At present, the benchmark data can be mainly downloaded from internet.

Some are from international conference and adopted as benchmark data for various validation and verification. Such as KVLCC, KCS, and JBC, are widely used in many international workshops for calibrations.

Some are from specific project or joint industry project, for a certain research purpose, such as the Joint Research Project JORES project [https://jores.net].

All those data could be defined as benchmark.

2.14.4 Sharing mechanism

Benchmark data normally created from international conference and could be acquired for free. While some benchmark data are obtained from business demand with confidential agreement therefore, they could only be shared within a small-scale party. Therefore, an effective sharing mechanism shall be established within ITTC.

2.14.5 Maintenance and support

Furthermore, a specific group is needed to maintain the benchmark. As learned that benchmark repository has already existed in ITTC website, therefore, it is easy for ITTC member to reach the access. Since many committees have the task related to benchmark, the outputs could be shared in a mutual agreed framework.

2.14.6 Conclusions

The establishment of a benchmark requires a clear understanding of the research needs and objectives. After collecting and cleaning data for a particular type of ship, the characteristic parameters and specifications of the benchmark ship are determined. The benchmark ship should possess the typical characteristics of its ship type but should not have specific features assigned by a particular shipbuilder or operator, making it a common standard. Once established, a benchmark ship can be widely used and studied by researchers and ship designers. This process involves accumulating data from relevant water tank tests and numerical simulations.

Currently, lots of research has been performed related with full-scale ships; therefore, to establish a database is essential with full scale data, which is more useful compared with model scale. All the ITTC community have to work on it step by step.

2.14.7 Question

For the future work, since many technical committees are working on benchmark, the data format and data standard shall be established in the first place.

Meanwhile, data collection and classification shall also be paid more attention.

Last but not least, benchmark work needs support from all technical committee. An operational mechanism shall be discussed.

2.15 Upload all the collected and verified benchmark data into the ITTC benchmark data repository.

Two series benchmark data have been investigated, and the data has also been collected.

- Gothenburg 2010 Workshop on Numerical Ship Hydrodynamics was held in Gothenberg on 8-10 December 2010 and the purpose has been to assess the performance of contemporary CFD codes used in hydrodynamic. The addressed designs were:
 - a US combatant DTMB5415 with 5 different cases
 - a Korean container ship KCS with 9 different cases

- a second variant of a Korean VLCC KVLCC2 with 7 different cases
- Tokyo 2015 Workshop on CFD in Ship Hydrodynamics was held in Tokyo on December 2-4, 2015, with the objective to compare results of state-of-the-art numerical methods for a number of well specified test cases to assess the capabilities of the methods and to find the best way forward. The addressed designs were:
 - Japan Bulk Carrier JBC with 9 different cases
 - KRISO Container Ship KCS with 5 different cases
 - ONR Tumblehome model 5613 ONRT with 3 different cases

All the data is ready, an upload procedure is needed.

Test cases	Series	JBC	KCS	ONRT				
Calm water: Res	istance	1	Z	3				
w/o ESD: re-								
sistance, sinkage	1	1.1	2.1*					
and trim								
With ESD: re-								
sistance, sinkage	2	1.2						
and trim								
w/o ESD: time-								
averaged veloc-								
ity field, turbu-	3	1.3						
lence, wave pat-								
tern								
with ESD: time-								
averaged veloc-	4	1.4						
ity field, turbu-	-							
lence								
w/o ESD: thrust,	_							
torque, sinkage	5	1.5	2.5*					
and trim								
Calm water: Self-	propulsio	on						
with ESD:								
thrust, torque,	6	1.6						
sinkage and trim								
w/o ESD: time-								
averaged veloc-	7	17	2 7*					
ity field, turbu-	/	1./	2.1					
lence								

Test cases	Series No	JBC 1	KCS	ONRT 3
with ESD: time- averaged veloc- ity field, turbu- lence	8	1.8		J
Calm water: Free	Self-proj	pulsion		
thrust, torque, sinkage and trim	9			3.9
Regular wave: he	ad waves			
motion re- sponse, added resistance	10		2.10	
Regular wave: oth	ner headi	ngs		
motion re- sponse, added resistance	11		2.11	
Regular wave: he	ad waves			
thrust, torque, RPS, motion re- sponse, speed loss	12			3.12
Regular wave: oth	ner headi	ngs		
thrust, torque, RPS, motion re- sponse, speed loss	13			3.13

ESD: Energy Saving Device

2.16 Liaise with relevant technical committees to complete a questionnaire about the demand and use of benchmarks, not to be limited to model scale.

In order to investigate the demand and use of benchmark, a questionnaire was issued and sent to the ITTC community to learn about what is focused and what is concerned.

Eight (8) questions are listed in the questionnaire. Herein, the results are summarized.

Kind of benchmark (Demand of the benchmark)

• Question : What are your interests on benchmark data?

Answer: Most of the participants show their interests on benchmark data related with resistance, seakeeping, manoeuvrability, CFD, full scale.

Data type of benchmark (Demand of the benchmark)

• Question : What are your interests on the data type of the benchmark?

Answer: Most of the participants show their interests on raw data, geometry, analysed data, tables. The choice of Mesh and Figures is in second place.

Source of data

• Question: What is the effective and feasible way to collect the benchmark data?

Answer: Colleagues, publications, conference, and internet are all the best choices.

Application of Benchmark

• Question: What is your purpose to use benchmark data?

Answer: Main purpose is to calibrate the model test results and calibrate the CFD results. Comparison of extrapolation method, calibration of geometry and calibration of CFD calculation policy take the second place.

Sharing of benchmark

• Question: What kind of way you like to share the benchmark with others?

Answer: Most participants would like to share on request of independent email or from ITTC benchmark repository. Publications, conference, internet is the second choice.

Data sharing

• Question: What kind of data you like to share with others?

Answer: Analysed data, tables and figures are selected mostly. Raw data, geometry and mesh may not be widely accepted yet.

Sharing of working mechanism

• Question: What is your idea to work with ITTC community to develop benchmark?

Answer: Most of the participants choose to work with TC. Part of them would like to work with AC and liaise with QSG.

Participation to benchmark work

- Question: Would you like to take part in the research work about benchmark?
- Answer: Most of the participants are willing to join such work.

Conclusions:

Almost all the participants show strong interests on the benchmark data.

Lots of participants are concerned with the ITTC repository.

Most of participants would like to work with TC to develop benchmark data.

Most of participants would like to take part in the work related with benchmark data.

2.17 Cooperate with technical committees to establish the ITTC benchmarks, including definition, raw data, data format, etc.

Since most of the TC have their own benchmarking work within TOR, less work could be done by QSG.

Communication between QSG and CFD/EFD has been established and benchmark research has been investigated on bow wave

breaking experiments for CFD and EFD. And the essay has been published in 34th Symposium on Naval Hydrodynamics Washington, D.C., June 26 – July 1, 2022, with title "KCS Unsteady Bow Wave Breaking Experiments for Physics and CFD Validation".

2.18 Prepare a procedure on the internal calibration of steel rulers or a practical way to check length measurement.

Work Instructions 7.6-02-01 has been prepared to guide the verification of a new steel ruler or for the verification of a ruler in production or in service.

3. CONCLUSIONS

For the purpose of the format, a complete revision of all procedures and guidelines to follow the ITTC standard is required, with special attention in including the Parameters/Symbols paragraph.

During the second meeting the Advisory Council decided that additional to the symbols in the symbols list also acronyms can be given. Acronyms are not to be in equations. Furthermore, a separate table of acronyms not connected to ITTC Symbols is recommended.

The list of symbols for Uncertainty Analysis should be expanded.

Consideration should be given by the Conference to new emerging technologies in artificial intelligence (such as machine learning techniques) respect to data quality assessment.

Consideration should be given by the Conference to further development of liaison with International Ship and Offshore Structures Congress (ISSC) for the purpose harmonization and common understanding of the state of the art in Uncertainty Analysis.

4. RECOMMENDATIONS TO THE 30TH ITTC

The 30th ITTC Quality Systems Group recommends the following:

Adopt the revised procedures and guidelines and work instructions:

- 4.2.3-01-01 Guide for the Preparation of ITTC Recommended Procedures
- 4.2.3-01-03 Work Instruction for Formatting ITTC Recommended Procedures
- 7.5-02-01-03 Fresh Water and Seawater Properties
- 7.6-02-01 Verification of Steel Rulers

5. RECOMMENDATIONS FOR FU-TURE WORK

- 1. Maintain the Register of ITTC Recommended Procedures and Guidelines.
- 2. Introduce New Uncertainty Analyses Guidelines to include data anomalies in Machine Learning Algorithms for Autonomous and Intelligent ships.
- 3. Observe the development or revision of ISO Standards regarding Quality Control.
- 4. Update the ITTC Symbols and Terminology List.
- 5. Harmonize the uncertainty symbols list with Annex J of JCGM 100:2008
- 6. Update the ITTC Dictionary of Hydromechanics.
- 7. Support the technical committees dealing with stochastic processes with guidance on development, revision, and update of procedures for the inclusion of confidence bands on their computational and experimental results.
- 8. Observe BIPM/JCGM standards for uncertainty analysis, in particular the uncertainty analysis terminology.
- 9. Review developments in metrology theory and uncertainty analysis and issue appropriate procedures.

- 10. Upload all the collected and verified benchmark data into the ITTC benchmark data repository.
- 11. Cooperate with technical committees to establish the ITTC benchmarks, including definition, raw data, data format, etc.

6. **REFERENCES**

- ASME, 2009, "Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer," American Society of Mechanical Engineers, New York, ASME V&V 20.
- ITTC, 2021a, "ITTC Symbols and Terminology List, Version 2021," 29th International Towing Tank Conference.
- ITTC, 2021b, "Uncertainty Analysis in CFD Verification and Validation, Methodology and Procedures," Revision 04, 29th International Towing Tank Conference, ITTC 75-03-01-01.
- ITTC, 2021c, "Validation and Verification of RAMS Solutions in the Prediction of Manoeuvring Capabilities," Revision 02, 29th International Towing Tank Conference, ITTC 75-03-04-02.
- JCGM 100:2008, "Guide to the expression of uncertainty in measurement, GUM 1995, with minor modifications," Joint Committee for Guides in Metrology (JCGM), Bureau International des Poids et Mesures (BIPM), Sèvres, France.
- JCGM 101:2008, "Evaluation of measurement data Supplement 1 to the "Guide to the expression of uncertainty in measurement"
 Propagation of distributions using a Monte Carlo method," Joint Committee for Guides in Metrology (JCGM), Bureau International des Poids et Mesures (BIPM), Sèvres, France.
- JCGM 102:2011, "Evaluation of measurement data Supplement 2 to the 'Guide to the

expression of uncertainty in measurement' — Extension to any number of output quantities," Joint Committee for Guides in Metrology (JCGM), Bureau International des Poids et Mesures (BIPM), Sèvres, France.

- JCGM 106:2012, "Evaluation of measurement data — The role of measurement uncertainty in conformity assessment," Joint Committee for Guides in Metrology (JCGM), Bureau International des Poids et Mesures (BIPM), Sèvres, France. JCGM GUM-1:2023 "Guide to the expression of uncertainty in measurement – Part 1: Introduction." Publication is anticipated for early 2024.
- JCGM GUM-1:2023 "Guide to the expression of uncertainty in measurement – Part 1: Introduction." Joint Committee for Guides in Metrology (JCGM), Bureau International des Poids et Mesures (BIPM), Sèvres, France.
- JCGM GUM-6:2020, "Guide to the expression of uncertainty in measurement — Part 6: Developing and using measurement models," Joint Committee for Guides in Metrology (JCGM), Bureau International des Poids et Mesures (BIPM), Sèvres, France.
- JCGM 200:2012, "International vocabulary of metrology – Basic and general concepts and associated terms (VIM)," 3rd Edition, Joint Committee for Guides in Metrology (JCGM), Bureau International des Poids et Mesures (BIPM), Sèvres, France.

Appendix A. OUTCOME OF THE REVIEW OF ITTC RECOMMENDED PROCEDURES AND GUIDELINES FOR COMPLIANCE WITH ITTC QUALITY REQUIREMENTS

Number		Title	Effective Date	Revision	§ 1. PURPOSE	§ 2. DESCRIP- TION	§ 3 VALIDATION	§ 4 PARAM/SYM B	§ 5 REFER- ENCES	§ = paragraph NA=Not Appl.
7.5-01		TEST PREPARATION								
7.5-01-01		Ship Models								
7.5-01-01-01	Р	Ship Models	2017	4	\checkmark	in § 3	NA	in § 2	in § 4	Structure differ- ent
7.5-01-02		Propeller Models								
7.5-01-02-01	Р	(Terminology and Nomenclature for Propeller Geometry) Deleted	2017	Deleted						
7.5-01-02-02	Р	Propeller Model Accuracy	2017	1	\checkmark	wrong name	NA	in § 3	\checkmark	Structure differ- ent
7.5-01-03		Instrumentation, Calibration								
7.5-01-03-01	Р	Uncertainty Analysis, Instrument Calibration	2017	2	\checkmark	in various §	NA	missing	in § 8	Structure strongly differ- ent
7.5-01-03-02	Р	Uncertainty Analysis, Laser Doppler Veloci- metry Calibration	2008	0	V	in various §	embedded in text	in § 7	in § 8	Structure strongly differ- ent
7.5-01-03-03	G	Guideline on the Uncertainty Analysis for Particle Image Velocimetry	2014	1	\checkmark	in various §	embedded in text	missing	in § 7	Structure strongly differ- ent
7.5-01-03-04	G	Benchmark for PIV(2C) and SPIV(3C) setups	2017	1	\checkmark	in various §	NA	missing	in § 6	Structure strongly differ- ent
7.5-02		TESTING AND EXTRAPOLATION METHODS								
7.5-02-01		General								
7.5-02-01-01	Р	Guide to the Expression of Uncertainty in Experimental Hydrodynamics	2014	2	\checkmark	in various §	in various §	\checkmark	in § 18	Structure strongly differ- ent
7.5-02-01-02		(Uncertainty Analysis in EFD, Guidelines for Resistance Towing Tank Tests) Replaced by 7.5-02-02-02	2011	Deleted						
7.5-02-01-03	Р	Fresh Water and Seawater Properties	2011	2	wrong name	in various §	in various §	in § 6		Structure differ- ent
7.5-02-01-04	G	Guideline on Best Practices for the Applica- tions of PIV/SPIV in Towing Tanks and Cav- itation Tunnels	2014	0	\checkmark	missing	NA	missing/NA	in § 12	Structure strongly differ- ent

© ITTC-A 2024 Switzerland

Number		Title	Effective Date	Revision	§ 1. PURPOSE	§ 2. DESCRIP- TION	§ 3 VALIDATION	§ 4 PARAM/SYM B	§ 5 REFER- ENCES	§ = paragraph NA=Not Appl.
7.5-02-01-05	G	(Model-Scale Propeller Cavitation Noise Measurements) Moved to 7.5-02-03-03.9	2021	Deleted						
7.5-02-01-06	Р	Determination of a type A uncertainty esti- mate of a mean value from a single time series measurement	2021	1	\checkmark	\checkmark	missing	missing	in § 6	Structure differ- ent
7.5-02-01-07	G	Guideline to Practical Implementation of Un- certainty Analysis	2021	1	\checkmark	NA	NA	missing	in § 7	Structure differ- ent
7.5-02-01-08	Р	Single Significant Amplitude and Confidence Intervals for Stochastic Processes	2017	0	\checkmark	in various §	NA	missing	in § 8	Structure differ- ent
7.5-02-02		Resistance								
7.5-02-02-01	Р	Resistance Tests	2021	5	\checkmark	in § 3	in § 4	in § 2	\checkmark	Structure differ- ent
7.5-02-02-02	G	General Guidelines for Uncertainty Analysis in Resistance Tests	2021	3	\checkmark	NA	NA	int § 6	in § 7	Structure differ- ent
7.5-02-02-02.1	G	Example for Uncertainty Analysis of Re- sistance Tests in Towing Tanks	2021	1	\checkmark	in various §	NA	missing	in § 6	Structure differ- ent
7.5-02-02-02.2	G	Practical Guide for Uncertainty Analysis of Resistance Measurements in Routine Tests	2021	1	\checkmark	wrong name	embedded in various §	missing	in § 6	Structure strongly differ- ent
7.5-02-02-03	G	Resistance and Propulsion Test and Perfor- mance Prediction with Skin Frictional Drag Reduction Techniques	2017	0	\checkmark	in various §	NA	in § 2	in § 7	Structure strongly differ- ent
7.5-02-02-04		Wave Profile Measurement and Wave Pattern Resistance Analysis	2021	0	\checkmark	in § 3	in § 6	in § 2	in § 7	Structure strongly differ- ent
7.5-02-03		Propulsion								
7.5-02-03-01		Performance								
7.5-02-03-01.1	Р	Propulsion/ Bollard pull Test	2021	6	\checkmark	in § 3	Partly men- tioned in § 4	in § 2	\checkmark	Structure slightly different
7.5-02-03-01.2	Р	(Uncertainty Analysis Example for Propul- sion Test) Deleted	2021	Deleted						
7.5-02-03-01.3	Р	Podded Propulsor Tests and Extrapolation	2021	2	\checkmark	\checkmark	NA	missing	\checkmark	Structure differ- ent
7.5-02-03-01.4	Р	1978 ITTC Performance Prediction Method	2021	5	\checkmark	\checkmark	Full scale data	in § 2.2	in § 4	Structure slightly different
7.5-02-03-01.5	G	Predicting Powering Margins	2017	2	\checkmark	in various §	NA	in § 2		Structure strongly differ- ent
7.5-02-03-01.6	G	Hybrid Contra-Rotating Shaft Pod Propulsors Model Test	2017	1	\checkmark	in § 3	Partly men- tioned in § 4	in § 2		Structure differ- ent
7.5-02-03-01.7	Р	Performance Prediction Method for Une- qually Loaded, Multiple Propeller Vessels	2021	1	\checkmark	\checkmark	Partly men- tioned in § 2	in § 2	in § 4	Structure strongly differ- ent

Number		Title	Effective Date	Revision	§ 1. PURPOSE	§ 2. DESCRIP- TION	§ 3 VALIDATION	§ 4 PARAM/SYM B	§ 5 REFER- ENCES	§ = paragraph NA=Not Appl.
7.5-02-03-01.8	G	Scaling Method for ship wake fraction with pre-swirl devices	2021	0	\checkmark	\checkmark	NA	in § 2	in § 3	Structure strongly differ- ent
7.5-02-03-02		Propulsor								
7.5-02-03-02.1	Р	Open Water Test	2021	4	\checkmark	in § 3, named procedure	in § 4	in § 2	\checkmark	Structure strongly differ- ent
7.5-02-03-02.2	Р	(Uncertainty Analysis, Example for Open Water Test) Deleted	2021	Deleted						
7.5-02-03-02.3	Р	Nominal Wake Measurements by LDV, Model Scale Experiments	2014	1	\checkmark	in § 3, named differently	NA	in § 2	missing	Structure strongly differ- ent
7.5-02-03-02.4	Р	Nominal Wake Measurement by a 5-Hole Pi- tot Tube	2011	1	\checkmark	in § 4	UA in § 5	in § 2	in § 6	Structure strongly differ- ent
7.5-02-03-02.5	G	Experimental Wake Scaling Methods	2017	1	\checkmark	In various §	in § 7	in § 2	in § 8	Structure strongly differ- ent
7.5-02-03-03		Cavitation								
7.5-02-03-03.1	Р	Model-Scale Cavitation Test	2017	4	\checkmark	wrong name	in § 4	in § 3	missing	Structure differ- ent
7.5-02-03-03.2	Р	Description of Cavitation Appearances	2014	2	\checkmark	wrong name	in § 4	in § 3	missing	Structure differ- ent
7.5-02-03-03.3	Р	Cavitation Induced Pressure Fluctuations Model Scale Experiments	2014	5	\checkmark	wrong name	in § 4	in § 3	missing	Structure differ- ent
7.5-02-03-03.4	Р	Cavitation Induced Pressure Fluctuations Nu- merical Prediction Methods	2014	2	\checkmark	wrong name	in § 4	in § 3	\checkmark	Structure slightly different
7.5-02-03-03.5	Р	Cavitation Induced Erosion on Propellers, Rudders and Appendages Model Scale Exper- iments	2011	2	\checkmark	wrong name	in§ 5	in § 3	in § 6	Structure differ- ent
7.5-02-03-03.6	G	Podded Propulsor Model Scale Cavitation Test	2011	2	\checkmark	wrong name	NA	\checkmark	missing	Structure differ- ent
7.5-02-03-03.7	Р	Prediction of Cavitation Erosion Damage for Unconventional Rudders or Rudders Behind Highly-Loaded Propellers	2017	1	\checkmark	wrong name	in § 6	missing	in § 7	Structure differ- ent
7.5-02-03-03.8	Р	Modelling the Behaviour of Cavitation in Waterjets	2008	0	\checkmark	wrong name	missing	missing	\checkmark	Structure strongly differ- ent
7.5-02-03-03.9	G	Model-Scale Propeller Cavitation Noise Mea- surements	2021	2	\checkmark	wrong name	in § 5	\checkmark	in § 6	Structure differ- ent
7.5-02-04		Ice Testing								
7.5-02-04-01	G	General Guidance and Introduction to Ice Model Testing	2021	3	\checkmark	wrong name	Benchmark tests	in § 2.5	in § 4	Structure differ- ent
7.5-02-04-02	Р	Test Methods for Model Ice Properties	2021	3	\checkmark	wrong name	missing	in § 1.3	in § 11	Structure strongly differ- ent

Number		Title	Effective Date	Revision	§ 1. PURPOSE	§ 2. DESCRIP- TION	§ 3 VALIDATION	§ 4 PARAM/SYM B	§ 5 REFER- ENCES	§ = paragraph NA=Not Appl.
7.5-02-04-02.1	Р	Resistance Tests in Ice	2017	2	\checkmark	wrong name	in § 4 Bench- mark tests	missing	missing	Structure strongly differ- ent
7.5-02-04-02.2	Р	Propulsion Tests in Ice	2017	1	\checkmark	wrong name	in § 4	in § 3	missing	Structure differ- ent
7.5-02-04-02.3	PC	Manoeuvring Tests in Ice	2021	1	\checkmark	wrong name	in § 5	\checkmark	in § 6	Structure differ- ent
7.5-02-04-02.4	Р	(Tests in Deformed Ice) Deleted	2017	Deleted						
7.5-02-04-02.5	Р	Experimental Uncertainty Analysis for Ship Resistance in Ice Tank Testing	2005	0	\checkmark	In various §	in § 8	missing	in § 9	Structure strongly differ- ent
7.5-02-04-03	G	Guidelines for Modelling of Complex Ice Environments	2021	1	\checkmark	In various §	NA	missing	in § 9	Structure strongly differ- ent
7.5-02-05		High Speed Marine Vehicles								
7.5-02-05-01	Р	High Speed Marine Vehicles Resistance Test	2017	3	\checkmark	in § 3	in § 5	in § 2	in § 6	Structure differ- ent
7.5-02-05-02	Р	High Speed Marine Vehicle Propulsion Test	2017	3	\checkmark	wrong name	in § 4	in § 3	\checkmark	Structure differ- ent
7.5-02-05-03.1	Р	Waterjet Propulsive Performance Prediction - Propulsion Test and Extrapolation	2011	2	\checkmark	\checkmark	\checkmark	missing	in § 4	Structure differ- ent
7.5-02-05-03.2	Р	Waterjet System Performance	2017	2	\checkmark	\checkmark	\checkmark	missing	in § 4	Structure differ- ent
7.5-02-05-03.3	Р	Uncertainty Analysis - Example for Waterjet Propulsion Test	2017	2	\checkmark	in § 3	NA	in § 2	in § 4	Structure differ- ent
7.5-02-05-04	Р	Seakeeping Tests	2021	2	\checkmark	wrong name	in § 4	in § 3	\checkmark	Structure differ- ent
7.5-02-05-04.1	Р	Excerpt of ISO 2631, Seasickness and Fatigue	1999	0	\checkmark	NA	NA	NA	missing	Structure strongly differ- ent
7.5-02-05-05	Р	Evaluation and Documentation of HSMV	2014	2	\checkmark	\checkmark	NA	in § 3	\checkmark	Structure strongly differ- ent
7.5-02-05-06	Р	HSMV Structural Loads	2021	1	\checkmark	wrong name	in § 4	in § 3	\checkmark	Structure strongly differ- ent
7.5-02-05-07	Р	(Dynamic Instability Tests) Withdrawn	2021	Deleted						
7.5-02-06		Manoeuvrability								
7.5-02-06-01	Р	Free Running Model Tests	2021	4	\checkmark	\checkmark	in § 5 Bench- mark tests	in § 3	in § 5	Structure differ- ent
7.5-02-06-02	Р	Captive Model Test Procedure	2021	6	\checkmark	In various §	in § 5	missing	in § 6	Structure differ- ent
7.5-02-06-03	Р	Validation of Manoeuvring Simulation Models	2021	4		In various §	in § 4	missing		Structure differ- ent

Number		Title	Effective Date	Revision	§ 1. PURPOSE	§ 2. DESCRIP- TION	§ 3 VALIDATION	§ 4 PARAM/SYM B	§ 5 REFER- ENCES	§ = paragraph NA=Not Appl.
7.5-02-06-04	Р	Uncertainty Analysis for manoeuvring predic- tions based on captive manoeuvring tests	2021	3	\checkmark	In various §	Example in Ap- pendixes	missing	in § 4	Structure differ- ent
7.5-02-06-05	G	Uncertainty Analysis for free running model tests	2021	2	wrong name	In various §	wrong name	missing	in § 8	Structure differ- ent
7.5-02-06-06	G	Benchmark Data for Validation of Manoeu- vring Predictions	2021	0	\checkmark	In various §	NA	missing	\checkmark	Structure differ- ent
7.5-02-06-07	G	Captive Model Test for Underwater Vehicles	2021	0	\checkmark	in § 4	in § 5	in § 2	in § 6	Structure differ- ent
7.5-02-07		Loads and Responses								
7.5-02-07-01		Environmental Modelling								
7.5-02-07-01.1	G	Laboratory Modelling of Multidirectional Ir- regular Wave Spectra	2017	1	\checkmark	In various §	NA	in § 3	in § 6	Structure differ- ent
7.5-02-07-01.2	G	Laboratory Modelling of Waves	2021	1	\checkmark	In various §	NA	missing	in § 4	Structure differ- ent
7.5-02-07-01.3	G	(Guidelines for Modelling of Complex Ice Environments) Moved to 7.5-02-04-03	2021	Deleted						
7.5-02-07-01.4	Р	Confidence Intervals for Significant Wave Height and Modal Period	2017	0	\checkmark	In various §	NA	missing	in § 4	Structure differ- ent
7.5-02-07-01.5	G	Laboratory Modelling of Wind	2021	0	\checkmark	In various §	NA	missing	\checkmark	Structure differ- ent
7.5-02-07-01.6	G	Laboratory Modelling of Currents	2021	0	\checkmark	In various §	NA	missing	in § 6	Structure differ- ent
7.5-02-07-02		Seakeeping								
7.5-02-07-02.1	Р	Seakeeping Experiments	2021	7	\checkmark	\checkmark	in § 4	in § 3	\checkmark	Structure slightly different
7.5-02-07-02.2	Р	Predicting of Power Increase in Irregular Waves from Model Tests	2021	6	\checkmark	In various §	in § 7	in § 6	in § 8	Structure differ- ent
7.5-02-07-02.3	Р	Experiments on Rarely Occurring Events	2021	6	\checkmark	wrong name	in § 4	in § 3 no sym- bols	\checkmark	Structure slightly different
7.5-02-07-02.4	Р	(Validation of Seakeeping Computer Codes in the Frequency Domain) Deleted	2014	Deleted						
7.5-02-07-02.5	Р	Verification and Validation of Linear and Weakly Nonlinear Seakeeping Computer Codes	2021	3	\checkmark	In various §	in § 7 Bench- mark tests	missing	in § 8	Structure differ- ent
7.5-02-07-02.6	Р	Global Loads Seakeeping Procedure	2021	2	\checkmark	wrong name	in § 4	in § 3	\checkmark	Structure slightly different
7.5-02-07-02.7	Р	Sloshing Model Tests	2021	1	\checkmark	wrong name	in § 4	in § 3	\checkmark	Structure slightly different
7.5-02-07-02.8	Р	Calculation of the weather factor f_w for decrease of ship speed in waves	2021	1		In various §	in § 7 Bench- mark tests	in § 2	in § 8	Structure strongly differ- ent
7.5-02-07-03		Ocean Engineering								
7.5-02-07-03.1	Р	Floating Offshore Platform Experiments	2021	3	\checkmark	wrong name	in § 4	in § 3	\checkmark	Structure slightly different

Number		Title	Effective Date	Revision	§ 1. PURPOSE	§ 2. DESCRIP- TION	§ 3 VALIDATION	§ 4 PARAM/SYM B	§ 5 REFER- ENCES	§ = paragraph NA=Not Appl.
7.5-02-07-03.10	G	Guideline for VIV Testing	2021	1	\checkmark	in § 5	UA in § 6	in § 3	in § 7	Structure differ- ent
7.5-02-07-03.11	G	Guideline for Model Tests of Stationary Multi-Bodies Operating in Close Proximity	2021	1	\checkmark		UA in § 4	in § 3		Structure slightly different
7.5-02-07-03.12	G	Uncertainty Analysis for a Wave Energy Converter	2021	1	\checkmark	in various §	example in § 8	missing	in § 9	Structure strongly differ- ent
7.5-02-07-03.13	G	Guideline for VIM Testing	2021	1	\checkmark	in § 5	UA in § 6	missing	in § 7	Structure strongly differ- ent
7.5-02-07-03.14	Р	Analysis Procedure of Model Tests in Irregular Waves	2021	1	\checkmark	wrong name	described in §4	in § 3 but varia- bles are not listed	\checkmark	Structure differ- ent
7.5-02-07-03.15	G	Uncertainty analysis - Example for horizontal axis turbines	2021	1	\checkmark	in various §	NA	partly in §5.1 wrong name	in § 6	Structure differ- ent
7.5-02-07-03.16	G	Model Construction of Offshore Systems	2021	0	\checkmark	in various §	partly described in §6	in § 2.1	in § 8	Structure differ- ent
7.5-02-07-03.17	G	Uncertainty Analysis for Model Testing of Offshore Wind Turbines	2021	0	\checkmark	in various §	example in §4	missing	\checkmark	Structure differ- ent
7.5-02-07-03.18	G	Practical guidelines for numerical modelling of wave energy converters	2021	0	\checkmark	in various §	in § 6.3	missing	in § 7	Structure differ- ent
7.5-02-07-03.2	Р	Analysis Procedure for Model Tests in Regu- lar Waves	2021	3	\checkmark	wrong name	NA	in § 3	in § 6	Structure differ- ent
7.5-02-07-03.3	Р	(Model Tests on Tanker-Turret Systems) De- leted	2014	Deleted						
7.5-02-07-03.4	Р	(Active Hybrid Model Tests of Floating Off- shore Structures with Mooring Lines) Deleted	2021	Deleted						
7.5-02-07-03.5	Р	Passive Hybrid Model Tests of Floating Off- shore Structures with Mooring Lines	2021	3	\checkmark	\checkmark	in § 4	in § 3	in § 6	Structure slightly different
7.5-02-07-03.6	Р	Dynamic Positioning System Model Test Experiments	2021	2	\checkmark	in § 3	UA in § 5	in § 2 no sym- bols	in § 6	Structure differ- ent
7.5-02-07-03.7	G	Wave Energy Converter Model Test Experi- ments	2021	2	\checkmark	in § 3	UA in § 3.7	missing	in § 4	Structure differ- ent
7.5-02-07-03.8	Р	Model Tests for Offshore Wind Turbines	2021	2	in § 2	in § 4	UA in § 4.4	missing	\checkmark	Structure strongly differ- ent
7.5-02-07-03.9	Р	Model Tests for Current Turbines	2021	2	\checkmark	in § 3	UA in § 3.6	\checkmark	\checkmark	Structure slightly different
7.5-02-07-04		Stability								
7.5-02-07-04.1	Р	Model Tests on Intact Stability	2008	2	\checkmark	in various §	described in §4	missing	missing	Structure differ- ent
7.5-02-07-04.2	Р	Model Tests on Damage Stability in Waves	2017	3	\checkmark		described in §4	in § 3 but varia- bles are not listed	\checkmark	Structure slightly different
7.5-02-07-04.3	G	Predicting the Occurrence and Magnitude of Parametric Rolling	2021	3	\checkmark	in various §	example in Ap- pendix	in § 6	in § 7	Structure differ- ent

Number		Title	Effective Date	Revision	§ 1. PURPOSE	§ 2. DESCRIP- TION	§ 3 VALIDATION	§ 4 PARAM/SYM B	§ 5 REFER- ENCES	§ = paragraph NA=Not Appl.
7.5-02-07-04.4	Р	Simulation of Capsize Behaviour of Damaged Ships in Irregular Beam Seas	2021	3	\checkmark	in various §	in §4	missing		Structure differ- ent
7.5-02-07-04.5	Р	Estimation of Roll Damping	2021	1	\checkmark	in various §	in §5	in Appendix B	in § 7	Structure differ- ent
7.5-02-07-04.6	Р	Extrapolation for Direct Stability Assessment in Waves	2021	0	\checkmark	in various §	embedded in text	in § 5	in § 6	Structure differ- ent
7.5-02-07-04.7	Р	Inclining Tests	2021	0	\checkmark	in various §	§4	NA	in § 8	Structure differ- ent
7.5-03		CFD								
7.5-03-01		General								
7.5-03-01-01	Р	Uncertainty Analysis in CFD, Verification and Validation Methodology and Procedures	2021	4	\checkmark	in various §	NA	missing	in § 6	Structure differ- ent
7.5-03-01-02	G	Quality Assurance in Ship CFD Application	2021	2	\checkmark	in § 3	in § 4-5	missing	in § 6	Structure differ- ent
7.5-03-01-03	Р	(CFD User's Guide) Deleted	2021	deleted						
7.5-03-01-04	Р	(CFD Verification) Deleted	2021	deleted						
7.5-03-02		Resistance and Flow								
7.5-03-02-01	Р	Uncertainty Analysis in CFD, Examples for Resistance and Flow	2017	1	\checkmark	in various §	in § 2.3 and 2.4	missing	in § 3	Structure differ- ent
7.5-03-02-02	Р	Benchmark Database for CFD Validation for Resistance and Propulsion	2021	2	\checkmark	\checkmark	NA	missing	in § 3	Structure differ- ent
7.5-03-02-03	G	Practical Guidelines for Ship CFD Applica- tions	2014	1	different name	in various §	in § 4.2	missing in § 2.3.1, § 2.3.6		Structure differ- ent
7.5-03-02-04	G	Practical Guidelines for Ship Resistance CFD	2021	1	different name	V	NA	missing		Structure slightly different
7.5-03-02-05	G	Use of CFD methods to calculate wind re- sistance coefficient	2021	0	different name	in various §	in § 8	in § 2	in § 9	Structure strongly differ- ent
7.5-03-03		Propulsion								
7.5-03-03-01	G	Practical Guidelines for Ship Self-propulsion CFD	2014	0	different name	in various §	in § 6	missing	in § 7	Structure strongly differ- ent
7.5-03-03-02	G	Practical Guidelines for RANS Calculation of Nominal Wakes	2014	0	different name	In various §	in § 3.4	missing	in § 4	Structure strongly differ- ent
7.5-03-04		Manoeuvrability								
7.5-03-04-01	G	Guideline on Use of RANS Tools for Manoeuvring Prediction	2021	2	\checkmark	\checkmark	in § 4 Examples	missing		Structure slightly different
7.5-03-04-02	G	Validation and Verification of RANS Solu- tions in the Prediction of Manoeuvring Capa- bilities	2021	2	\checkmark	In various §	in § 5	missing	in § 6	Structure strongly differ- ent
7.5-04		Full Scale Measurements								
7.5-04-01		Speed and Power Trials								

© ITTC-A 2024 Switzerland

Number		Title	Effective Date	Revision	§ 1. PURPOSE	§ 2. DESCRIP- TION	§ 3 VALIDATION	§ 4 PARAM/SYM B	§ 5 REFER- ENCES	§ = paragraph NA=Not Appl.
7.5-04-01-01.1	Р	Preparation, Conduct and Analysis of Speed/Power Trials	2021	7	\checkmark	in various §	NA	in Appendix L	in § 13	Structure strongly differ- ent
7.5-04-01-01.2	Р	(Analysis of Speed/Power Trial Data) Merged into 7.5-04-01-01.1	2017	deleted						
7.5-04-02		Manoeuvrability								
7.5-04-02-01	Р	Full Scale Manoeuvring Trials Procedure	2021	3	\checkmark	in various §	in § 4, wrong name	in § 3 no sym- bols	\checkmark	Structure differ- ent
7.5-04-02-02	G	UV Full Scale Manoeuvring Trials	2021	0	\checkmark	in various §	in § 4, wrong name	in § 3 no sym- bols	\checkmark	Structure differ- ent
7.5-04-03		Ice Testing								
7.5-04-03-01	IP	Ship Trials in Ice	1999	0	\checkmark	in various §	in § 4	in § 3 no sym- bols	missing	Structure differ- ent
7.5-04-04		Hydrodynamic Noise								
7.5-04-04-01	G	Underwater Noise from Ships, Full Scale Measurements	2021	2	\checkmark	in various §	missing	missing	in § 6	Structure strongly differ- ent
7.5-04-05		Model-ship correlation								
7.5-04-05-01	G	Guideline on the determination of model-ship correlation factors	2021	1	different name	in § 3	NA	in § 2	in § 4	Structure differ- ent
7.6-01		Measuring Equipment								
7.6-01-01	Р	Control of Inspection, Measuring and Test Equipment	1999	0	\checkmark	in various §	NA	missing	missing	Structure strongly differ- ent

Appendix B. OUTCOME OF THE REVIEW OF UNCERTAINTY ANALYSIS PROCE-DURES FOR COMPLIANCE WITH ITTC QUALITY REQUIREMENTS.

No.	Rev	Year	Example	Reference	Symbol	Comment
7 5-01-01-01	4	2017	n	n	n	Expand to include model measurements with un-
7.0 01 01 01		2011				certainty estimates
7.5-01-02-01						Deleted
7 7-01-02-02	1	2017	n	n	n	Expand to include model measurements with un-
7.7 01 02 02	•	2017				certainty estimates
7.5-01-03-01	2	2017	у	у	У	
7.5-01-03-02	0	2008	У	У	у	Update GUM reference
7.5-01-03-03	1	2014	n	n	n	Discusses UA in general terms but has no UA references or examples
7.5-01-03-04	1	2017	n	n	n	Benchmark tests should include UA
7 5 00 04 04	_	0044				Add prediction limit and add 7.5-02-01-07 as ref-
7.5-02-01-01	2	2014	У	У	У	erence
7.5-02-01-03	2	2011	y	y	y	
7 5 02 01 04	0	2014			5	No uncertainty analysis or UA reference. Sym-
7.5-02-01-04	0	2014	Π	n	Π	bols and nomenclature unique to PIV.
7.5-02-01-06	1	2021	У	у	у	
7.5-02-01-07	1	2021	У	у	у	
						UA not applicable. Var and SSA not in the sym-
7.5-02-01-08	0	2017	У	У	n	bols list. Distinction should be made between
						confidence and prediction intervals.
7 5-02-02-01	5	2021	n	n	V	UA and examples covered in separate proce-
7.5-02-02-01	5	2021			у	dures. Depth <i>Fr</i> should be corrected as <i>Fr_h</i> .
						UA for resistance test, but no model test results.
7.5-02-02-02	3	2021	У	У	У	Example is separate procedure that has been re-
						vised.
7.5-02-02-02.1	1	2021	v	v	v	Revision in review. This procedure was revised
			,	,	,	and is an example of a resistance test.
						UA for resistance test, but no model test results.
7.5-02-02-02.2	1	2021	у	У	y	Example as separate procedure has been de-
						Reference list should be undated
7 5-02-02-04	0	2021	n	V	V	Only has 114 references
7.5-02-02-04	6	2021	n	y V	y V	Only has UA references.
7.5 02 03 01.1	2	2021	n	y n	y V	Only has of references.
7.0 02 00 01.0	2	2021			у	On page 8, physical units should be in regular
7.5-02-03-01.4	5	2021	n	n	У	font Nm should be N.m
						No upcortainty applycic or LIA reference. Refer
7.5-02-03-01.5	2	2017	n	n	У	ence list is numerical and should be alphabetical
						States LIA procedures should be followed. Nm
7.5-02-03-01.6	1	2017	n	n	У	should be N·m
7 5-02-03-01 7	1	2021	n	n	v	No LIA or reference. Nm should be N·m
7.5-02-03-01.8	0	2021	n	n	y V	No UA or reference.
7.5-02-03-02.1	4	2021	n	v	v	Only has UA references. Nm should be N·m
				,	, ,	Only generic discussion of UA. Symbols may be
7.5-02-03-02.3	1	2014	n	n	n	unique to LDV and not reviewed in detail.

No.	Rev	Year	Example	Reference	Symbol	Comment
7.5-02-03-02.4	1	2011	n	n	n	Outdated discussion of UA. Pitch and yaw sym- bols not consistent with ITTC. Procedure should be revised.
7.5-02-03-02.5	1	2017	n	n	n	
7.5-03-01-01	4	2021	n	У	n	Current GUM referenced. V&V consistent with ASME. Symbols consist with ASME. ITTC Sym- bols not relevant. How to include in ITTC Symbols should be reviewed.
7.5-03-01-02	2	2021	n	n	n	Procedure does not reference the GUM. A sec- tion title is Assessment of total uncertainty. Total uncertainty is not in the GUM. The appropriated terminology is combined and expanded uncer- tainty
7.5-03-02-01	1	2017	У	n	n	Procedure should be updated. Does not refer- ence GUM. Equation numbers start with (33) and should begin with (1). Coleman and Steele (1999) in text is out of date and not in Reference list.
7.5-03-02-03	1	2014	n	n	у	Procedure should be updated. Does not refer- ence GUM. Equation numbers start with (33) and should begin with (1). Coleman and Steele (1999) in text is out of date and not in Reference list.
7.5-03-02-04	1	2021	n	n	у	
7.5-03-02-05	0	2021	n	n	у	
7.5-03-03-01	0	2014	n	n	у	Equation numbers are all (0) and should be re- numbered. References should be updated. V&V section is vague and should be updated with in- formation from 7.5-03-03-03.
7.5-03-03-02	0	2014	У	n	у	Procedure has numerical example but no uncer- tainty analysis. V&V section is general. Refer- ence list should be updated and include 7.5-03- 01-01.
7.5-03-04-01	2	2021	У	n	у	Up to date procedure with several examples. No discussion of UA or V&V. ITTC 7.5-03-04-02 is effectively a companion procedure and should be included in the Reference list.
7.5-03-04-02	2	2021	У	У	У	ITTC procedures should be added to Reference list. This procedure is effectively a companion to 7.5-03-04-01 and should be included as a Refer- ence.

Appendix C. OUTCOME OF THE MANUAL OF ITTC RECOMMENDED PROCEDURES AND GUIDELINES MAINTENANCE.

New/		D		Effec-
Rev./	Number	P	Title	tive
Del		/G		Date
R	4.2.3-01-01	Р	Guide for the Preparation of ITTC Recommended Procedures	2024
R	4.2.3-01-03	W	Work Instruction for Formatting ITTC Recommended Procedures	2024
R	7.5-01-01-01	Р	Ship Models	2024
R	7.5-02-01-03	G	Fresh Water and Seawater Properties	2024
R	7.5-02-01-04	GC	Guideline on Best Practices for the Applications of PIV/SPIV in Towing Tanks and Cavitation Tunnels	2024
R	7.5-02-01-08	Р	Single Significant Amplitude and Confidence Intervals for Stochas- tic Processes	2024
Ν	7.5-02-01-09	Р	Avoiding self-repeating effect in time-domain numerical simulation of ship motion	2024
Ν	7.5-02-01-10	Р	Procedure of Estimation of Frequency of Random Events by Direct Counting	2024
Ν	7.5-02-01-11	Р	Statistical Validation of Extrapolation Methods for Time Domain Numerical Simulation of Ship Motions	2024
R	7.5-02-03-01.8	G	Scaling Method for ship wake fraction with pre-swirl devices	2024
Ν	7.5-02-03-01.9	G	Guidelines for Predicting the power saving of a wind propulsion ship on a route at design stage	2024
D	7.5-02-03-02.5	G	(Experimental Wake Scaling Methods) - Moved to 7.5-02-03-03.10	2024
R	7.5-02-03-03.1	Р	Model-Scale Cavitation Test	2024
R	7.5-02-03-03.2	Р	Visual Description and Measurement of Cavitation Events	2024
R	7.5-02-03-03.3	Р	Cavitation Induced Pressure Fluctuations Model Scale Experiments	2024
R	7.5-02-03-03.4	Р	Cavitation Induced Pressure Fluctuations Numerical Prediction Methods	2024
R	7.5-02-03-03.5	Р	Cavitation Induced Erosion on Propellers and Rudders, Model Scale Experiments and Numerical Guidance	2024
R	7.5-02-03-03.6	G	Podded Propulsor Model Scale Cavitation Test	2024
D	7.5-02-03-03.7	Р	(Prediction of Cavitation Erosion Damage for Unconventional Rud- ders or Rudders Behind Highly Loaded Propellers) Merged in 7.5- 02-03-03.5	2024
R	7.5-02-03-03.8	Р	Modelling the Behaviour of Cavitation in Waterjets	2024
R	7.5-02-03-03.9	G	Model-Scale Propeller Cavitation Noise Measurements	2024
R	7.5-02-04-02	Р	Test Methods for Model Ice Properties	2024
R	7.5-02-04-02.1	Р	Resistance Tests in Ice	2024
R	7.5-02-04-02.3	PC	Manoeuvring Tests in Ice	2024
R	7.5-02-04-03	G	Guidelines for Modelling of Complex Ice Environments	2024
R	7.5-02-05-01	Р	High Speed Marine Vehicles Resistance Test	2024
R	7.5-02-05-04	Р	HSMV Seakeeping Tests	2024
R	7.5-02-05-04.1	G	Excerpt of ISO 2631-1&3:1985, Seasickness and Fatigue	2024
R	7.5-02-05-05	G	Evaluation and Documentation of HSMV Manoeuvrability	2024
R	7.5-02-05-06	Р	HSMV Model Tests for Prediction of Structural Loads	2024
R	7.5-02-06-01	Р	Free Running Model Tests	2024
R	7.5-02-06-02	P	Captive Model Test Procedure	2024
R	7.5-02-06-03	Р	Validation of Manoeuvring Simulation Models	2024
R	7.5-02-06-04	Р	Uncertainty Analysis for manoeuvring predictions based on captive manoeuvring tests	2024
R	7.5-02-06-05	G	Uncertainty Analysis for free running model tests	2024
R	7.5-02-06-06	G	Benchmark Data for Validation of Manoeuvring Predictions	2024
R	7.5-02-06-07	G	Captive Model Test for Underwater Vehicles	2024
R	7.5-02-07-01.4	Р	Confidence Intervals for Significant Wave Height and Modal Period	2024

D	7 5 02 07 01 5	C	Y . 1	2024
K	7.5-02-07-01.5	G	Laboratory Modelling of Wind	2024
R	7.5-02-07-01.6	G	Laboratory Modelling of Currents	2024
R	7.5-02-07-02.1	Р	Seakeeping Experiments	2024
R	7.5-02-07-02.2	Р	Predicting of Power Increase in Irregular Waves from Model Tests	2024
R	7.5-02-07-02.3	Р	Experiments on Rarely Occurring Events	2024
		_	Verification and Validation of Linear and Weakly Nonlinear Sea-	
R	7.5-02-07-02.5	Р	keeping Computer Codes	2024
D	7 5 02 07 02 (D	Chalada Contractor Development	2024
K	7.5-02-07-02.6	P	Global Loads Seakeeping Procedure	2024
R	7.5-02-07-02.7	Р	Sloshing Model Tests	2024
R	7.5-02-07-02.8	Р	Calculation of the weather factor f_w for decrease of ship speed in waves	2024
D	7.5.02.07.02.5	D	Passive Hybrid Model Tests of Floating Offshore Structures with	2024
K	7.3-02-07-03.3	r	Mooring Lines	2024
R	7.5-02-07-03.6	Р	Dynamic Positioning System Model Test Experiments	2024
R	7.5-02-07-03.7	G	Wave Energy Converter Model Test Experiments	2024
R	7.5-02-07-03.8	Р	Model Tests for Offshore Wind Turbines	2024
R	7.5-02-07-03.9	Р	Model Tests for Current Turbines	2024
D	7 5 00 07 02 11	C	Guideline for Model Tests of Stationary Multi-Bodies Operating in	2024
K	1.5-02-07-03.11	G	Close Proximity	2024
R	7 5-02-07-03 12	G	Uncertainty Analysis for a Wave Energy Converter	2024
P	7 5_02_07_03_15	G	Uncertainty analysis - Example for horizontal axis turbinos	2024
D	7.5-02-07-03.15	C	Model Construction of Offshore Systems	2024
ĸ	7.5-02-07-03.10	G	Model Construction of Offshore Systems	2024
K	1.5-02-07-03.17	G	Uncertainty Analysis for Model Testing of Offshore Wind Turbines	2024
R	7.5-02-07-03.18	G	Practical guidelines for numerical modelling of wave energy con- verters	2024
R	7.5-02-07-04.1	Р	Model Tests on Intact Stability	2024
R	7.5-02-07-04.2	Р	Model Tests on Damage Stability in Wayes	2024
R	7 5-02-07-04 3	G	Predicting the Occurrence and Magnitude of Parametric Rolling	2024
	7.5 02 07 01.5	0	Simulation of Cansize Behaviour of Damaged Shins in Irregular	2021
R	7.5-02-07-04.4	Р	Beam Seas	2024
R	7.5-02-07-04.5	Р	Estimation of Roll Damping	2024
Ν	7.5-02-07-04.8	Р	Computational procedure for instantaneous GZ curve during time-	2024
		-	domain numerical simulation in irregular waves	
R	7.5-03-01-01	Р	Uncertainty Analysis in CFD, Verification and Validation Method- ology and Procedures	2024
R	7.5-03-02-01	Р	Uncertainty Analysis in CFD, Examples for Resistance and Flow	2024
F	7 5 02 02 02	C	Benchmark Database for CFD Validation for Resistance and Propul-	2024
R	7.5-03-02-02	G	sion	2024
R	7.5-03-02-03	G	Practical Guidelines for Ship CFD Applications	2024
R	7.5-03-02-04	G	Practical Guidelines for Ship Resistance CFD	2024
R	7.5-03-02-05	G	Guideline on the CFD-based Determination of Wind Resistance Co-	2024
D	7 5 02 02 01	C	Dreatical Cuidalines for this Salf manufator CED	2024
<u>Л</u> П	7.5-03-03-01	C	Practical Guidelines for DANG Gile Letter CN - 1 1111	2024
K	7.5-03-03-02	G	Practical Guidelines for KANS Calculation of Nominal Wakes	2024
K	/.5-03-04-01	G	Guideline on Use of RANS Tools for Manoeuvring Prediction	2024
R	7.5-03-04-02	G	Validation and Verification of RANS Solutions in the Prediction of Manoeuvring Capabilities	2024
R	7.5-04-01-01.1	Р	Preparation, Conduct and Analysis of Speed/Power Trials	2024
Ν	7.5-04-01-02	Р	Conduct and Analysis of Sea Trial for Wind Assisted Ships	2024
R	7 5-04-02-01	P	Full Scale Manoeuvring Trials	2024
D	7 5 04 02 02	G	IV Full Scale Manoeuvring Trials	2024
	7.5-04-02-02	C	Cuidalines for Shin Trials in Lee	2024
K	7.5-04-05-01	U	Guidennes for Ship Thais In Ice	2024
K	/.5-04-04-01	G	Underwater Noise from Ships, Full Scale Measurements	2024
N	7.6-02-01	W	Verification of Steel Rulers	2024
R	4.2.3-01-01	Р	Guide for the Preparation of ITTC Recommended Procedures	2024