

ITTC Symbols and Terminology List

Version 2024

September 2024

Supersedes all previous versions

Please go to next page for hypertext table of contents

Updated by the 30th ITTC Quality Systems Group

ITTC Symbols and Terminology List, Version 2024 Table of Contents:

all lines have_hypertext link to symbols pages

2.

1.	GENI	ERAL6
1.	1 Fur	ndamental Concepts6
	1.1.1	Uncertainty6
	1.1.2	Coordinates and Space Related Quantities14
	1.1.2.1	Basic Quantities17
	1.1.3	Time and Frequency Domain Quantities19
	1.1.3.1	Basic Quantities19
	1.1.3.2	Complex Transforms
	1.1.3.3	Complex Quantities
	1.1.4	Random Quantities and Stochastic Processes21
	1.1.4.1	Random Quantities21
	1.1.4.2	2 Stochastic Processes
	1.1.4.3	Probability Operators (Superscripts)22
	1.1.5	Balances and System Related Concepts24
1.	2 Soli	id Body Mechanics25
	1.2.1	Inertial and Hydrodynamic Properties25
	1.2.1.1	Basic Quantities25
	1.2.2	Loads27
	1.2.2.1	External Loads27
	1.2.2.2	2 Sectional Loads
	1.2.3	Rigid Body Motions29
	1.2.3.1	Motions29
	1.2.3.2	2 Attitudes
1.	3 Flu	id Mechanics31
	1.3.1	Flow Parameters
	1.3.1.1	Fluid Properties31
		Fluid Properties31Prow parameters31
	1.3.1.2	-
	1.3.1.2 1.3.1.3	2 Flow parameters
	1.3.1.2 1.3.1.3 1.3.2	2 Flow parameters
	1.3.1.2 1.3.1.3 1.3.2 1.3.2.1	2 Flow parameters
	1.3.1.2 1.3.1.3 1.3.2 1.3.2.1	2 Flow parameters

1.3.3.2 Flow angles etc	5
1.3.3.3 Forces	7
1.3.3.4 Sectional coefficients	7
1.3.4 Boundary Layers	8
1.3.4.1 Two-dimensional Boundary Layer 38	S
1.3.5 Cavitation	С
1.3.5.1 Flow parameters40	С
1.3.5.2 Flow fields40	C
1.3.5.3 Pumps4	1
1.4 Environmental Mechanics42	2
1.4.1 Waves	2
1.4.1.1 Periodic waves42	2
1.4.1.2 Irregular waves	3
1.4.1.3 Time Domain Analysis43	3
1.4.1.4 Frequency Domain Analysis44	4
1.4.1.5 Directional Waves45	5
1.4.2 Wind	5
1.4.2.1 Basic Quantities40	5
1.4.3 Ice Mechanics47	7
1.4.3.1 Basic Quantities47	7
1.5 Noise	8
1.5.1 Underwater Noise48	8
2. SHIPS IN GENERAL	9
2.1 Basic Quantities49	9
2.2 Geometry and Hydrostatics5	1
2.2.1 Hull Geometry	
2.2.1.1 Basic Quantities	1
2.2.1.2 Derived Quantities	3
2.2.1.3 Symbols for Attributes and	
Subscripts55	5
2.2.2 Propulsor Geometry	5
2.2.2.1 Screw Propellers	5
2.2.2.2 Ducts	9
2.2.2.3 Waterjets (see also section 1.3.5)59	9
2.2.2.4 Pods	9
2.2.2.5 Operators and identifiers	

2.2.3.1 Basic Quantities61
2.2.3.2 Identifiers for Appendages
(Subscripts)62
2.2.4 Hydrostatics and Stability63
2.2.4.1 Points and Centres (Still under
construction)63
2.2.4.2 Static Stability levers64
2.2.4.3 Derived Quantities65
2.2.4.4 Intact and Damage (Flooded)
Stability66
2.2.4.5 Symbols for Attributes and
Subscripts (under construction)67
2.3 Resistance and Propulsion68
2.3.1 Hull Resistance (see also Section
1.4.1 on Waves)68
2.3.1.1 Basic Quantities
2.3.1.2 Derived Quantities
2.3.1.3 Symbols for Attributes and
Subscripts70
2.3.2 Ship Performance72
2.3.2.1 Basic Quantities72
2.3.2.2 Derived Quantities73
2.3.2.3 Efficiencies etc74
2.3.3 Propulsor Performance
2.3.3.1 Basic Quantities76
2.3.3.2 Derived Quantities77
2.3.3.3 Induced Velocities etc
2.3.4 Unsteady Propeller Forces80
2.3.4.1 Basic Quantities80
2.3.5 Water Jets
2.4 Manoeuvrability and Seakeeping86
2.4.1 Manoeuvrability
2.4.1.1 Geometrical Quantities
2.4.1.2 Motions and Attitudes
2.4.1.3 Flow Angles etc
2.4.1.4 Forces and Derivatives
2.4.1.5 Linear Models
2.4.1.6 Turning Circles
2.4.1.7 Zig-Zag Manoeuvres90
2.4.1.8 Stopping Manoeuvres
2.4.2 Seakeeping
2.4.2.1 Basic Quantities

• • • •		3
2.4.3	Large Amplitude Motions Capsizing	
2.4.4	Symbols for Attributes and	
	Subscripts	100
3. SPEC	CIAL CRAFT	101
	ning and Semi-Displacement	
Ves	ssels	
3.1.1	Geometry and Hydrostatics	101
3.1.2	Geometry and Levers, Underwa 102	ay
3.1.2.1	l Geometry, Underway	102
3.1.2.2	2 Levers, Underway	103
3.1.3	Resistance and Propulsion	105
3.2 Mu	lti-Hull Vessels	107
3.2.1	Geometry and Hydrostatics	107
3.2.2	Resistance and Propulsion	108
3.2.2.1	Resistance Components	108
3.3 Hv	drofoil Boats	109
-	Geometry and Hydrostatics	
	l Geometry, Underway	
3.3.2	Resistance and Propulsion	.111
	Basic Quantities	
3.3.2.2	2 Derived Quantities	112
3.4 AC	V and SES	.113
3.4.1	Geometry and Hydrostatics	113
3.4.2	Resistance and Propulsion	115
3.5 Ice	Going Vessels	116
3.5.1	Resistance and Propulsion	116
3.6 Sai	ling Vessels	118
3.6.1	Geometry and Hydrostatics	
3.6.2		
4. BAC	KGROUND AND REFERENC	
4.1 Syr	nbols and Terminology Group	121
•	scription of the List of Symbols	
4.2.1	Classification	
	Structure of the Lists	
	Organization of the matrix structured list	
5. PRIN	CIPLES OF NOTATION	

- 5.1 Excerpts of ISO 31.....124
 5.2 Computer Symbols135
 5.3 Documentation136

NOTE: bold letters are used to denote vectors **Red colour identifies the additions/modifications of this version of the List**

Acronym	Definition
AC	Advisory Council
EC	Executive Council
BIPM	Bureau International des Poids et Mesures
CFD	Computational fluid dynamics
COG	Course over ground
EFD	Experimental fluid dynamics
GNSS	Global navigation satellite system
GPS	Global positioning system
GUM	Guide to the expression of Uncer- tainty in Measurement
HSMV	High-speed marine vehicle
IMO	International Maritime Organization
ISO	International Organization for Standardization
JCGM	Joint Committee for Guides in Me- trology
JCGM-WG1	JCGM Working Group 1
JCGM-WG2	JCGM Working Group 2
LDV	Laser Doppler velocimetry
MSC	Marine Safety Committee
NMI	National Metrology Institute
PIV	Particle imaging velocimetry
SOG	Speed over ground
SPIV	Stereo-PIV
UV	Underwater vehicle
V&V	Verification and validation
VIM	International vocabulary of metrol- ogy
VIM	Vortex induced motion
VIV	Vortex induced vibration
WPT	Wind Propulsion Technology

Table of most frequently used acronyms not relating to ITTC Symbols

Version 2024

General 1 1.1Fundamental Concepts1.1.1Uncertainty

ITTC	Acronym	Name	Definition or	SI-
Symbol	-		Explanation	Unit

1. GENERAL

1.1 Fundamental Concepts

1.1.1 Uncertainty (The following table follows JCGM 100:2008-Annex J)

(The following table	e 10110ws JCOW 100.2008-Annex J)		r
a	Half-width of a rectangular distribution	Half-width of a rectangular distribution of possible val- ues of input quantity X_i : $a = (a_+ - a)/2$	
<i>a</i> +	Upper bound	Upper bound, or upper limit, of input quantity <i>X_i</i> :	
<i>a</i> -	Lower bound	Lower bound, or lower limit, of input quantity <i>X_i</i> :	
<i>b</i> ₊	Upper bound of the devia- tion	Upper bound, or upper limit, of the deviation of input quantity X_i from its estimate x_i : $b_+ = a_+ - x_i$	
<i>b</i> .	Lower bound of the devia- tion	Lower bound, or lower limit, of the deviation of input quantity X_i from its estimate x_i : $b_i = x_i - a_i$	
Ci	Sensitivity coefficient	$c_i = \partial f / \partial x_i.$	1
f	Function	Functional relationship be- tween measurand Y and in- put quantities X_i on which Y depends, and between output estimate y and input estimates x_i on which y de- pends.	1
$\partial f/\partial x_i$	Partial derivative	Partial derivative with re- spect to input quantity X_i of functional relationship f between measurand Y and input quantities X_i on which Y depends, evalu- ated with estimates x_i for the X_i :	1
k	Coverage factor	Used to calculate expanded uncertainty $U = ku_c(y)$	1
k _p	Coverage factor for probability <i>p</i>	Used for calculation of ex- panded uncertainty $U_p = k_p u_c(y)$	1
n	Number of repeated obser- vations		1

General Fundamental Concepts Uncertainty

ITTC	Acronym	Name	Definition or	SI-
Symbol			Explanation	Unit

N	Number of input quantities	Number of input quantities X_i on which the measurand Y depends	1
р	Probability; Level of confi- dence	Level of confidence: $0 \le p$ ≤ 1.0	1
<i>q</i>	Random quantity	Described by a probability distribution	1
ą	Arithmetic mean or average	Of <i>n</i> independent repeated observations q_k of ran- domly varying quantity q	1
	Estimate of the expectation	Or mean μ_q of the probability distribution of q	1
<i>q</i> _k	k^{th} observation of q	k^{th} independent repeated observation of randomly varying quantity q	1
$r(x_i,x_j)$	Estimated correlation coefficient associated with input estimates	Associated with input esti- mates x_i and x_j that esti- mate input quantities X_i and X_j : $r(x_i, x_j) = u(x_i, x_j)/[u(x_i)$ $u(x_j)]$	1
$r(\overline{X}_{i},\overline{X}_{j})$	estimated correlation coefficient of input means \overline{X}_i and \overline{X}_j	Determined from <i>n</i> independent pairs of repeated simultaneous observations $X_{i,k} X_{j,k}$ of $X_i X_j$ $r(\overline{X}_{i}, \overline{X}_j)$ $= s(\overline{X}_{i}, \overline{X}_j)/[s(\overline{X}_i)s(\overline{X}_j)]$	1
r(yi,yj)	Estimated correlation coefficient associated with output estimates	With output estimates y_i and y_j when two or more measurands or output quantities are determined in the same measurement	1
	Experimental variance of the mean \bar{q}		1
$s^2(\bar{q})$	Estimate of the variance σ^2/n of \bar{q}	$s^2(\bar{q}) = s^2(q_k)/n;$	1
	Estimated variance obtained from a Type A evaluation		1
$s(\bar{q})$	Experimental standard devi- ation of the mean \bar{q}	Positive square root of $s^2(\bar{q})$	1

General Fundamental Concepts Uncertainty

Symbol Evaluation Unit	ITTC	Acronym	Name	Definition or	SI-
	Symbol			Explanation	Unit

	Biased estimator of $\sigma(\bar{q})$	NOTE The sample stand- ard deviation is a biased estimator of the population standard deviation.	
	Standard uncertainty	Obtained from a Type A evaluation	
$c^2(z_{\rm c})$	Experimental variance	Determined from n independent repeated observa- tions q_k of q	1
$s^2(q_k)$	Estimate of the variance	Estimate of the variance σ^2 of the probability distribu- tion of <i>q</i>	1
	Experimental standard devi- ation	Positive square root of $s^2(q_k)$	1
$s(q_k)$	Biased estimator of the standard deviation	Biased estimator of the standard deviation σ of the probability distribution of <i>q</i>	1
$s^2(\bar{X}_i)$	Experimental variance of input mean \bar{X}_i	From mean \overline{X}_i , determined from <i>n</i> independent re- peated observations $X_{i,k}$, of X_i	1
	Estimated variance	Obtained from a Type A evaluation	1
	Experimental standard devi- ation of input mean \bar{X}_i	Positive square root of $s^2(\overline{X}_1)$	1
$s(\overline{X}_i)$	Standard uncertainty	Obtained from a Type A evaluation	1
$s(ar{q},ar{r})$	Estimate of covariance of means \bar{q} and \bar{r} that estimate the expectations μ_q and μ_r of two randomly varying quantities q and r	Determined from <i>n</i> independent pairs of repeated simultaneous observations q_k and r_k of q and r	1
	Estimated covariance	Obtained from a Type A evaluation	1
$s(\overline{X}_i, \overline{X_j})$	Estimate of the covariance of input means \overline{X}_i and \overline{X}_j	Determined from <i>n</i> independent pairs of repeated simultaneous observations $X_{i,k}$ and $X_{j,k}$ of X_i and X_j	1
	Estimated covariance	Obtained from a Type A evaluation	1
<i>S</i> ² _m	expected value E[] of the variance of mean		1

General Fundamental Concepts Uncertainty

ITTC	Acronym	Name	Definition or	SI-
Symbol			Explanation	Unit

<i>s</i> _m	Standard deviation of the mean	Positive square root of s_m^2	1
s_p^2	Combined or pooled esti- mate of variance		1
Sp	Pooled experimental stand- ard deviation	Positive square root of s_p^2	1
$t_p(v)$	Inverse Student t	Student <i>t</i> -distribution for <i>v</i> degrees of freedom corresponding to a given probability <i>p</i>	1
$t_p(v_{\rm eff})$	Inverse Student <i>t</i> for effec- tive degrees of freedom	Student <i>t</i> -distribution for v_{eff} degrees of freedom corresponding to a given probability <i>p</i> in calculation of expanded uncertainty U_p	1
$u^2(x_i)$	Estimated variance associ- ated with input estimate x_i that estimates input quantity X_i	NOTE When x _i is deter- mined from the arithmetic mean or average of <i>n</i> inde- pendent repeated observa- tions, $u^2(x_i) = s^2(\bar{X}_i)$ is an estimated variance ob- tained from a Type A eval- uation.	1
<i>u</i> (<i>x_i</i>)	Standard uncertainty of in- put estimate x_i that estimates input quantity X_i	Positive square root of $u^2(x_i)$ NOTE When x_i is determined from the arithmetic mean or average of <i>n</i> independent repeated observations, $u(x_i) = s(\overline{X}_i)$ is a standard uncertainty obtained from a Type A evaluation.	1

General Fundamental Concepts Uncertainty

Version 2024

ITTC	Acronym	Name	Definition or	SI-
Symbol			Explanation	Unit
$u(x_i, x_j)$		Estimated covariance	Associated with two input estimates x_i and x_j that esti- mate input quantities X_i and X_j NOTE When x_i and x_j are determined from n inde- pendent pairs of repeated simultaneous observations, $u(x_i, x_j) = s(\overline{X}_i, \overline{X}_j)$ is an estimated covariance ob- tained from a Type A eval- uation	1
$u(x_i)/ x_i $		Relative standard uncer- tainty of output estimate x_i		1
$u(y_i, y_j)$		Estimated covariance	Associated with output es- timates y _i and y _j deter- mined in the same meas- urement	
$u_c^2(y)$		Combined variance	Combined variance associ- ated with output estimate y	1
$u_{\rm c}(y)$		Combined standard uncer- tainty	Combined standard uncer- tainty of output estimate y, equal to the positive square root of $u_c^2(y)$	1
$u_{cA}(y)$		Combined standard uncer- tainty of output estimate y	Determined from standard uncertainties and estimated covariances obtained from Type A evaluations alone	1
<i>u</i> _{cB} (<i>y</i>)		Combined standard uncer- tainty of output estimate y	 Combined standard uncertainty of output estimate y determined from standard uncertainties and estimated covariances obtained from Type B evaluations alone 	1
$u_c(y_i)$		Combined standard uncer- tainty of output estimate y_i	When two or more measur- ands or output quantities are determined in the same measurement	1
$u_i^2(y)$		Component of combined variance $u_c^2(y)$	Associated with output es- timate y generated by esti- mated variance $u^2(x_i)$ as- sociated with input esti- mate x_i : $u_i^2(y) \equiv [c_i u(x_i)]^2$	1

General Fundamental Concepts Uncertainty

ITTC Ac	cronym	Name	Definition or	SI-
Symbol			Explanation	Unit

[]	Component of combined	Concreted by the stondard	
	Component of combined	Generated by the standard	1
$u_i(y)$	standard uncertainty $u_c(y_i)$	uncertainty of input esti-	1
	of output estimate y	mate x_i : $u_i(y) \equiv c_i u(x_i)$	
	Relative combined standard		
$u_c(y)/ y $	uncertainty of output esti-		
	mate y		
2		Estimated relative variance	
$[u(x_i)/ x_i]^2$	Estimated relative variance	associated with input esti-	
		mate x_i	
		Relative combined vari-	
$[u_c(y)//y]^2$	Relative combined variance	ance associated with output	
		estimate y	
$u(x_i, x_j))/ x_i $	Estimated relative covari-	Estimated relative covari-	
		ance associated with input	
$ x_j $	ance	estimates x_i and x_j	
		Expanded uncertainty of	
		output estimate y that de-	
		fines an interval $Y = y \pm U$	
	Expanded uncertainty	having a high level of con-	
U		fidence, equal to coverage	
		factor k times the com-	
		bined standard uncertainty	
		$u_c(y)$ of y:	
		$U = k u_c(y)$	
		Expanded uncertainty of	
		output estimate <i>y</i> that de-	
		fines an interval $Y = y \pm U_p$	
		having a high level of con-	
U_p	Expanded uncertainty asso-	fidence <i>p</i> , equal to cover-	
*	ciated to confidence level p	age factor k_p times the	
		combined standard uncer-	
		tainty $u_c(y)$ of y:	
		$U_p = k_p u_c(y)$	
		NOTE when x_i is deter-	
		mined from the arithmetic	
Xi	Estimate of input quantity X_i		
		pendent repeated observa-	
		tion $x_i = \overline{X_i}$	
		NOTE X_i may be the	
X_i	i th input quantity on which	physical quantity or the	
Λ_l	measurand Y depends	random variable	
		random variable	

Version 2024

General Fundamental Concepts Uncertainty

	51-
Symbol Explanation	Unit

	Estimate of the value of in-	Equal to the arithmetic mean or average of <i>n</i> inde-
$\overline{X_i}$	put quantity X_i	pendent repeated observa-
		tion $X_{i,k}$ of X_i
	<i>k</i> th independent repeated ob-	
$X_{i,k}$	servation of X_i	
	Estimated of measurand Y	
у	Result of a measurement	
	Output estimate	
		When two or more measur-
<i>Yi</i>	Estimate of measurand Y_i	ands are determined in the
		same measurement
Y	A measurand.	
		Estimated relative uncer-
$\frac{\Delta u(x_i)}{u(x_i)}$	Estimated relative uncer-	tainty of standard uncer-
$u(x_i)$	tainty	tainty $u(x_i)$ of input esti-
		mate <i>x</i> _i
μ_q	Expectation or mean of the	Expectation or mean of the
	probability distribution	probability distribution of
		random-varying quantity q
ν	Degrees of freedom (gen- eral)	
		Degrees of freedom, or ef-
	Degrees of freedom	fective degrees of freedom
Vi		of standard uncertainty
		$u(x_i)$ of input estimate x_i
		Effective degrees of free-
	Effective degrees of free-	dom of $u_c(y)$ used to obtain
Veff	dom	$t_p(v_{eff})$ for calculating ex-
		panded uncertainty U_p
		Effective degrees of free-
		dom of a combined stand-
VeffA	Effective degrees of free-	ard uncertainty determined
VenA	dom	from standard uncertainties
		obtained from Type A
		evaluations alone
		Effective degrees of free-
		dom of a combined stand-
VeffB	Effective degrees of free-	ard uncertainty determined
	dom	from standard uncertainties
		obtained from Type B
		evaluations alone

General Fundamental Concepts Uncertainty

Version 2024

ITTC	Acronym	Name	Definition or	SI-
Symbol			Explanation	Unit

σ²	Variance of a probability	Variance of a probability distribution of (for exam- ple) a randomly-varying quantity q , estimated by $s^2(q_k)$
<i>σ</i>	Standard deviation of a probability distribution	Equal to the positive square root of σ^2
σ	$s(q_k)$ is a biased estimator of σ	
$\sigma^2(\overline{q})$	Variance of \overline{q}	Equal to σ^2 / n , estimated by $s^2(\overline{q}) = \frac{s^2(\overline{q_k})}{n}$
$\sigma(\overline{q})$	Standard deviation of \overline{q}	Equal to the positive root of $\sigma^2(\overline{q})$
	$s(\bar{q})$ is a biased estimator of $\sigma(\bar{q})$	
$\sigma^2[s(\overline{q})]$	Variance of experimentalstandard deviation $s(\overline{q})$ of \overline{q}	
$\sigma[s(\overline{q})]$	Standard deviation of exper- imental standard deviation $s(\overline{q})$ of \overline{q} ,	Equal to the positive square root of $\sigma^2[s(\bar{q})]$

Version 2024

- General
 Fundamental Concepts
 1.1.2 Coordinates and Space related Quantities 14
- 1.1.2 Coordinates and Space Related Quantities

Orientation of coordinates

A problem of general interest, the orientation of the axes of coordinate systems, has been treated extensively in the Report of the 17th ITTC Information Committee. The present QS Group recommends that the orientations of the coordinate systems chosen for convenience should be stated explicitly in any case. The coordinate system orientation should not be inferred from the symbols and/or names of the concepts or from national or professional traditions. All sign conventions of related Quantities should be consistent with the orientation chosen.

For ready reference the recommendation of the 17th ITTC Information Committee is quoted in the following.

"In order to adapt ITTC nomenclature to common practice a proposal for a standard coordinate system was published in the newsletter No 7, March 1983, to generate discussion. The response was quite diverse. On the one hand it was suggested that instead of the two orthogonal right handed systems with the positive x-axis forward and the positive z-axis either up- or downward as proposed only one system should be selected, in particular the one with the positive z-axis upwards. On the other hand the attention of the Information Committee was drawn to the fact that in ship flow calculations neither of the two systems proposed is customary. Normally the x-axis is directed in the main flow direction, i.e. backwards, the y-axis is taken positive to starboard and the z-axis is positive upwards. The origin of the co-ordinates in this case is usually in the undisturbed free surface half way between fore and aft perpendicular.

In view of this state of affairs the Information Committee (now Quality System Group - QSG) may offer the following recommendation, if any:

Axes, coordinates

Preferably, orthogonal right handed systems of Cartesian co-ordinates should be used, orientation and origin in any particular case should be chosen for convenience.

Body axes (x,y,z)

Coordinate systems fixed in bodies, ocean platforms, or ships.

For the definition of hull forms and ocean wave properties and the analysis of structural deflections it is customary to take the *x*-axis positive forward and parallel to the reference or base line used to describe the body's shape, the *y*-axis positive to port, and the *z*-axis positive upwards.

For seakeeping and manoeuvrability problems the coordinate system is defined as follows: usually the x-axis as before the y-axis positive to starboard, and the z-axis positive downwards, the origin customarily at the centre of mass of the vehicle or at a geometrically defined position.

For ship flow calculations usually the *x*-axis positive in the main flow direction, i.e. backwards, the *y*-axis positive to starboard, and the *z*-axis positive upwards, the origin customarily at the intersection of the plane of the undisturbed free-surface, the centre plane, and the midship section.

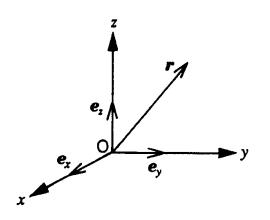
Fixed or space axes (x_0, y_0, z_0)

Coordinate systems fixed in relation to the earth or the water. For further references see ISO Standard 1151/1 ...6: Terms and symbols for flight dynamics.

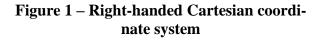
Version 2024

There may be other coordinate systems in use and there is no possibility for the adoption of a single system for all purposes. Any problem requires an adequate coordinate system and transformations between systems are simple, provided that orientations and origins are completely and correctly documented for any particular case."

Origins of coordinates


General
 Fundamental Concepts
 Coordinates and Space related Quantities 15

In seakeeping and manoeuvrability problems customarily the centre of mass of the vehicle is chosen as the origin of the coordinates. This is in most cases not necessarily advantageous, as all the hydrodynamic properties entering the problems are related rather to the geometries of the bodies under investigation. So any geometrically defined point may be more adequate for the purposes at hand.


ISO Standard 31-11 makes the following suggestions	

Item No.	Coordinates	Position vector and its	Name of coordi-	Remarks	
		differential	nate system		
11-12.1 (-)	<i>x, y, z</i>	$\mathbf{r} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z$ d $\mathbf{r} = dx \mathbf{e}_x + dy \mathbf{e}_y + dz \mathbf{e}_z$	cartesian coordinates	e_x , e_y and e_z form an orthonormal right-handed system. See Figure 1.	
11-12.2 (-)	ρ, φ, z	$\mathbf{r} = \rho \mathbf{e}_{\rho} + z \mathbf{e}_{z}$ d $\mathbf{r} = d\rho \ \mathbf{e}_{\rho} + d\varphi \ \mathbf{e}_{\varphi} + dz \ \mathbf{e}_{z}$	cylindrical coordinates	$e_{\rho}(\varphi)$, $e_{\varphi}(\varphi)$ and e_z form an orthonormal right-handed system. See Figures 2 and 3. If $z = 0$, then ρ and φ are the polar coordinates	
11-12.3 (-)	<i>r</i> , θ, φ	$r = r \boldsymbol{e}_r;$ $d\boldsymbol{r} = dr \boldsymbol{e}_r + r d \boldsymbol{\mathcal{G}} \boldsymbol{e}_{\boldsymbol{\theta}} + r \sin \boldsymbol{\theta} d\varphi \boldsymbol{e}_{\boldsymbol{\varphi}}$	spherical coordinates	$e_r(9, gyp), e_{\theta}(\theta, \varphi)$ and $e_{\varphi}(\varphi)$ form an orthonormal right-handed system. See Figures 2 and 4.	
NOTE 1 to avoid th					

Version 2024

The x-axis is pointing towards the viewer.

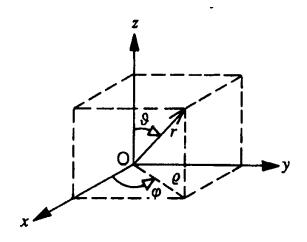


Figure 2 – Oxyz is a right-handed coordinate system

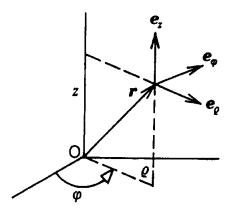


Figure 3 – Right-handed cylindrical coordinates

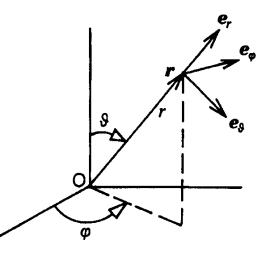


Figure 4 – Right-handed spherical coordinates

Version 2024

General 1

1.1 Fundamental Concepts1.1.2 Coordinates and Space related Quantities 17

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.1.2.1 Basic Quantities

S	Any scalar quantity distrib- uted, maybe singularly, in space	<u>f</u> ds
S^{O}_{ij}	Zero th order moment of a scalar quantity	$\int \delta_{ij} ds = \delta_{ij} S$
S^1_{ij}	First order moment of a scalar quantity, formerly static moments of a scalar distribution	ſ _{eikj} x _k ds
S^2_{ij}	Second moment of a scalar quantity, formerly mo- ments of inertia of a scalar distribution	Jeklixlejkm xmds
Suv	Generalized moment of a scalar quantity distributed in space	$S_{ij} = S^{0}_{ij}$ $S_{i, 3+j} = S^{1}_{ij}^{T}$ $S_{3+i, j} = S^{1}_{ij}$ $S_{3+i, 3+j} = S^{2}_{ij}$
T _{ij}	Tensor in space referred to an orthogonal system of Cartesian coordinates fixed in the body	$T_{ij}^{s} + T_{ij}^{a}$
$T_{ij}{}^{ m A}$	Anti-symmetric part of a tensor	(T _{ij} - T _{ji}) / 2
$ \begin{array}{c} T_{ij} S \\ T_{ij}^{\mathrm{T}} \end{array} $	Symmetric part of a tensor	$(T_{ij} + T_{ji})/2$
T_{ij}^{T}	Transposed tensor	T _{ji}
$T_{ij} v_j$	Tensor product	$\Sigma T_{ij} v_j$
u_i, v_i	Any vector quantities	
U _i V _i	Scalar product	<i>U</i> _i <i>V</i> _i
$u_i v_j$	Diadic product	$u_i v_j$
<i>u×v</i>	Vector product	$\mathcal{E}_{ijk}\mathcal{U}_j\mathcal{V}_k$
$V^0{}_i$, V_i	Zeroth order moments of a vector quantity distributed in space, referred to an or- thogonal system of Carte- sian coordinates fixed in the body	<i>f</i> dv _i
V^{1}_{i}	First order moments of a vector distribution	ſ _{Eijk} x _j dv _k
V _u	Generalized vector	$V_i = V_i^0$ $V_{3+i} = V_i^1$

General 1

1.1 Fundamental Concepts1.1.2 Coordinates and Space related Quantities 18

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actoliyin	Name	Explanation	Unit
<i>x</i> , <i>x</i> ₁		Rody awas and correspond	Right-hand orthogonal sys-	
<i>y</i> , <i>x</i> ₂		Body axes and correspond- ing Cartesian coordinates	tem of coordinates fixed in	m
<i>z</i> , <i>x</i> ₃		ling Cartestan coordinates	the body	
x_0, x_{01}		Space axes and corre-	Right-hand orthogonal sys-	
<i>y</i> ₀ , <i>x</i> ₀₂		sponding Cartesian coordi-	tem of coordinates fixed in	m
Z0, X03		nates	relation to the space	
$x_{\mathrm{F}}, x_{\mathrm{F}1}$		Elow awas and correspond	Right-hand orthogonal sys-	
<i>y</i> _F , <i>x</i> _{F2}		Flow axes and correspond-	tem of coordinates fixed in	m
ZF, XF3		ing Cartesian coordinates	relation to the flow	
			+1: ijk = 123, 231, 312	
Eijk		Epsilon operator	1: ijk = 321, 213, 132	
			0 : if otherwise	
S.,		Dalta operator	+1: ij = 11, 22, 33	
δ_{ij}		Delta operator	0 : if otherwise	

Version 2024

Mechanics in General 1

1.1 Fundamental Concepts1.1.3 Time and Frequency Domain Quantities 19

ITTC	Aaronym	Nomo	Definition or	SI-
Symbol	ACIOIIVIII	Name	Explanation	Unit

Time and Frequency Domain Quantities 1.1.3

1.1.3.1 Basic Quantities

a	ADMP	Damping	<i>s^r</i> , in Laplace variable	1/s
f	FR	Frequency		Hz
fc	FC	Basic frequency in repeat- ing functions	1 / T _C	Hz
fs	FS	Frequency of sampling	$1 / T_{\rm S}$ period in repeating spectra	Hz
i	Ι	Imaginary unit	sqrt(-1)	1
Ι	IM	Imaginary variable		1
j	J	Integer values	-∞+∞	1
R	R	Complex variable	$exp(s T_s)$ Laurent transform	
S	S	Complex variable	$a + 2\pi i f$ Laplace transform	1/s
t	TI	Time	-∞ +∞	S
tj	TI(J)	Sample time instances	j T _S	
T _C	TC	Period of cycle	$1/f_{\rm C}$ duration of cycles in periodic, repeating processes	S
Ts	TS	Period of sampling	Duration between samples	S
x	Х	Values of real quantities	x(t)	
X		Real "valued" function		
Xj	X(J)	Variables for samples values of real quantities	$x(t_j) = \int x(t)\delta(t - t_j)dt$	
Z.	Z	Complex variable		

Mechanics in General 1

1.1 Fundamental Concepts1.1.3 Time and Frequency Domain Quantities 20

ITTC	Acronym	Nama	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.1.3.2 Complex Tra	ansforms	
x ^A	Analytic function	$X^{\rm A}(t) = X(t) + iX^{\rm H}(t)$
x ^{DF}	Fourier transform of sam- pled function	$X^{\text{DF}}(f) = \sum x_j exp(-i2\pi f j T_S)$ i.e. periodically repeating $= X(0)/2 + f_S \sum X^F(f + j f_S)$ sample theorem: aliasing!
x ^{DL}	Laurent transform of sampled function	$X^{\mathrm{DL}}(s) = \Sigma x_j \exp(-sjT_{\mathrm{S}})$
x ^F	Fourier transform	$X^{F}(f) = \int X(t) \exp(-i2\pi ft) dt$ inverse form: $= \int X^{F}(f) \exp(-i2\pi ft) dt$ if $X(t) = 0$ and $a = 0$ then $X^{F}(f) = X^{L}(f)$
	Fourier transform of periodic function	$\frac{1/T_{\rm C}fX(t)\exp(-i2\pi jt/T_{\rm C})dt}{t=0T_{\rm C}}$ $X^{\rm F} = \Sigma x^{\rm F}_{j}\delta(f-j/T_{\rm C})$ inverse form: $X(t) = \Sigma x^{\rm F}_{j}\exp(-i2\pi fjT_{\rm C})$
x ^H	Hilbert transform	$X^{\rm H}(t) = 1/\pi \int X(\tau)/(t-\tau) d\tau$
x ^{HF}	Fourier transform of Hilbert transform	$X^{\text{HF}}(f) = X^{\text{F}}(f)(-i \operatorname{sgn} f)$ (1/t) ^F = -i sgn f
x ^L	Laplace transform	$X^{L}(s) = \int X(t) \exp(-st) dt$ if $X(t < 0) = 0$ then $= (X(t) \exp(-at))^{F}$ $X^{R}(r) = \sum_{ij} r^{ij} = X^{DL}$
x ^R	Laurent transform	$X^{\rm R}(r) = \Sigma x_j r^{-j} = X^{\rm DL}$
x ^S	Single-sided complex spec- tra	$X^{S}(f) = X^{F}(f)(1 + \operatorname{sgn} f)$ = X^{AF} i.e. = 0 for $f < 0$
x ^S _j	Single-sided complex Fou- rier series	$\begin{array}{c} X^{\mathrm{F}}_{j}(1 + \mathrm{sgn}j) \\ \text{line spectra} \end{array}$

1122 Complay Transfe

1.1.3.3 Complex Quantities

z^a	Amplitude	$mod(z) = sqrt(z^{r2}+z^{i2})$
z ^c	Real or cosine component	$z^{c} = real(z) = z^{a}cos(z^{p})$
z^i	Imaginary or sine compo-	$\operatorname{imag}(z) = z^{\mathrm{a}} \sin(z^{p}) = z^{\mathrm{s}}$
	nent	
z^{j}	Conjugate	$z^r - iz^i$
z^l	(Phase) Lag	
z^p	Phase	$\operatorname{arc}(z) = \operatorname{arctg}(z^i / z^r)$
z^{r}	Real or cosine component	$\operatorname{real}(z) = z^{\mathrm{a}} \cos(z^{p}) = z^{\mathrm{c}}$
z^{s}	Imaginary or sine compo-	$z^{s} = \operatorname{imag}(z) = z^{a} \sin(z^{p})$
	nent	

ITTC Symbols

Version 2024

Mechanics in General Fundamental Concepts Stochastic Processes

ITTC	A	Nome	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.1.4 Random Quantities and Stochastic Processes

1.1.4.1 Random Qua			
$g^{\mathrm{E}}, g^{\mathrm{M}}, g^{\mathrm{MR}}$	Expected value of a func-	$E(g) = \int g(x) f_x(x) dx$	
	tion of a random quantity	$x = -\infty \dots \infty$	
х, у	Random quantities	$x(\zeta), y(\zeta)$	
x_i, y_i	Samples of random quanti-	i = 1 n	
	ties	<i>n</i> : sample size	
$(x^m)^E$	m- th moment of a random	$(x^m)^{\mathrm{E}}$	
	quantity		
$x^{\mathrm{D}}, x^{\mathrm{DR}}, \sigma_x$	Standard deviation of a	x^{VR}	
	random quantity		
$x^{\rm DS}, s_x$	Sample deviation of a ran-	$x^{VS \ 1/2},$	
	dom quantity	unbiased random estimate	
	1 2	of the standard deviation	
$xx^{\mathrm{R}}, xx^{\mathrm{MR}},$	Auto-correlation of a ran-	x x ^E	
	dom quantity		
$\frac{R_{xx}}{xy^{\text{R}}, xy^{\text{MR}},}$	Cross-correlation of two	$x y^{\mathrm{E}}$	
R_{xy}	random quantities		
$\frac{R_{xy}}{x^{\rm E}, x^{\rm M}, x^{\rm MR},}$	Expectation or population	E(x)	
	mean of a random quantity		
$\frac{\mu_x}{x^{\text{A}}, x^{\text{MS}}, m_x}$	Average or sample mean	$1/n \Sigma x_i$, $i = 1n$	
	of a random quantity	unbiased random estimate	
	1 2	of the expectation with	
		$x^{AE} = x^{E}$	
		$x^{\text{VSE}} = x^{\text{V}} / n$	
x^{PD}, f_x	Probability density of a	$d F_x / dx$	
	random quantity		
xy^{PD}, f_{xy}	Joint probability density of	$\partial F_{xy}/(\partial x \partial y)$	
	two random quantities		
$x^{\rm PF}, F_x$	Probability function (distri-		1
	bution) of a random quan-		
	tity		
xy^{PF}, F_{xy}	Joint probability function		1
	(distribution) function of		
	two random quantities		
$x^{\mathrm{V}}, x^{\mathrm{VR}},$	Variance of a random	$x^{2 \mathrm{E}} - x^{\mathrm{E} 2}$	
xx ^{VR}	quantity		
$\frac{xx^{\text{VR}}}{x^{\text{VS}}, xx^{\text{VS}}}$	Sample variance of a ran-	$1/(n-1)\Sigma(x_i - x^A)^2$	
	dom quantity	i = 1n	
		unbiased random estimate	
		of the variance $x^{VSE} =$	
		x^{V}	
xy^{V}, xy^{VR}	Variance of two random	$x y^E - x^E y^E$	
	quantities		

Version 2024

Mechanics in General Fundamental Concepts Stochastic Processes

ITTC
SymbolAcronymNameDefinition or
Explanation

ζ	Outcome of a random "ex-	
	periment"	

1.1.4.2 Stochastic Pro			
<i>B</i> ^{<i>MR</i>} <i>B</i> ^{<i>MR</i>}	Mean of a function of a	$M(g(t)) = \lim_{t \to T/2} (1/T \int g(t) dt)$	
	random quantity	$t = -T/2 \dots + T/2$	
MS		$T = -\infty \dots +\infty$	
g^{MS}	Average or sample mean of	$A(g(t)) = 1/T \int g(t) dt$	
	a function of a random	$t = 0 \dots + T$	
	quantity		
х, у	Stationary stochastic pro-	$x(\zeta,t), y(\zeta,t)$	
C CD	cess		
$xx^{\mathrm{C}}, xx^{\mathrm{CR}},$	Auto-covariance of a sta-	$(x(t) - x^{\rm E})(x(t + \tau) - x^{\rm E})^{\rm E}$	
$\frac{C_{xx}}{xy^{\rm C}, xy^{\rm CR},}$	tionary stochastic process		
	Cross-covariance of two	$(x(t) - x^{E})(y(t + \tau) - y^{E})^{E}$	
C_{xy}	stationary stochastic pro-		
	cesses		
$xx^{\mathrm{R}}, xx^{\mathrm{RR}},$	Auto-correlation of a sta-	$x(t)x(t+\tau)^{\rm E}=R_{xx}(\tau)$	
R_{xx}	tionary stochastic process	$R_{xx}(\tau) = R_{xx}(-\tau)$	
		if x is ergodic:	
		$R_{xx}(\tau) = x(t)x(t+\tau)^{\rm MR}$	
		$R_{xx}(\tau) = \int S_{xx}(\omega) \cos(\omega\tau) d\tau$	
		$ au=0\\ \infty$	
xy^{R}, R_{xy}	Cross-correlation of two	$x(t)y(t+\tau)^{\rm E} = R_{xy}(\tau)$	
	stationary stochastic pro-	$R_{yx}(\tau) = R_{xy}(-\tau)$	
	cesses	if x, y are ergodic:	
		$\frac{R_{xy}(\tau) = x(t)y(t+\tau)^{\text{MR}}}{xx^{\text{RRSR}}}$	
xx^{S}, S_{xx}	Power spectrum or au-	xx ^{RRSR}	
	tospectral power density of		
	a stochastic process		
xy^{S}, S_{xy}	Cross-power spectrum of	xy ^{RRSR}	
	two stationary stochastic		
	processes		
τ	Covariance or correlation		S
	time		
ζ	Outcome of a random "ex-		
-	periment"		

1.1.4.2 Stochastic Processes	1.1.4.2	Stochastic Processes
------------------------------	---------	----------------------

A, MS	Average, sample mean
C, CR	Population covariance
CS	Sample covariance
D, DR	Population deviation
DS	Sample deviation

SI-

Unit

Version 2024

VS

1 **Mechanics in General** 1.1 **Fundamental Concepts 1.1.4 Stochastic Processes**

ITTC SI-Definition or Acronym Name Unit Symbol Explanation E, M, MR Expectation, population mean Probability density PD PF Probability function (Power) Spectrum S SS Sample spectrum Population correlation R, RR Sample correlation RS V, VR

Population variance Sample variance

Mechanics in General 1

1.1 Fundamental Concepts1.1.5 Balances and System Related Concepts 24

ITTC	A	Nama	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.1.5 Balances and System Related Concepts

<i>q</i>	Quantity of the quality un- der consideration stored in a control volume		Q ^U
Q	Quality under considera- tion		Q ^U /s
Q^{C}	Convective flux		Q ^U /s
$Q^{\rm C}$ $Q^{\rm D}$	Diffusive flux		Q ^U /s
Q^{F}	Total flux across the surface of the control vol- ume	Inward positive!	Q ^U /s
Q^{M}	Molecular diffusion		Q ^U /s
Q^{P}	Production of sources in the control volume		Q ^U /s
$Q^{\rm S}$	Storage in the control vol- ume, rate of change of the quantity stored	dq / dt	Q ^U /s
Q^{T}	Turbulent diffusion		Q ^U /s

Version 2024

1 **Mechanics in General**

1.2 Solid Body Mechanics1.2.1 Inertial and Hydrodynamic Properties 25

ITTC	A	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

Solid Body Mechanics 1.2

1.2.1 Inertial and Hydrodynamic Properties1.2.1.1 Basic Quantities

A_{ij}	Added mass coefficient in		
<i>ij</i>	<i>i</i> th mode due to <i>j</i> th motion		
B_{ij}	Damping coefficient in <i>i</i> th		
9	mode due to <i>j</i> th motion		
	Restoring force coefficient		
C_{ij}	in <i>i</i> th mode due to <i>j</i> th mo-		
	tion		
$D^{\rm h}_{\ \mu\nu}$	Generalized hydrodynamic	$\partial F_{\mu}^{h} / \partial V_{\nu}$	
	damping		
F^{h}_{u}	Generalized hydrodynamic		
1 u	force		
$I^{\rm h}_{\ uv}$	Generalized hydrodynamic	$\partial F_{u}^{h}/\partial \dot{V}_{v}$	
1 uv	inertia	$0r_u/0v_v$	
IL	Longitudinal second mo-	About transverse axis	m ⁴
IL	ment of water-plane area	through centre of floatation	111
I_	Transverse second moment	About longitudinal axis	m ⁴
I _T	of water-plane area	through centre of floatation	111
I_{y} , I_{yy} ,			
I_y , I_{yy} , m^2_{22} ,	Pitch moment of inertia		kg m ²
<i>m</i> 55	around the principal axis y		-
I_z , I_{zz} ,	XZ (C)		
m^2_{33} ,	Yaw moment of inertia		kg m ²
m_{66}	around the principal axis z		U U
I_{xy} , I_{12}	Deel and best of in order in		
I_{yz} , I_{23}	Real products of inertia in		kg m ²
I_{zx} , I_{31}	case of non-principal axes		U U
k_{x}, k_{xx}	Roll radius of gyration	$(\mathbf{r}_{1})^{1/2}$	
k	around the principal axis x	$(I_{xx}/m)^{1/2}$	m
	Pitch radius of gyration	$(\mathbf{r}_{1}) > 1/2$	
k_{y}, k_{yy}	around the principal axis y	$(I_{yy}/m)^{1/2}$	m
	Yaw radius of gyration	(7. ()1/2	
k_z, k_{zz}	around the principal axis z	$(I_{zz}/m)^{1/2}$	m
m	mass		kg
0	Zero- th moments of mass,		
m^0_{ij} ,	i.e. inertia distribution,	$m_{ij} = m \ \delta_{ij}$	kg
m_{ij}	mass tensor		
1	First moments of mass, i.e.	Alias static moments of	1
m^{1}_{ij}	inertia distribution	mass	kg m
m^2_{ij} ,	Second moments of mass,	Alias mass moments of in-	
I _{ij}	i.e. inertia distribution	ertia	kg m ²
- IJ		UTTU	

1 **Mechanics in General**

1.2 Solid Body Mechanics1.2.1 Inertial and Hydrodynamic Properties 26

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
M _{uv}		Generalized mass, i. e. generalized inertia tensor of a (rigid) body referred to a body fixed coordinate system	$M_{ij} = M^0{}_{ij}$ $M_{i, 3+j} = M^{1}{}^{T}{}_{ij}$ $M_{3+i, j} = M^1{}_{ij}$ $M_{3+i, 3+j} = M^2{}_{ij}$	

Version 2024

ITTC Symbols

Version 2024

Mechanics in General Solid Body Mechanics Loads

ITTC
SymbolAcronymNameDefinition or
ExplanationSI-
Unit

1.2.2 Loads

1.2.2.1 External Loads

Fu	Force, generalized, load, in body coordinates	$M^{F}_{u} = M^{M}_{u}$ $F_{i} = F^{0}_{i}$ $F_{3+i} = F^{1}_{i}$	N
<i>gu</i>	Gravity field strength, gen- eralized, in body coordi- nates	$g_i = g^1{}_i$ $g_{3+i} = 0$	m/s ²
gi	Gravity field strength, in body coordinates!		m/s ²
K, M_x , $F^1{}_1$, F_4	Moment around body axis x		Nm
M, M_y, F^1_2, F_5	Moment around body axis y		Nm
N, M_z, FN^1_3, F_6	Moment around body axis z		Nm
$\begin{array}{c} X, F_x, \\ F^0{}_1, F_1 \end{array}$	Force in direction of body axis x		Nm
$Y, F_y,$ F^0_2, F_2	Force in direction of body axis y		Nm
Z, F_z, F_{3}, F_{3}	Force in direction of body axis z		Nm
Gu	Gravity or weight force, generalized, in body co-or- dinates!	$G_u = m_{uv} g_v$	N
$G^0 i$, G_i	Gravity or weight force in body coordinates!	$G_i = G^0{}_i = m^0{}_{ij} g_j$ $= mg_i$	N
G^{1}_{i}	Gravity or weight moment in body coordinates!	$ \begin{array}{c} = mg_i \\ G_{3+i} = G^1_i = \varepsilon_{ikj} x_k G^0_j \\ = m^1_{ij} g_j \end{array} $	Nm
<i>q</i>	Load per unit length		N/m
W	Weight per unit length	dW/dx_1	N/m

ITTC S	ymbols
--------	--------

Mechanics in General Solid Body Mechanics Loads

Version 2024

ITTC	A	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.2.2.2 Sectional Loads

F ^S _u	Force or load acting at a given planar cross-section of the body, generalized, in section coordinates!	$F^{S}_{i} = F^{S0}_{i}$ $F^{S}_{3+i} = F^{S1}_{i} = M^{B}_{i}$	N Nm
F^{S}_{i}	Shearing force	$F^{\mathrm{S0}}{}_2$, $F^{\mathrm{S0}}{}_3$	Ν
F^{T}	Tensioning or normal force	F^{S0}	Ν
$M^{\mathrm{B}}{}_{i}$	Bending moment	$F^{\mathrm{S1}}{}_2$, $F^{\mathrm{S1}}{}_3$	Nm
M ^T	Twisting or torsional mo- ment	F^{S1}_{1}	Nm

Version 2024

Mechanics in General Solid Body Mechanics Rigid Body Motions

ITTC	A	Nome	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.2.3 Rigid Body Motions

L	Angular momentum	$L = I\omega (= r^2 m v)$	Kg_{1} m s ⁻
Р	Linear momentum	P = m v	Kg_{1} m s ⁻
$p, \omega_x, v_1^{0}, v_4$	Rotational velocity around body axis <i>x</i>		rad/s
q , ω_y , v^0_2 , v_5	Rotational velocity around body axis y		rad/s
r, ω_z, v^0_3, v_6	Rotational velocity around body axis <i>z</i>		rad/s
$u, v_x, \\ v^1_1, v_1$	Translatory velocity in the direction of body axis <i>x</i>		m/s
v, v_y, v_{12}, v_2	Translatory velocity in the direction of body axis y		m/s
W , V_z , v^1 3, v 3	Translatory velocity in the direction of body axis <i>z</i>		m/s
Vu	Components of generalized velocity or motion relative to body axes	$v_i = v_i^1$ $v_{3+i} = v_i^0$	m/s rad/s
ṗ ġ ŕ	Rates of change of compo- nents of rotational velocity relative to body axes		rad/s ²
ů v w	Rates of change of compo- nents of linear velocity rel- ative to body axes		m/s ²
α	Angular acceleration	$d\omega/dt$	rad/s ²

Version 2024

1Mechanics in General1.2Solid Body Mechanics1.2.3Rigid Body Motions

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.2.3.2 Attitudes

α	Angle of attack	The angle of the longitudi- nal body axis from the pro- jection into the principal plane of symmetry of the velocity of the origin of the body axes relative to the fluid, positive in the posi- tive sense of rotation about the <i>y</i> -axis	rad
β	Angle of drift or side-slip	The angle to the principal plane of symmetry from the velocity vector of the origin of the body axes rel- ative to the fluid, positive in the positive sense of ro- tation about the <i>z</i> -axis	rad
γ	Projected angle of roll or heel	The angular displacement about the x_0 axis of the principal plane of sym- metry from the vertical, positive in the positive sense of rotation about the x_0 axis	rad
φ	Angle of roll, heel or list	Positive in the positive sense of rotation about the <i>x</i> -axis	rad
θ	Angle of pitch or trim	Positive in the positive sense of rotation about the y-axis	rad
ψ	Angle of yaw, heading or course	Positive in the positive sense of rotation about the <i>z</i> -axis	rad

Mechanics in General Fluid Mechanics Flow Parameters

Version 2024

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Actollym	Inaille	Explanation	Unit

1.3 Fluid Mechanics

1.3.1	Flow Parameters

1.3.1.1	Fluid Propertie	es

С	Velocity of sound	$(E / \rho)^{1/2}$	m/s
Ε	Modulus of elasticity		Pa
W	Weight density	ρg (See 1.1.1)	
κ	Kinematic capillarity	σ / ρ	m^3/s^2
μ	Viscosity		kg/ms
v	Kinematic viscosity	μ / ρ	m ² /s
ρ	Mass density		kg/m ³
σ	Capillarity	Surface tension per unit length	kg/s ²

1.3.1.2	Flow	parameters

Bo	Boussinesq number	$V/(g R_{\rm H})^{1/2}$	1
Ca	Cauchy number	$V/(E/\rho)^{1/2}$	1
Fr	Froude number	$V/(gL)^{1/2}$	1
Fr_h	Froude depth number	$V/(g h)^{1/2}$	1
Fr⊽	Froude displacement num- ber	$V/(g \nabla^{1/3})^{1/2}$	1
Ма	Mach number	V/c	1
Re	Reynolds number	VL/v	1
<i>Re</i> _{0.7}	Propeller Reynolds number at 0.7 R	$= \frac{Re_{0.7}}{v}$	1
St	Strouhal number	fL/V	1
Th	Thoma number, Cavitation number	$(p_A - p_V)/q$	1
We	Weber number	$V^2 L / \kappa$	1

Version 2024

Mechanics in General Fluid Mechanics Flow Parameters

ITTC	A ano m ano	Nome	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.3.1.3 Boundary conditions

k	Roughness height or mag- nitude	Roughness height, usually in terms of some average	m
ks	Sand roughness	Mean diameter of the equivalent sand grains cov- ering a surface	m
R _H	Hydraulic radius	Area of section divided by wetted perimeter	m

Mechanics in General Fluid Mechanics Flow Fields

Version 2024

ITTC	Aanonym	Name	Definition or	SI-
Symbol	Acronym		Explanation	Unit

1.3.2 Flow Fields

1.3.2.1 Velocities etc.

e	Density of total flow en- ergy	$\rho V^2 / 2 + p + \rho g h$	Pa
fi	Mass specific force	Strength of force fields, usually only gravity field g_i	m/s ²
h	Static pressure head	Δz_0 , z_0 -axis positive vertical up!	m
Н	Total head	e / w = h + p/w + q/w	m
р	Pressure, density of static flow energy		Ра
p_0	Ambient pressure in undis- turbed flow		Ра
<i>q</i>	Dynamic pressure, density of kinetic flow energy,	$\rho V^2/2$	Ра
Q	Rate of flow	Volume passing across a control surface in time unit	m ³ /s
S _H	Total head loss		m
s ^R _{ij}	Turbulent or Reynolds stress	$\rho v_i v_j^{CR}$	Ра
Sij	Total stress tensor	Density of total diffusive momentum flux due to mo- lecular and turbulent ex- change	Ра
s^{V}_{ij}	Viscous stress		Pa
$ \begin{array}{c} u, v_x, v_1 \\ v, v_y, v_2 \\ w, v_z, v_3 \end{array} $	Velocity component in di- rection of x, y, z axes		m/s
Vi	Velocity		m/s
V	Velocity	$V = v_i v_i^{1/2}$	m/s
V ₀	Velocity of undisturbed flow		m/s
$ au_w$	Wall shear stress	$\mu (\partial U / \partial y)_{y=0}$	Pa
.3.2.2 Circulation etc.			
Γ ⁿ	Normalized circulation	$\Gamma / (\pi D V)$ π is frequently omitted	1
Ι	Induction factor	Ratio between velocities induced by helicoidal and by straight line vortices	1
Г	Vortex density	Strength per length or per area of vortex distribution	m/s
Γ	Circulation	$\int V ds$ along a closed line	m ² /s
Φ	Potential function		m ² /s

Version 2024

Mechanics in General Fluid Mechanics Flow Fields

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
Ψ		Stream function	ψ = const is the equation of a stream surface	m ³ /s

Version 2024

Mechanics in General Fluid Mechanics Lifting Surfaces

ITTC	Acronym	Nomo	Definition or	SI-
Symbol		Name	Explanation	Unit

1.3.3 Lifting Surfaces

A	Projected area	$b c_M$	m^2
b	Wing or foil span		m
$b_{ m F}$	Flap span		m
СM	Mean chord length	A / b	m
C _T	Tip chord length		m
Cr	Root chord length		m
fL	Camber of lower side (gen- eral)		m
fu	Camber of upper side		m
γ	Sweep angle		rad
$\delta_{\rm s}$	Slat deflection angle		rad
δ	Thickness ratio of foil sec- tion (general)	t / c	1
$\delta_{ m B}$	Thickness ratio of trailing edge of struts	$t_{\rm B} / c_{\rm S}$	1
$\delta_{ m F}$	Camber ratio of mean line (general)	f/c	1
$\delta_{ m FL}$	Angle of flap deflection		rad
$\delta_{\rm L}$	Camber ratio of lower side of foil	$f_{ m L}$ / c	1
δ_{S}	Thickness ratio of strut	$t_{\rm S} / c_{\rm S}$	1
$\delta_{ m STH}$	Theoretical thickness ratio of section	$t_{\rm S} / c_{\rm STH}$	1
$\delta_{ m U}$	Camber ratio of upper side	$f_{\rm U} / c$	1
λ	Taper ratio	$c_{\rm t}/c_{\rm r}$	1
Λ	Aspect ratio	$c_{\rm t} / c_{\rm r}$ b^2 / A	1
.3.3.2 Flow angle	▲ ▲		_
$V_{\rm I}$	Induced velocity		m/s
VT	Resultant velocity of flow approaching a hydrofoil	Taking vortex induced ve- locities into account	m/s
α	Angle of attack or inci- dence	Angle between the direc- tion of undisturbed relative flow and the chord line	rad
α _{EFF}	Effective angle of attack or incidence	The angle of attack relative to the chord line including the effect of induced veloc- ities	rad
α _G	Geometric angle of attack or incidence	The angle of attack relative to the chord line neglecting the effect of induced veloc- ities	rad

Mechanics in General Fluid Mechanics Lifting Surfaces

Version 2024

ITTC	Acronym	Name	Definition or	SI-
Symbol	reconym		Explanation	Unit
				1
$\alpha_{ m H}$		Hydrodynamic angle of at-	In relation to the position at	rad
ωH		tack	zero lift	Tuu
		Ideal angle of attack	For thin airfoil or hydro-	
			foil, angle of attack for	
			which the streamlines are	
αι			tangent to the mean line at	rad
α <u>ι</u>			the leading edge. This con-	Tau
			dition is usually referred to	
			as "shock-free" entry or	
			"smooth"	
α_0		Angle of zero lift	Angle of attack or inci-	rad
			dence at zero lift	

Mechanics in General Fluid Mechanics Lifting Surfaces

Version 2024

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.3.3.3 Forces

$D_{ m F}$	Foil drag	Force in the direction of motion of an immersed foil	Ν
DI	Induced drag	For finite span foil, the component of lift in the di- rection of motion	N
D _{INT}	Interference drag	Due to mutual interaction of the boundary layers of intersecting foil	N
$D_{ m P}$	Section or profile drag at zero lift	Streamline drag	Ν
$L_{ m F}$	Lift force on foil	$C_L A_{\rm FT} q$	Ν
L_0	Lift force for angle of at- tack of zero	$C_{L0}A_{ m FT}q$	Ν
1.3.3.4 Sectio	nal coefficients		
C_D	Section drag coefficient		1
C_{DI}	Section induced drag coefficient		1
C_L	Section lift coefficient		1
CLO	Section lift coefficient for angle of attack of zero		1
C_M	Section moment coefficient		1
Е	Lift-Drag ratio	L/D	1

Version 2024

Mechanics in General 1 **1.3 Fluid Mechanics 1.3.4 Boundary Layers**

			· · · · · · · · · · · · · · · · · · ·	
ITTC	A	Nome	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.3.4 Boundary Layers1.3.4.1 Two-dimensional Boundary Layers

$\frac{1.3.4.1}{C_{\rm f}}$ I wo-dimen	Skin friction coefficient	$ au$ / ($ ho$ U_e^2 / 2)	1
F	Entrainment factor	$\frac{1}{U_e dQ} \frac{dx}{dx}$	1
Н	Boundary layer shape pa- rameter	δ^* / Θ	1
HE	Entrainment shape parame- ter	$(\delta - \delta^*) / \Theta$	1
p	Static pressure		Pa
Р	Total pressure		Pa
Q	Entrainment	$\int_{a}^{b} U dy$	m ² /s
Re_{δ^*}	Reynolds number based on displacement thickness	$U_{\infty}\delta^*/v \text{ or } U_e\delta^*/v$	1
Reθ	Reynolds number based on momentum thickness	$U_{\infty}\Theta/v$ or $U_{e}\Theta/v$	1
u	Velocity fluctuations in boundary layer		m/s
u ^s	Root mean square value of velocity fluctuations		m/s
<i>u</i> ⁺	Non-dimensional distance from surface	U/u_{τ}	1
$u_{ au}$	Shear (friction) velocity	$(\tau / \rho)^{1/2}$	m/s
$U_{ m m}$	Time mean of velocity in boundary layer		m/s
Ui	Instantaneous velocity		m/s
U_{∞}	Free-stream velocity far from the surface		m/s
Ue	Velocity at the edge of the boundary layer at $y=\delta_{995}$		m/s
ΔU	Velocity defect in bound- ary layer	$(U_{e}-U)/u_{\tau}$	1
y ⁺	Non-dimensional distance from the wall	$y u_{\tau} / v$	1
β	Equilibrium parameter	$\delta^* / (\tau_w dp / dx)$	1
δ995	Thickness of a boundary layer at $U=0.995U_e$		m
δ^*, δ_1	Displacement thickness of boundary layer	$\int (U_{\rm e}-U) / U_{\rm e} dy$	m
K	von Karman constant	0.41	1
Λ	Pressure gradient parame- ter	δ_{995} / (v $dU_{\rm e}$ / dx)	1
$ heta^*$, δ^{**}	Energy thickness	$\int (U/U_{\rm e}) (1 - U^2/U_{\rm e}^2) dy$	m

Mechanics in General Fluid Mechanics Boundary Layers

39

Version 2024

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
Θ		Momentum thickness	$\int (U/U_{\rm e}) (1 - U/U_{\rm e}) dy$	m
$ au_w$		Local skin friction	$\mu (\partial U / \partial y)_{y=0}$	Pa

Mechanics in General Fluid Mechanics S Cavitation

Version 2024

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

1.3.5 Cavitation

1.3.5.1 Flow parameters

	Gas content ratio	a / ac	1
as	Gas content fatio	$\alpha / \alpha_{\rm S}$	1
~	Gas content	Actual amount of solved	n nm
α	Gas content	and undissolved gas in a	ppm
		liquid Maximum amount of ano	
~	Gas content of saturated	Maximum amount of gas	
$\alpha_{\rm S}$	liquid	solved in a liquid at a given	ppm
<i>σ</i>	Cavitation number	temperature $(\mathbf{p}_1, \mathbf{p}_2)/q$	1
σ	Inception cavitation num-	$(p_{\rm A} - p_C) / q$	1
σ_{I}	ber		1
$\sigma_{ m V}$	Vapour cavitation number	$(p_{\rm A} - p_{\rm V}) / q$	1
1.3.5.2 Flow fields			
D _C	Cavity drag		Ν
	· _ •	Stream wise dimension of	
lc	Cavity length	a fully-developed cavitat-	m
		ing region	
<i>p</i> _A	Ambient pressure		Pa
D + <i>a</i>	Collense pressure	Absolute ambient pressure	Pa
PAC	Collapse pressure	at which cavities collapse	Pa
		Absolute ambient pressure	
p_{AI}	Critical pressure	at which cavitation incep-	Pa
		tion takes place	
	Consister and constant	Pressure within a steady or	Pa
pc	Cavity pressure	quasi-steady cavity	Pa
		Pressure, may be negative,	
рсі	Initial cavity pressure	i.e. tensile strength, neces-	Pa
		sary to create a cavity	
$p_{\rm V}$	Vapour pressure of water	At a given temperature!	Pa
		Free stream velocity at	
U_{I}	Critical velocity	which cavitation inception	m/s
		takes place	
VL	Volume loss	W _L / w	m ³
		Weight of material eroded	
$W_{ m L}$	Weight loss	from a specimen during a	N/s
	_	specified time	
		Maximum height of a	
		fully-developed cavity,	
δ_{C}	Cavity height or thickness	normal to the surface and	m
		the stream-wise direction	
		of the cavity	

Mechanics in General Fluid Mechanics S Cavitation

41

Version 2024

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.3.5.3 Pumps

$H_{ m N}$	Net useful head of turbo- engines		m
H _U	Total head upstream of turbo-engines		m
Th, σ	Thoma number	$(H_U - p_V / w) / H_N$	1

Version 2024

Mechanics in General Environmental Mechanics

1.4.1 Waves

ITTC	Aaronum	Nama	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.4 Environmental Mechanics

1.4.1 Waves

This section is related to Sections 3.1.2 Time and Frequency Domain Quantities and 3.1.3 Random Quantities and Stochastic Processes.

1.4.1.1 Periodic waves

CW	Wave phase velocity or ce- lerity	$L_{\rm W}/T_{\rm W} = \sqrt{gL_W/2\pi}$ in deep water	m/s
CWi	Wave phase velocity of har- monic components of a pe- riodic wave	$const = c_W$ for periodic waves in deep water	m/s
CG	Wave group velocity or ce- lerity	The average rate of ad- vance of the energy in a finite train of gravity waves	m/s
fw	Basic wave frequency	$1 / T_{\rm W}$	Hz
fwi	Frequencies of harmonic components of a periodic wave	i fw	Hz
H _W	Wave height	The vertical distance from wave crest to wave trough, or twice the wave amplitude of a har- monic wave. $\eta_{\rm C} - \eta_{\rm T}$	m
<i>k, к</i>	Wave number	$2\pi/L_{\rm W}=\omega^2/g$	1/m
<i>L</i> _W , λ _W	Wave length	The horizontal distance between adjacent wave crests in the direction of advance	m
T _W	Basic wave period	Time between the pas- sage of two successive wave crests past a fixed point. $1/f_W$	S
μ	Wave direction	The angle between the direction of a component wave and the x_0 axis	rad
η	Instantaneous wave eleva- tion at a given location	z-axis positive vertical up, zero at mean water level;	m
η^{α}_{i}	Amplitudes of harmonic components of a periodic wave	$\eta^{FS\alpha}$	m
$\eta^{\mathrm{p}}{}_i$, $arepsilon_i$	Phases of harmonic compo- nents of a periodic wave	η^{FSp}	rad
$\eta_{ m C}$	Wave crest elevation		m

1 Mechanics in General

Version 2024

1.4 Environmental Mechanics 1.4.1 Waves

ITTC	Aononyma	Nama	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

$\eta_{ m T}$	Wave trough depression	Negative values!	m
ζ	Instantaneous wave depres- sion	<i>z</i> -axis positive vertical down, zero at mean water level	m
ζΑ	Wave amplitude	Radius of orbital motion of a surface wave parti- cle	m
$\omega_{ m W},\sigma$	Circular wave frequency	$2\pi f_{\rm W} = 2\pi / T_{\rm W}$	rad/s

1.4.1.2 Irregular waves

1. 4 .1.2 Integulat w	u v 05		
H _d	Wave height by zero down-crossing	The vertical distance be- tween a successive crest and trough.	m
Hu	Wave height by zero up- crossing	The vertical distance be- tween a successive trough and crest	m
H _{1/3}	Significant wave height	Average of the highest one third wave heights	m
<i>T</i> _{1/3d}	Significant wave period	By downcrossing analysis	S
$T_{1/3u}$	Significant wave period	By upcrossing analysis	S
T _d	Wave periods by zero down-crossing	Time elapsing between two successive downward crossings of zero in a rec- ord	s
Tu	Wave periods by zero up- crossing	Time elapsing between two successive upward cross- ings of zero in a record	s
ηс	Maximum of elevations of wave crests in a record		m
ητ	Elevations of wave troughs in a record	Negative values!	m
λ _d	Wave length by zero down-crossing	The horizontal distance be- tween adjacent down cross- ing in the direction of ad- vance	m
λu	Wave length by zero up- crossing	The horizontal distance be- tween adjacent up crossing in the direction of advance	m
1.4.1.3 Time Doma	ain Analysis		1
$H_{ m WV}$	Wave height estimated from visual observation		m

Version 2024

1 Mechanics in General

1.4 Environmental Mechanics

1.4.1 Waves

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
<i>H</i> _{W1/3}		Significant wave height. Sum of significant wave height of swell and wind waves	Average of the highest one third wave heights	m
H _{1/3S}		Significant wave height of swell	Average of the highest one third wave heights of the swell.	m
<i>H</i> _{1/3W}		<i>(environmental mechanics, waves)</i> Significant wave height of wind waves.	Average of the highest one third wave heights of the wind waves.	m
<i>H</i> _{1/3u}		Zero up-crossing signifi- cant wave height	Average of the highest one third zero up-crossing wave heights	m
Hσ		Estimate of significant wave height from sample deviation of wave elevation record		m
Lwv		Wave length estimated by visual observation	Measured in the direction of wave propagation	m
T _{rt}		Return period	The average interval in years between times that a given design wave is ex- ceeded	
T _R		Duration of record	$1/f_{\rm R}$	S
Ts		Sample interval	$1/f_{\rm S}$, time between two succes- sive samples	S
$T_{ m WV}$		Wave period estimated from visual observation		s

1.4.1.4 Frequency Domain Analysis

b	Bandwidth of spectral resolution Sampling free vided by the ransform point transform point tra	number of Hz
Cr	Average reflection coefficient	1
$C_{\rm r}(f)$	Reflection coefficient am- plitude function	1
fр	Spectral peak in frequency Frequency at spectrum has	H7
f_{R}	Frequency resolution $1/T_{\rm R}$	Hz
fs	Sample frequency $1/T_{\rm S}$	Hz

Version 2024

1 Mechanics in General

1.4 Environmental Mechanics

1.4.1 Waves

ITTC	Acronym	Name	Definition or	SI-
Symbol	Refoliyili	Ivanie	Explanation	Unit
H _{mo}		Significant wave height based on zeroth moment for narrow banded spec- trum	$4 (m_0)^{1/2}$	m
Hσ		Estimate of significant wave height from sample deviation of wave elevation record		m
m_n		n-th moment of wave power spectral density	$\int f^n S(f) df$	m^2/s^n
$S_i(f), S_i(\omega)$		Incident wave power spec- tral density		m²/Hz
$S_r(f),$ $S_r(\omega)$		Reflected wave power spectral density		m²/Hz
$S_{\eta}(f), S_{\eta}(\omega)$		Wave power spectral den- sity		m²/Hz
T_P		Period with maximum en- ergy	$2\pi f_{\rm P}$	s
T_{01}		Average period from ze- roth and first moment	m_0/m_1	S
T_{02}		Average period from ze- roth and second moment	$(m_0/m_2)^{1/2}$	S
.4.1.5 Dire	ectional Waves		Ι	
$D_{\mathrm{X}}(f, heta), \ D_{\mathrm{X}}(\omega, \mu), \ \sigma_{ heta}$		Directional spreading func- tion	$\int_{0}^{2\pi} D_X(f,\theta) d\theta = 1$	rad
f		Frequency	$2\pi\omega=1/T$	Hz
S _ζ (ω,μ) S _θ (ω,μ) etc.		Two dimensional spectral density		1
$S_{ ho}(f, heta) \ S_{\zeta}(\omega,\mu)$		Directional spectral density		m²/Hz/ rad
θ, μ		Component wave direction		rad
$ heta_{ m m}$		Mean or dominant wave direction		rad

Version 2024

Mechanics in General Environmental Mechanics Wind

ITTC
SymbolAcronymNameDefinition or
ExplanationSI-
Unit

1.4.2 Wind

1.4.2.1 Basic Quantities

C_{10}		Surface drag coefficient	$(0.08 + 0.065 U_{10}) 10^{-3}$	
F		Fetch length	Distance over water the wind blows	m
t _d		Wind duration		S
T _{rt}		Return period	The average interval in years between times that a given wind speed is ex- ceeded	
u_z , u_{zi}		Turbulent wind fluctua- tions		m/s
<i>U</i> _{<i>A</i>} , <i>u</i> *		Wind shear velocity	$C_{10}^{1/2} U_{10}$ or $0.71 U_{10}^{1.23}$	m/s
U_{10}		Reference mean wind speed at elevation 10 me- ters above sea surface	$U_{10} = (10/z)^{1/7} U_z^A$	m/s
$U_z^{ m A}$		Average wind speed at ele- vation <i>z</i> above the sea sur- face	$(U_z + u_{zi})^A$ $U_z^A = (z/10)^{1/7} U_{10} \text{ or}$ $U_z^A = U_{10} + U_A \ln(z/10)$	m/s
$V_{\rm WR}$	AWS	Apparent wind velocity	see section 1.4.1	m/s
$V_{\rm WT}$	TWS	True wind velocity	see section 1.4.1	m/s
$X_{ m F}$		Dimensionless Fetch	gF/U_{10}^2	
Ζ.		Height above the sea sur- face in meters		m
$eta_{ m WA}$	AWA	Apparent wind angle (rela- tive to vessel course)	see section 2.6	rad
$\beta_{ m WT}$	TWA	True wind angle (relative to vessel course)	see section 2.6	rad
$ heta_{ m W}$		Wind direction		rad

Version 2024

Mechanics in General Environmental Mechanics Ice Mechanics

ITTC	Acronym	Nomo	Definition or	SI-
Symbol		Name	Explanation	Unit

1.4.3 Ice Mechanics

EI	Modulus of elasticity of ice		Pa
SI	Salinity of ice	Weight of salt per unit weight of ice	1
Sw	Salinity of water	Weight of dissolved salt per unit weight of saline water	1
tA	Temperature of air		°C
tI	Local temperature of ice		°C
tw	Temperature of water		°C
δ_{I}	Deflection of ice sheet	Vertical elevation of ice sur- face	m
εı	Ice strain	Elongation per unit length	1
$\dot{\mathcal{E}}_{I}$	Ice strain rate	$\partial \epsilon / \partial \tau$	1/s
μ_{I}	Poisson's ratio of ice		1
VA	Relative volume of air	Volume of gas pores per unit volume of ice	1
VB	Relative volume of brine	Volume of liquid phase per unit volume of ice	1
VO	Total porosity of ice	$v_0 = v_A + v_B$	1
ρι	Mass density of ice	Mass of ice per unit volume	kg/m ³
$ ho_{ m SN}$	Mass density of snow	Mass of snow per unit vol- ume	kg/m ³
$ ho_{ m W}$	Mass density of water		kg/m ³
ρ_{Δ}	Density difference	$ ho_{\Delta}= ho_W$ - $ ho_I$	kg/m ³
$\sigma_{\rm CI}$	Compressive strength of ice		Pa
$\sigma_{ m FI}$	Flexural strength of ice		Pa
$\sigma_{ m TI}$	Tensile strength of ice		Pa
$ au_{ m SI}$	Shear strength of ice		Pa

Mechanics in General 1.5 Noise 1.5.1 Underwater noise

Version 2024

ITTC	Aaronym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

1.5 Noise

1.5.1 Underwater Noise

d	Distance hydrophone to acoustic centre		m
L _p	Sound pressure level	L_p $= 10 \log_{10} \left(\frac{\bar{p}_{rms}^2}{p_{ref}^2} \right) dB, \ p_{ref}$ $= 1 \ \mu Pa$	
L _s	Underwater sound radiated noise level at a reference dis- tance of 1m	L_{s} $= L_{p}$ $+ 20 \log_{10} \left[\frac{d}{d_{ref}} \right] dB, d_{ref}$ $= 1 m$	
p	Sound pressure		Ра

ITTC Symbols	
--------------	--

2 Ships in General

Version 2024

2.1 Basic Quantities

ITTC
SymbolAcronymNameDefinition or
ExplanationSI-
Unit

2. SHIPS IN GENERAL

2.1 Basic Quantities

2.1 Basic Quanti	Linear or translatory acceler-		
a, a^1	ation	dv / dt	m/s^2
A	Area in general		m ²
В	Breadth		m
C, F^{F_2}	Cross force	Force normal to lift and drag (forces)	N
Сс	Cross force coefficient	$C_C = \frac{C}{qA}$	1
D, F^{F_1}	Resistance, Drag (force)	Force opposing translatory ve- locity, generally for a com- pletely immersed body	N
<i>d</i> , <i>D</i>	Diameter		m
E	Energy		J
f	Frequency	1 / T	Hz
F, F^0	Force		Ν
g	Acceleration of gravity	Weight force / mass, strength of the earth gravity field	m/s ²
h	Depth		m
Н	Height		m
Ι	Moment of inertia	Second order moment of a mass distribution	kg m ²
L	Length		m
L, F^F_3	Lift (force)	Force perpendicular to transla- tory velocity	N
т	Mass	· · · ·	kg
<i>M</i> , <i>F</i> ¹	Moment of forces	First order moment of a force distribution	Nm
М	Momentum		Ns
n, N	Frequency or rate of revolu- tion	Alias RPS (RPM in some pro- pulsor applications)	Hz
Р	Power		W
r, R	Radius		m
R, F^{F_1}	Resistance (force)	Force opposing translatory ve- locity	N
S	Distance along path		m
t	Time		s
t	Temperature		K
Т	Period	Duration of a cycle of a repeat- ing or periodic, not necessarily harmonic process	s
U	Undisturbed velocity of a fluid		m/s

2 Ships in General

ITTC Symbols

Version 2024

2.1 Basic Quantities

ITTC	A	Nama	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

<i>v</i> , <i>V</i> ¹	Linear or translatory velocity of a body	ds / dt	m/s
V	Volume		m ³
w	Weight density, formerly specific weight	$dW/dV = \rho g$	N/m ³
W	Weight (force), gravity force acting on a body		N
γ	Relative mass or weight, in English speaking countries called specific gravity	Mass density of a substance di- vided by mass density of dis- tilled water at 4°C	1
η	Efficiency	Ratio of powers	
ρ	Mass density	dm/dV	kg/m ³
ρ_0	water density for reference water temperature and salt content		kg/m3
$\rho_{\rm A}$	Mass density of air	Mass of air per unit volume	kg/m ³
τ	Tangential stress		Pa
λ	Scale ratio	Ship dimension divided by cor- responding model dimension	1
σ	Normal stress		Pa
ω	Circular frequency	$2\pi f$	1/s
ω, V ⁰	Rotational velocity	$2\pi n$	rad/s

Version 2024

Ships in General Geometry and Hydrostatics Hull Geometry

ITTC	A	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

2.2 Geometry and Hydrostatics2.2.1 Hull Geometry

2.2.1.1	Basic Quantities
---------	-------------------------

2.2.1.1 Dasic Qualitities		-	
$A_{ m BL}$	Area of bulbous bow in lon- gitudinal plane	The area of the ram pro- jected on the middle line plane forward of the fore perpendicular	m ²
Авт	Area of transverse cross-sec- tion of a bulbous bow (full area port and starboard)	The cross-sectional area at the fore perpendicular. Where the water lines are rounded so as to terminate on the forward perpendicular $A_{\rm BT}$ is measured by continu- ing the area curve forward to the perpendicular, ignoring the final rounding.	m ²
A _M	Area of midship section	Midway between fore and aft perpendiculars	m ²
A _T	Area of transom (full area port and starboard)	Cross-sectional area of tran- som stern below the load waterline	m ²
$A_{\rm V}$	Area exposed to wind	Area of portion of ship above waterline projected normally to the direction of relative wind	m ²
A _{XV}		Projected area of the ship above the waterline projected on a transversal plane	
Aw	Area of water-plane		m^2
A _{WA}	Area of water-plane aft of midship		m ²
Awf	Area of water-plane forward of midship		m ²
Ax	Area of maximum transverse section		m ²
В	Breadth, moulded, of ship's hull		m
B _M	Breadth, moulded of mid- ship section at design water line		m
BT	Breadth, moulded of tran- som at design water line		m
B _{WL}	Maximum moulded breadth at design water line		m

Version 2024

Ships in General Geometry and Hydrostatics Hull Geometry

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
Symbol			Laplanation	Omt
B _X		Breadth, moulded of maxi- mum section area at design water line		m
d, T		Draught, moulded, of ship hull		m
$d_{ m KL}$		Design drop of the keel line	T_{AD} - T_{FD} alias "keel drag" or "slope of keel"	m
D		Depth, moulded, of a ship hull		m
f		Freeboard	From the freeboard markings to the freeboard deck, ac- cording to official rules	m
$i_{ m E}$		Angle of entrance, half	Angle of waterline at the bow with reference to centre plane, neglecting local shape at stem	rad
i _R		Angle of run, half	Angle of waterline at the stern with reference to the centre-plane, neglecting lo- cal shape of stern frame	rad
L		Length of ship	Reference length of ship (generally length between the perpendiculars)	m
$L_{ m E}$		Length of entrance	From the forward perpendic- ular to the forward end of parallel middle body, or maximum section	m
Loa		Length, overall		m
Los		Length, overall submerged		m
$L_{ m P}$		Length of parallel middle body	Length of constant trans- verse section	m
$L_{ m PP}$		Length between perpendicu- lars		m
L _R		Length of run	From section of maximum area or after end of parallel middle body to waterline ter- mination or other designated point of the stern	m
$L_{ m WL}$		Length of waterline		m
LFS		Frame spacing	used for structures	m
Lss		Station spacing		m
L _{SS} S		Area of wetted surface		m^2

Ships in General Geometry and Hydrostatics Hull Geometry

Definition or

ITTC	Acronym	Name	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit
				-
			The intercept of the tangent	
+		Taylor tangent of the area	to the sectional area curve at	1
ι		curve	the bow on the midship ordi-	1
			nate	
та		Draught, moulded, of ship		m
<i>T</i> , <i>d</i>		hull		m
$T_{\rm A}, d_{\rm A}$		Draught at aft perpendicular		m
T		Design draught at aft per-		
$T_{\rm AD}$		pendicular		m
		Draught at forward perpen-		
$T_{\mathrm{F}}, d_{\mathrm{F}}$		dicular		m
		Design draught at forward		
$T_{ m FD}$		perpendicular		m
			Maximum draught of the	1
T_H		Draught of the hull	hull without keel or skeg	m
			$(T_A + T_F) / 2$ for rigid bodies	
$T_{\rm M}$, $d_{\rm M}$		Draught at midship	with straight keel	m
			$(T_{AD} + T_{FD}) / 2$ for rigid bod-	
$T_{\rm MD}$		Design draught at midship	ies	m
			Vertical depth of trailing	
T_{T}		Immersion of transom	edge of boat at keel below	m
1			water surface level	111
<i>V</i> , <i>V</i>		Displacement volume	$\Delta / (\rho g) = \nabla_{\rm BH} + \nabla_{\rm AP}$	m ³
,,,		Displacement volume of		
$V_{ m BH}$		bare hull	$\Delta_{\rm BH}/\left(\rho\;g\right)$	m ³
		Displacement volume of ap-		
$V_{ m APP}$		pendages	$\Delta_{\rm AP} / (\rho g)$	m^3
		Displacement force (buoy-		
Δ		ancy)	$g ho \nabla$	Ν
		Displacement force (buoy-		
⊿вн		ancy) of bare hull	$g ho V_{ m BH}$	Ν
		Displacement force (buoy-		
\varDelta_{APP}		ancy) of appendages	$g ho V_{ m AP}$	Ν
Δ_m		Displacement mass	ρ∇	kg
Δm			$\frac{\rho v}{\lambda = L_{\rm S} / L_{\rm M}} = B_{\rm S} / B_{\rm M}$	кд
λ		Linear scale of ship model	$\begin{vmatrix} \lambda - L_{\rm S} / L_{\rm M} - D_{\rm S} / D_{\rm M} \\ = T_{\rm S} / T_{\rm M} \end{vmatrix}$	1
2.2.1.2 Der	rived Quantities		-15/1M	
		R.E. Froude's breadth coeffi-		
B^{C}		cient	$B \neq \nabla^{1/3}$	1
CB		Block coefficient	$\nabla/(L B T)$	1
vв		Dimensionless <u>GM</u> coeffi-		1
$C_{ m GM}$			$\overline{GM}/\nabla^{1/3}$	1
		cient		
C_{GZ}		Dimensionless GZ coeffi-	$\overline{GZ}/\overline{V}^{1/3}$	1
		cient		

Version 2024

ITTC

SI-

Version 2024

Ships in General Geometry and Hydrostatics Hull Geometry

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actoliyili	Name	Explanation	Unit
C_{KG}		Dimensionless \overline{KG} coefficient	\overline{KG} /T	1
C _{TL}		Coefficient of inertia of wa- ter plane, longitudinal	$12 I_{\rm L} / (B L^3)$	1
Сл		Coefficient of inertia of wa- ter plane, transverse	$12 I_{\rm T} / (B^3 L)$	1
C _M		Midship section coefficient (midway between forward and aft perpendiculars)	$A_{\rm M}/(B~T)$	1
C_{P}		Longitudinal prismatic coef- ficient	$\nabla/(A_{\rm X} L)$ or $\nabla/(A_{\rm M} L)$	1
C_{PA}		Prismatic coefficient, after body	$\overline{V}_{A}/(A_{X}L/2)$ or $\overline{V}_{A}/(A_{M}L/2)$	1
C_{PE}		Prismatic coefficient, en- trance	$\overline{V_{\rm E}} / (A_{\rm X} L_{\rm E})$ or $\overline{V_{\rm E}} / (A_{\rm M} L_{\rm E})$	1
C_{PF}		Prismatic coefficient fore body	$\overline{V_{\rm F}}/(A_{\rm X} L/2)$ or $\overline{V_{\rm F}}/(A_{\rm M} L/2)$	1
C_{PR}		Prismatic coefficient, run	$\nabla_{\rm R}/(A_{\rm X}L_{\rm R})$ or	1
C_S		Wetted surface coefficient	$\frac{\nabla_{\rm R} / (A_{\rm M} L_{\rm R})}{S / (V L)^{1/2}}$	1
$\overline{C_{\rm VP}}$		Prismatic coefficient vertical	$\overline{V}/(A_{\rm W}T)$	1
$C_{ m WA}$		Water plane area coefficient, aft	$A_{\rm WA}/(BL/2)$	1
$C_{ m WF}$		Water plane area coefficient, forward	A _{WF} /(B L / 2)	1
C_{WP}		Water plane area coefficient	$A_{ m W}/(LB)$	1
C_{X}		Maximum transverse section coefficient	$A_X/(B T)$, where <i>B</i> and <i>T</i> are measured at the position of maximum area	1
C_{∇}		Volumetric coefficient	∇/L^3	1
$f_{\rm BL}$		Area coefficient for bulbous bow	$A_{\rm BL}/(LT)$	1
fвт		Taylor sectional area coefficient for bulbous bow	$A_{ m BT}/A_{ m X}$	1
fт		Sectional area coefficient for transom stern	$A_{\mathrm{T}}/A_{\mathrm{X}}$	1
М ^С		R.E. Froude's length coeffi- cient, or length-displacement ratio	$L / V^{1/3}$	1
S ^C		R.E. Froude's wetted surface area coefficient	$\frac{S}{\sqrt{\frac{2}{3}}}$	1
T^C		R.E. Froude's draught coefficient	$T/\nabla^{1/3}$	1

Version 2024

Ships in General Geometry and Hydrostatics Hull Geometry

ITTC	Acronym	Nome	Definition or	SI-
Symbol	Actonym	Name	Explanation	Unit

2.2.1.3	Symbols for Attributes and Subscripts
А	After body
AP	After perpendicular
APP	Appendages
В	Bare hull
DW	Design waterline
E	Entry
F	Fore body
FP	Fore perpendicular
FS	Frame spacing
Н	Hull
RL	Reference Line
LP	Based on LPP
LW	Based on LWL
Μ	Midships
PB	Parallel body
R	Run
SS	Station spacing
W	Water plane
S	Wetted surface

Version 2024

Ships in General Geometry and Hydrostatics Propulsor Geometry

ITTC	A	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

2.2.2Propulsor Geometry2.2.2.1Screw Propellers

2.2.2.1 Screw Prop		I	1
A _D	Developed blade area	Developed blade area of a screw propeller outside the boss or hub	m ²
A _E	Expanded blade area	Expanded blade area of a screw propeller outside the boss or hub	m ²
A_0	Propeller Disc Area	$\pi D^2 / 4$	m ²
Ар	Projected blade area	Projected blade area of a screw propeller outside the boss or hub	m ²
a _D	Developed blade area ratio	$A_{\rm D}/A_0$	1
aE	Expanded blade area ratio	$A_{\rm E}/A_0$	1
a _P	Projected blade area ratio	$A_{\rm P}/A_0$	1
С	Chord length		m
<i>C</i> _{0.7}	Chord length	Chord length at r/R=0.7	m
CLE	Chord, leading part	The part of the Chord delim- ited by the Leading Edge and the intersection between the Generator Line and the pitch helix at the considered radius	m
СМ	Mean chord length	The expanded or developed area of a propeller blade di- vided by the span from the hub to the tip	m
cs	Skew displacement	The displacement between middle of chord and the blade reference line. Positive when middle chord is at the trailing side regarding the blade reference line	m
CTE	Chord, trailing part	The part of the Chord delim- ited by the Trailing Edge and the intersection between the Generator Line and the pitch helix at the considered ra- dius	m
dh	Boss or hub diameter	2 <i>r</i> _h	m
d _{ha}	Hub diameter, aft	Aft diameter of the hub, not considering any shoulder	m
$d_{ m hf}$	Hub diameter, fore	Fore diameter of the hub, not considering any shoulder	m

Version 2024

Ships in General Geometry and Hydrostatics Propulsor Geometry

ITTC	Acronym	Nomo	Definition or	SI-
Symbol		Name	Explanation	Unit

D	Propeller diameter		m
f	Camber of a foil section		m
Gz	Gap between the propeller blades	$2\pi r\sin(\varphi)/z$	m
h_0	Immersion	The depth of submergence of the propeller measured vertically from the propeller centre to the free surface	m
H _{TC}	Hull tip clearance	Distance between the propel- ler sweep circle and the hull	m
i_G , R_k (ISO)	Rake	The displacement from the propeller plane to the gener- ator line in the direction of the shaft axis. Aft displace- ment is positive rake.	m
is	Rake, skew-induced	The axial displacement of a blade section which occurs when the propeller is skewed. Aft displacement is positive rake	m
<i>i</i> T	Rake, total	The axial displacement of the blade reference line from the propeller plane $i_G + i_S = c_S \sin \varphi$ Positive direction is aft.	m
l _h	Hub length	The length of the hub, in- cluding any fore and aft shoulder	m
l _{ha}	Hub length, aft	Length of the hub taken from the propeller plane to the aft end of the hub includ- ing aft shoulder	m
l _{hf}	Hub length, fore	Length of the hub taken from the propeller plane to the fore end of the hub in- cluding fore shoulder	m
NP	Number of propellers		1
р	Pitch ratio	P/D	1
Р	Propeller pitch in general		m
r	Blade section radius		m
r _h	Hub radius		m
R	Propeller radius		m
t	Blade section thickness		m

Version 2024

Ships in General Geometry and Hydrostatics Propulsor Geometry

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
t_0		Thickness on axis of propel- ler blade	Thickness of propeller blade as extended down to propel- ler axis	m
x _B		Boss to diameter ratio	$d_{\rm h}/D$	
Хр		Longitudinal propeller posi- tion	Distance of propeller centre forward of the after perpen- dicular	m
УР		Lateral propeller position	Transverse distance of wing propeller centre from middle line	m
Z, z		Number of propeller blades		1
ΖP		Vertical propeller position	Height of propeller centre above base line	m
α		Angle of inclination of the propeller shaft	Angle between propeller shaft and horizontal	deg
ε , ψ^{bP}		Propeller axis angle meas- ured to body fixed coordi- nates	Angle between reference line and propeller shaft axis	rad
$ heta_{ m s}$		Skew angle	The angular displacement about the shaft axis of the reference point of any blade section relative to the gener- ator line measured in the plane of rotation. It is posi- tive when opposite to the di- rection of ahead rotation	rad
θ		Angle of rake		rad
$ heta_{ m EXT}$		Skew angle extent	The difference between maximum and minimum lo- cal skew angle	rad
φ		Pitch angle of screw propel- ler	$\operatorname{arctg}\left(P / (2 \pi R)\right)$	1
$arphi_{ m F}$		Pitch angle of screw propel- ler measured to the face line		1
ψ^{aP}		Propeller axis angle meas- ured to space fixed coordi- nates	Angle between horizontal plane and propeller shaft axis	rad
$ au_{ m B}$		Blade thickness ratio	t_0/D	1

Version 2024

Ships in General Geometry and Hydrostatics Propulsor Geometry

ITTC	Aananyum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

2.2.2.2 Ducts

A _{DEN}	Duct entry area		m^2
4 _{DEX}	Duct exit area		m ²
d _D	Propeller tip clearance	Clearance between propeller tip and inner surface of duct	m
fD	Camber of duct profile		
LD	Duct length		m
L _{DEN}	Duct entry part length	Axial distance between lead- ing edge of duct and propel- ler plane	m
L _{DEX}	Duct exit length	Axial distance between pro- peller plane and trailing edge of duct	m
^t D	Thickness of duct profile		m
αD	Duct profile-shaft axis angle	Angle between nose-tail line	
8 _D	Diffuser angle of duct	Angle between inner duct tail line and propeller shaft	rad
	(see also section 1.3.5)		1
A_n, A_6	Nozzle discharge area		m ²
A _s	Cross sectional area at station <i>s</i>		m ²
D	Impeller diameter (maxi- mum)	÷	
D_n	Nozzle discharge diameter		m
H _{ij}	Head between station <i>i</i> and <i>j</i>		m
H _{JS}	Jet System Head	$\frac{P_{\text{JSE}}}{Q_J}$	m
h _{1A}	maximum height of cross sectional area of stream tube at station 1A		m
K _H	Head coefficient:	Head coefficient: $\frac{gH}{n^2D^5}$	
.2.2.4 Pods			1
4 _{PB}	Wetted Surface Area of Pod Main Body		m^2
4 _{PBF}	Wetted Surface Area of Bot- tom Fin		m ²
4 _{PS}	Wetted Surface Area of Strut		m^2
C _{BFTC}	Thickness Cord Ratio of Bottom Fin		1
C _{STC}	Thickness Cord Ratio of Strut		1

Ships in General Geometry and Hydrostatics Propulsor Geometry

ITTC	Aaronum	Name	Definition or	SI-
Symbol	Acronym	Inaille	Explanation	Unit
			-	
ת		Maximum Diameter of Pod		
$D_{ m PB}$		Body		m
$L_{\rm PB}$		Length of Pod Main Body		m
I		Length of Bottom Fin	Code length of bottom fin	m
$L_{\rm PBF}$		Length of Bottom I'm	under pod main body	m
I - a		Longth of Linner Struct	Code length of strut between	
$L_{\rm PS}$		Length of Upper Strut	forward edge and aft edge	m
$T_{\rm PBS}$		Bottom Thickness of Strut		m
2.2.2.5 Ope	erators and iden	tifiers		
l	abs	solute (space) reference	(superscript)	
)	body axis reference		(superscript)	
)	propeller shaft axis		(subscript)	
)	Duct		(subscript)	
			• • •	

Version 2024

Version 2024

Ships in General Geometry and Hydrostatics Appendage Geometry

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Actoliyili	Name	Explanation	Unit

2.2.3 Appendage GeometryRelated information may be found in Section 3.3.3 on Lifting Surfaces.2.2.3.1 Basic Quantities

2.2.3.1 Basic Qua				
Ac	Area under cut-up		m^2	
A _{FB}	Area of bow fins		m ²	
A _{FR}	Frontal area	Projected frontal area of an appendage	m ²	
$A_{\rm RF}$	Projected flap area	Projected flap area		
A_{R}	Lateral rudder area	Area of the rudder including		
A _{RX}	Lateral area of the fixed part of rudder		m ²	
A _{RP}	Lateral area of rudder in the propeller race		m ²	
A _{RT}	Total lateral rudder area	$A_{\rm RX} + A_{\rm Rmov}$	m^2	
A _{FS}	Projected area of stern fins		m^2	
Ask	Projected skeg area		m ²	
S _{WBK}	Wetted surface area of bilge keels		m ²	
С	Chord length of foil section		m	
СМ	Mean chord length	$A_{\rm RT}/S$	m	
CR	Chord length at the root			
CT	Chord length at the tip		m	
f	Camber of an aerofoil or a hydrofoil	Camber of an aerofoil or a Maximum separation of me-		
L _F	Length of flap or wedge	Measured in direction paral- lel to keel	m	
t	Maximum thickness of an aerofoil or a hydrofoil	Measured normal to mean line	m	
α _{FB}	Bow fin angle		rad	
α _{FS}	Stern fin angle		rad	
$\delta_{ m F}$	Flap angle (general)	Angle between the planing surface of a flap and the bot- tom before the leading edge	rad	
δ_{W}	Wedge angle	Angle between the planing surface of a wedge and the bottom before the leading edge	rad	
$\delta_{ m FR}$	Flanking rudder angle		rad	
$\delta_{ m FRin}$	Assembly angle of flanking rudders	Assembly angle of flanking Initial angle set up during the assembly as zero angle		
$\delta_{\rm R}$	Rudder angle			
$\delta_{\rm RF}$	Rudder-flap angle		rad rad	

Ships in General Geometry and Hydrostatics Appendage Geometry

ITTC Symbols Version 2024

RU

RF

SA

SH

SK ST TH

WG

ITTC	Acronym	Name	Definition or	SI-
Symbol		Ivallie	Explanation	Unit
$\lambda_{\mathbf{R}}$		Rudder taper	$c_{\rm T}/c_{\rm R}$	1
$\lambda_{\rm FR}$		Flanking rudder taper		1
Λ_{R}		Rudder aspect ratio	$b_{\rm R}^2/A_{\rm RT}$	1
$\Lambda_{ m FR}$		Flanking rudder aspect ratio		
2.2.3.2 Iden	tifiers for App	endages (Subscripts)		
BK		Bilge keel		
BS	Bossing			
FB	Bow foil			
FR	Flanking rudder			
FS	Stern foil			
KL	Keel			

Rudder

Rudder flap

Stabilizer

Shafting

Thruster

Wedge

Skeg Strut

Version 2024

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

ITTC	A	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

2.2.4 Hydrostatics and Stability

2.2.4.1	Points and Centres	(Still under construction)

2.2.4.1 Points and Cer	itres (Still under construction)		
	Assumed centre of gravity		
A	above keel used for cross		
	curves of stability		
	Centre of flotation of added		
h	buoyant layer or centre of		
b	lost buoyancy of the flooded		
	volume		
D		Centroid of the underwater	
В	Centre of buoyancy	volume	
Г	Centre of flotation of the wa-		
F	ter plane		
	Centre of gravity of an		
g	added or removed weight		
0	(mass)		
G	Centre of gravity of a vessel		
K	Keel reference		
		See subscripts for qualifica-	
Μ	Metacentre of a vessel	tion	
		Longitudinal distance from	
	Longitudinal centre of buoy-	reference point to the centre	
$X_{ m CB}$, $L_{ m CB}$	ancy (LCB)	of buoyancy, B such as X_{MCF}	m
	aney (LCD)	from Midships	
		Longitudinal distance from	
	Longitudinal centre of flota-	reference point to the centre	
$X_{ m CF}$, $L_{ m CF}$	tion (LCF)	of flotation, F such as X_{MCF}	m
		from Midships	
		Longitudinal distance from	
		reference point to the centre	
Yer	Longitudinal centre of buoy-	-	m
XCb	ancy of added buoyant layer	buoyant layer, b such as x_{MCb}	111
		from Midships	
		Longitudinal distance from	
	Longitudinal centre of flota-	reference point to the centre	
XCf	tion of added buoyant layer	of flotation of the added	m
		buoyant layer, f such as x_{MCf}	
		from Midships	
		Longitudinal distance from	
	Longitudinal centre of grav-	reference to the centre of	
<i>x</i> _{Cg}	ity of added weight (mass)		m
		moved weight (mass) such	
		as x _{MCg} from Midships	

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

ITTC	Acronym	Name	Definition or	SI-
Symbol	rteronym	ivanie	Explanation	Unit
$X_{ m CG}$, $L_{ m CG}$		Longitudinal centre of grav- ity (LCG)	Longitudinal distance from a reference point to the centre of gravity, G such as X_{MCG} from Midships	m
Y _{CG}		Lateral displacement of cen- tre of gravity (YCG)	Lateral distance from a ref- erence point to the centre of gravity, G	m
Z		Intersection of righting arm with line of action of the centre of buoyancy		
$Z_{\rm CB}$		Vertical centre of buoyancy	Vertical distance from refer- ence point to the centre of buoyancy, B	m

2.2.4.2 Static Stability levers

2.2.4.2	Static Stability levels			
\overline{AB}		Longitudinal centre of buoyancy from aft perpendicular	Distance of centre of buoyancy from aft perpendicular	m
\overline{AF}		Distance of centre of flotation from aft perpendicular		m
$\overline{AG}_{\rm L}$		Longitudinal centre of gravity from aft perpendicular	Distance of centre of gravity from aft perpendicular	m
$\overline{AG}_{\mathrm{T}}$		Transverse distance from assumed centre of gravity A, to actual cen- tre of gravity G		m
\overline{AG}_{v}		Vertical distance from assumed centre of gravity A, to actual cen- tre of gravity G		m
\overline{AZ}		Righting arm based on horizontal distance from assumed centre of gravity A, to Z	Generally tabulated in cross curves of stability	m
BM		Transverse metacentre above cen- tre of buoyancy	Distance from the centre of buoy- ancy B to the transverse metacen- tre M. $\overline{BM} = I_T / \nabla = \overline{KM} - \overline{KB}$	m
\overline{BM}_{L}		Longitudinal metacentre above centre of buoyancy	$\overline{KM}_{L-}\overline{KB}$	
\overline{FB}		Longitudinal centre of buoyancy, L_{CB} , from forward perpendicular	Distance of centre of buoyancy from forward perpendicular	m
\overline{FF}		Longitudinal centre of floatation, L_{CF} , from forward perpendicular	Distance of centre of flotation from forward perpendicular	m
\overline{FG}		Longitudinal centre of gravity from forward perpendicular	Distance of centre of gravity from forward perpendicular	m
\overline{GG}_H		Horizontal stability lever caused by a weight shift or weight addi- tion		m
\overline{GG}_L		Longitudinal stability lever caused by a weight shift or weight addi- tion		m

64

Version 2024

Version 2024

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
$\overline{GG}_1, \overline{GG}_V$		Vertical stability lever caused by a weight shift or weight addition	$\overline{KG}_1 = \overline{KG}_0 + \overline{GG}_1$	m
\overline{GM}		Transverse metacentric height	Distance of centre of gravity to the metacentre \overline{KM} \overline{KG}	m
<u>GM</u> _{EFF}		Effective transverse metacentric height	\overline{GM} corrected for free surface and/or free communication effects	m
\overline{GM}_L		Longitudinal centre of metacentric height	Distance from the centre of gravity G to the longitudinal metacentre $\frac{M_L}{GM_L} = \overline{KM_L} - \overline{KG}$	m
\overline{GZ}		Righting arm or lever	$\overline{\frac{GZ}{AG_T}} = \overline{AZ} - \overline{AG_V} \sin \phi$ $\overline{AG_T} \cos \varphi$	m
\overline{GZ}_{MAX}		Maximum righting arm or lever		m
KA		Assumed centre of gravity above moulded base or keel	Distance from the assumed centre of gravity A to the moulded base or keel K	m
\overline{KB}		Centre of buoyancy above moulded base or keel	Distance from the centre of buoy- ancy B to the moulded base or keel K	m
\overline{KG}		Centre of gravity above moulded base or keel	Distance from centre of gravity G to the moulded base or keel K	m
Kg		Vertical centre of gravity of added or removed weight above moulded base or keel	Distance from centre of gravity, g, to the moulded base or keel K	m
KM		Transverse metacentre above moulded base or keel	Distance from the transverse meta- centre M to the moulded base or keel K	m
\overline{KM}_L		Longitudinal metacentre above moulded base or keel	Distance from the longitudinal metacentre M_L to the moulded base or keel K	m
1		Longitudinal trimming arm	X _{CG} - X _{CB}	m
t		Equivalent transverse heeling arm	Heeling moment //	m
2.2.4.3 Deri	ved Quantities		1	1
$C_{ m GM}$		Dimensionless <i>GM</i> coefficient	$\overline{GM}/\nabla^{1/3}$	1
$C_{ m GZ}$		Dimensionless \overline{GZ} coefficient	$\overline{GZ} / \overline{V}^{1/3}$	1
CKG		Dimensionless <i>KG</i> coefficient	KG /T	1
C _{MTL}		Longitudinal trimming coef- ficient	Trimming moment divided by change in trim which ap- proximately equals \overline{BM}_L/L	1

Version 2024

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

amage (Flooded) Stability		
Longitudinal trimming coef- ficient	trimming moment divided by change in trim which ap- proximately equals \overline{BM}_L/L	1
Freeboard	From the freeboard markings to the freeboard deck, ac- cording to official rules	m
Attained subdivision index	(to be clarified)	1
Moment of ship stability in general	$\Delta \overline{GZ}$ Other moments such as those of capsizing, heeling, etc. will be represented by MS with additional sub- scripts as appropriate	Nm
Ship mass	W/g	kg
Moment to change trim by one centimetre	2	Nm/cm
Moment to change trim by one meter	$\Delta C_{\rm MTL}$	Nm/m
Required subdivision index		1
Static trim	$T_{ m A}$ - $T_{ m F}$ - $d_{ m KL}$	m
Ship weight	m g	Ν
Static sinkage at FP	Caused by loading	m
Static sinkage at AP	Caused by loading	m
Mean static sinkage	$(z_{\rm SF} + z_{\rm SA}) / 2$	m
Finite increment in	Prefix to other symbol	1
Change in static trim		m
Displacement (buoyant) force	gρ V	N
Displacement mass	$\rho \nabla$	kg
Displacement volume	$\Delta / (\rho g)$	m ³
Displacement volume of flooded water	$\Delta f_w / (\rho g)$	m ³
Static trim angle	$\tan^{-1}((z_{\rm SF} - z_{\rm SA})/L)$	rad
Volumetric permeability	The ratio of the volume of flooding water in a compart- ment to the total volume of the compartment	1
Heel angle		rad
Heel angle at flooding		rad
Heel angle for vanishing sta- bility		rad
	Longitudinal trimming coefficientFreeboardAttained subdivision indexMoment of ship stability in generalShip massMoment to change trim by one centimetreMoment to change trim by one centimetreMoment to change trim by one meterRequired subdivision indexStatic trimShip weightStatic sinkage at FPStatic sinkage at APMean static sinkageFinite increment inChange in static trimDisplacement (buoyant) forceDisplacement volumeDisplacement volumeDisplacement volumeStatic trim angleVolumetric permeabilityHeel angle Heel angle at flooding Heel angle for vanishing sta-	Longitudinal trimming coefficienttrimming moment divided by change in trim which approximately equals \overline{BM}_L/L FreeboardFrom the freeboard markings to the freeboard deck, according to official rulesAttained subdivision index(to be clarified)Moment of ship stability in general \overline{AGZ} Other moments such as those of capsizing, heeling, etc. will be represented by MS with additional sub- scripts as appropriateShip mass W/g Moment to change trim by one centimetre ΔC_{MTL} Required subdivision index ΔC_{MTL} Static trim $T_A - T_F - d_{KL}$ Ship weight mg Static sinkage at FPCaused by loadingStatic sinkage at APCaused by loadingMean static sinkage $(z_{SF} + z_{SA})/2$ Finite increment inPrefix to other symbolChange in static trim $p \nabla$ Displacement (buoyant) force $\rho \nabla$ Displacement volume of flooded water $\Delta/(\rho g)$ Static trim angle $tan^{-1}(c_{SF} - z_{SA})/L)$ The ratio of the volume of flooding water in a compart- ment to the total volume of the compartmentHeel angleHeel angle for vanishing sta-

2.2.4.4 Intact and Damage (Flooded) Stability

Version 2024

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
Symbol		ites and Subsc appar attain dynai effect false keel 1 longi maxin longi	Explanation ripts (under construction) ent ed nic ive ine tudinal	
s S, sqt TC TM T V 0 φ θ		Trim Trim transv vertic Initia at hee	ige, squat in cm in m verse al	

Version 2024

Ships in General Resistance and Propulsion

2.3.1 Hull Resistance

ITTC	Aaronym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

2.3 Resistance and Propulsion

2.3.1 Hull Resistance

(see also Section 1.4.1 on Waves)

2.3.1.1 Basic Quantities

2.3.1.1 Dasie Qua	intities	2	
m	Blockage parameter	Maximum transverse area of model ship divided by tank cross section area	1
R _A	Model-ship correlation al- lowance	Incremental resistance to be added to the smooth ship re- sistance to complete the model-ship prediction	N
R _{AA}	Air or wind resistance		Ν
R _{APP}	Appendage resistance		Ν
R _{AR}	Roughness resistance		Ν
R _C	Resistance corrected for dif- ference in temperature be- tween resistance and self- propulsion tests	$R_{\text{TM}}[(1 + k) C_{\text{FMC}} + C_{\text{R}}] / [(1 + k) C_{\text{FM}} + C_{\text{R}}]$ where C_{FMC} is the frictional coefficient at the temperature of the self-propulsion test	N
R _F	Frictional resistance of a body	Due to fluid friction on the surface of the body	N
R _{F0}	Frictional resistance of a flat plate		N
R _P	Pressure resistance	Due to the normal stresses over the surface of a body	N
R_{PV}	Viscous pressure resistance	Due to normal stress related to viscosity and turbulence	N
R _R	Residuary resistance	$R_{\rm T}$ - $R_{\rm F}$ or $R_{\rm T}$ - $R_{\rm F0}$	N
R _{RBH}	Residuary resistance of the bare hull		N
R _S	Spray resistance	Due to generation of spray	N
R _T	Total resistance	Total towed resistance	N
R _{TBH}	Total resistance of bare hull		Ν
$R_{ m V}$	Total viscous resistance	$R_{\rm F}+R_{P m V}$	Ν
Rw	Wave making resistance	Due to formation of surface waves	Ν
R _{WB}	Wave breaking resistance	Associated with the break- down of the bow wave	N
R _{WP}	Wave pattern resistance		N
S	Wetted surface area, under- way	$S_{\rm BH} + S_{\rm APP}$	m ²
So	Wetted surface area, at rest	$S_{\rm BH0} + S_{\rm APP0}$	m^2
S _{APP}	Appendage wetted surface area, underway		m ²

Ships in General
 Resistance and Propulsion
 Hull Resistance

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
			T	
S _{APP0}		Appendage wetted surface area, at rest		m^2
Sвн		Bare Hull wetted surface area, underway		m ²
S _{BH0}		Bare Hull wetted surface area, at rest		m^2
$\Delta C_{\rm F}$		Roughness allowance		1
V		Speed of the model or the ship		m/s
VK		Speed in knots		
$V_{\rm WR}$		Wind velocity, relative		m/s
<i>ZV</i> F		Running sinkage at FP		m
ZVA		Running sinkage at AP		m
ZVM		Mean running sinkage	$\left(z_{VF}+z_{VA}\right)/2$	m
η		Wave Elevation	see 3.4.1	m
$ heta_V$, $ heta_{ m D}$		Running (dynamic) trim an- gle	$\tan^{-1}((z_{VF} - z_{VA}) / L)$	1
$ au_{ m W}$		Local skin friction	see 3.3.4	N/m^2
2.3.1.2 Der	rived Quantities		T	1
CA		Incremental resistance coef- ficient for model ship corre- lation		1
$C_{ m AA}$		Air or wind resistance coef- ficient	$ \begin{array}{c} R_{AA} / (S q) \\ = C_{DA} \frac{\rho_A}{\rho_S} \frac{A_V}{S_S} = -C_X \frac{\rho_A}{\rho_S} \frac{A_V}{S_S} \end{array} $	1
$C_{ m APP}$		Appendage resistance coef- ficient	$R_{\rm APP}/(S q)$	1
C_D		Drag coefficient	D/(Sq)	1
C_{DA}		Air or wind resistance coef- ficient, from wind tunnel tests	$= \frac{R_{\rm AA}}{A_{\rm V}\frac{1}{2}\rho_{\rm A}V^2}$	1
$C_{ m F}$		Frictional resistance coefficient of a body	$R_{\rm F}/(S q)$	1
$C_{ m F0}$		Frictional resistance coeffi- cient of a corresponding plate	$R_{\rm F0}/(S q)$	1
C_p		Local pressure coefficient		1
C_{PR}		Pressure resistance coeffi- cient, including wave effect	$R_P/(S q)$	1
C_{PV}		Viscous pressure resistance coefficient	$R_{PV}/(Sq)$	1
C_{R}		Residuary resistance coefficient	$R_{\rm R}/(S q)$	1
Cs		Spray resistance coefficient	$R_{\rm S}/(Sq)$	1

Version 2024

2 Ships in General

2.3 Resistance and Propulsion

2.3.1 Hull Resistance

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actonym	Name	Explanation	Unit
CT		Total resistance coefficient	$R_{\rm T}/(Sq)$	1
$C_{\rm TL}$		Telfer's resistance coeffi- cient	$g R L / (\Delta V^2)$	1
C _{TQ}		Qualified resistance coeffi- cient	$C_{\mathrm{T} abla}$ / ($\eta_{\mathrm{H}}\eta_{\mathrm{R}}$)	1
$C_{\mathrm{T}arphi}$		Resistance displacement	$R_{\mathrm{T}}/(abla^{2/3}q)$	1
$C_{ m V}$		Total viscous resistance co- efficient	$R_{\rm V}/(S q)$	1
$C_{ m W}$		Wave making resistance co- efficient	$R_{\rm W}/(S q)$	1
$C_{ m WP}$		Wave pattern resistance co- efficient, by wave analysis		1
C _X		Air or wind resistance coef- ficient, usually from wind tunnel tests		1
C ^C		R.E. Froude's resistance co- efficient	$1000 R_{\rm T} / (\Delta (K^{\rm C})^2)$	1
F ^C		R.E. Froude's frictional re- sistance coefficient	$1000 R_{\rm F} / (\Delta (K^{\rm C})^2)$	1
f		Friction coefficient	Ratio of tangential force to normal force between two sliding bodies	1
k		Three-dimensional form factor on flat plate friction	$(C_{\rm V} - C_{\rm F0}) / C_{\rm F0}$	1
k(θ)		Wind direction coefficient	C_{AA}/C_{AA0}	1
K ^C		R.E. Froude's speed dis- placement coefficient	$(4 \pi)^{1/2} Fr \nabla or (4\pi/g)^{1/2} V_{\rm K} / \nabla^{1/6}$	
K _R		Resistance coefficient corresponding to K_Q , K_T	$\frac{R}{(\rho D^4 n^2)}$	1
q		Dynamic pressure, density of kinetic flow energy,	$\rho V^2/2$ see 3.3.2	Pa
<i>q</i> r		Dynamic pressure based on apparent wind	$\frac{\rho V_{\rm WR}^2}{\rm see \ 3.4.2}$	Ра
SC		R. E. Froude's wetted sur- face coefficient	$\frac{S}{\sqrt{\frac{2}{3}}}$	1
e		Resistance-displacement ra- tio in general	R/Δ	1
ÊR		Residuary resistance-dis- placement ratio	$R_{\rm R}$ / Δ	1

2.3.1.3 Symbols for Attributes and Subscripts

FW Fresh water

- MF Faired model data
- MR Raw model data

OW Open water

Version 2024

Ships in General Resistance and Propulsion Hull Resistance

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
SF	Faired full so			

- SR Raw full scale data
- SW Salt water

Ships in General Resistance and Propulsion Ship Performance

Version 2024

ITTC	Acronym	Name	Definition or	SI-
Symbol			Explanation	Unit

2.3.2 Ship Performance

	- T		
2.3.2.1	Bas	ic Qua	intities

2.3.2.1 Basic Qualititie			1
A _{XV}		Projected area of the ship above the waterline projected on a transversal plane	
F _D	Friction deduction force in self-propulsion test	Towing force applied to a model to correct the model resistance for different <i>Re</i> between model and full scale.	N
FP	Force pulling or towing a ship		Ν
F _{P0}	Pull during bollard test		N
ks	Roughness height of Hull surface		m
n	Frequency, commonly rate of revolution		Hz
PB	Brake power	Power delivered by prime mover	W
P _{BW}	Brake power in representa- tive sea condition		W
P _D , P _P	Delivered power, propeller power	Qω	W
P _{DT}	Delivered Power, corrected using correlation factor	$P_{\rm DT} = C_P \cdot P_{\rm DS}$	W
$P_{ m E}$, P_R	Effective power, resistance power	R V	W
PI	Indicated power	Determined from pressure measured by indicator	W
Ps	Shaft power	Power measured on the shaft	W
P_T Q	Thrust power	$T V_{\rm A}$	W
Q	Torque	$P_{\rm D}/\omega$	Nm
R ₀	Full scale resistance without overload		N
R _{Tw}	Total resistance in wind and waves		N
tv	Running trim		m
V	Ship speed		m/s
VA	Propeller advance speed	Equivalent propeller open water speed based on thrust or torque identity	m/s

Version 2024

Ships in General Resistance and Propulsion Ship Performance

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actoliyili	Name	Explanation	Unit
V _{ref}		Design ship speed when the ship is in operation in a calm sea condition (no wind and		m/s
V _w		waves) Design ship speed when the ship is in operation under the representative sea condition		m/s
ZV		Running sinkage of model or ship		m
ω		Rotational shaft velocity	$2\pi n$	1/s
2.3.2.2 Der	rived Quantities	- -		•
а		Resistance augment fraction	$(T - R_{\mathrm{T}}) / R_{\mathrm{T}}$	1
$B_{\rm f}$		Bluntness coefficient	7.5-04-01-01.1	1
$C_{\rm ADM}$		Admiralty coefficient	$\Delta^{2/3} V^3 / P_{\rm S}$	1
$C_{\mathrm{D}} \nabla$		Power-displacement coeffi- cient	$P_D / (\rho \ V^3 \ \nabla^{2/3} / 2)$	1
C_N		Trial correction for propeller rate of revolution at speed identity	$n_{\rm T} / n_{\rm S}$	1
C _{NP}		Trial correction for propeller rate of revolution at power identity	$P_{\rm DT} / P_{\rm DS}$	1
C_P		Trial correction for delivered power		1
f_w		Weather factor, a non-dimen- sional coefficient indicating the decrease of speed in rep- resentative sea conditions	$f_{w} = \frac{\text{speed in wind and waves}}{\text{speed in calm water}} = \frac{V_{w}}{V_{\text{ref}}}$	1
K_1		Ship model correlation fac- tor for propulsive efficiency	$\eta_{\rm DS} / \eta_{\rm DM}$	1
<i>K</i> ₂		Ship model correlation fac- tor for propeller rate revolu- tion	$n_{\rm S}/n_{\rm M}$	1
$K_{ m APP}$		Appendage correction factor	Scale effect correction factor for model appendage drag applied at the towing force in a self-propulsion test	1
S_V		Sinkage, dynamic	Change of draught, fore and aft, divided by length	1
t_V		Trim, dynamic	Change of the trim due to dynamic condition, divided by length	1
t		Thrust deduction fraction	$(T - R_T) / T$	1

Version 2024

Ships in General Resistance and Propulsion Ship Performance

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
*				
w		Taylor wake fraction in gen- eral	(V - V _A) / V	1
WF		Froude wake fraction	$(V - V_A) / V_A$	1
WQ		Torque wake fraction	Propeller speed V_A determined from torque identity	1
w _R		Effect of the rudder(s) on the wake fraction		1
WT		Thrust wake fractionPropeller speed, V_A , determined from thrust identity		1
ΔR_{waves}		Added wave resistance		Ν
ΔR_{wind}		Added wind resistance	Added wind resistance	
∆w		Ship-model correlation fac- tor for wake fraction	WT,M - WT,S	1
Дwc	Ship-model correlation tor with respect to $w_{T,S}$ method formula of ITTC 1978 method		1	
x		Load fraction in power pre- diction $\eta_{\rm D} P_{\rm D} / P_{\rm E} - 1$		1
β		Appendage scale effect fac- tor	Ship appendage resistance divided by model appendage resistance	1
ξn		Load variation coefficient of		1
Бр		Load variation coefficient of the delivered power		1
ξν		Load variation coefficient of the ship speed		1
2.3.2.3 Efficie	ncies etc.			1
$\eta_{ m APP}$ $\eta_{ m B}$		Appendage efficiency Propeller efficiency behind	$\frac{P_{\rm Ew0APP} / P_{\rm EwAPP}, R_{\rm TBH} / R_{\rm T}}{P_{\rm T} / P_{\rm D}} = T V_{\rm A} / (Q \omega)$	1
ηD		snipQuasi-propulsive efficiency $P_{\rm E} / P_{\rm D} - P_{\rm D} / P_{\rm D}$		1
$\eta_{ m Did}$		coefficient Image: Propulsive efficiency in ideal condition, from model test		1
ηg		Gearing efficiency		1
ηн		$P_{\rm E}/P_{\rm T} = P_{\rm R}/P_{\rm T}$		1
ηм		Mechanical efficiency of transmission between engine and propeller		1

Ships in General Resistance and Propulsion Ship Performance

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
Sjilleor				em
$\eta_{\rm O}$		Propeller efficiency in open water	$P_{\rm T} / P_{\rm D} = T V_{\rm A} / (Q \omega)$ all quantities measured in open water tests	1
$\eta_{ m P}$		Propulsive efficiency coefficient	$P_{\rm E}/P_{\rm B}$	1
$\eta_{ m R}$		Relative rotative efficiency	$\eta_{\rm B}/\eta_{\rm O}$	1
$\eta_{\rm S}$		Shafting efficiency	$P_{\rm D}/P_{\rm S} = P_{\rm P}/P_{\rm S}$	1

Version 2024

Ships in General Resistance and Propulsion Propulsor Performance

ITTC Definition or SI-Acronym Name Symbol Explanation Unit

2.3.3 Propulsor Performance

Ao	Propeller disc area	$\pi D^2 / 4$	m^2
0	Propeller diameter		m
n	Propeller frequency of revo- lution		Hz
n _T		Propeller rate of revolution, corrected using correlation $n_{\rm T} = C_N \cdot n_{\rm S}$ factor	
ζp	Roughness height of propel- ler blade surface		
ĮΑ	Dynamic pressure based on advance speed	$ ho V_{A}^{2}/2$	Pa
qs	Dynamic pressure based on section advance speed	$\rho V_{\rm S}^2/2$	Pa
Qs	Spindle torque	About spindle axis of con- trollable pitch propeller $Q_{S}=Q_{SC}+Q_{SH}$ positive if it increases pitch	Nm
2sc	Centrifugal spindle torque		Nm
Qsн	Hydrodynamic spindle torque		Nm
R _U	Pod unit resistance	Resistance of a podded drive unit	N
Г	Propeller thrust		Ν
Tu	Pod unit thrust	Pod unit resistance sub- tracted from the propeller thrust	N
T _D	Duct thrust of a ducted pro- peller unit		N
T _P	Propeller thrust of a ducted propeller unit		N
T _T	Total thrust of a ducted pro- peller unit		Ν
ГхР	Propeller Thrust along shaft axis		Ν
ТуР	Propeller normal force in y direction in propeller axis		N
T _z p	Propeller normal force in <i>z</i> direction in propeller axis		Ν
VA	Advance speed of propeller		m/s
VP	Mean axial velocity at pro- peller plane of ducted pro- peller		m/s

Version 2024

Ships in General Resistance and Propulsion Propulsor Performance

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actoliyili	Inallie	Explanation	Unit
		Section advance speed	2	
$V_{ m S}$		at 0.7 R	$(V_{\rm A}^2 + (0.7 \ R \ \omega)^2)^{1/2}$	m/s
Y _U		Pod unit side force		N
γi		Resistance fraction for one propeller	The portion of the resistance (load fraction, γ_i) that the i th	1
0p		Propeller mass density	propeller is responsible for	kg/m ³
UP			(ΔF)	Kg/III
$ au_{ m i}$	Thrust deduction sensitivity for one propeller $\tau_i = 1 + \left(\frac{\Delta F}{\Delta T}\right)_i$		$\tau_i = 1 + \left(\frac{\Delta T}{\Delta T}\right)_i$	1
ω	Propeller rotational velocity $2 \pi n$		1/s	
.3.3.2 Deriv	ved Quantities	¥¥¥		
BP		Taylor's propeller coefficient based on delivered horse- power	$n P_{\rm D}^{1/2} / V_{\rm A}^{2.5}$ with n in revs/min, $P_{\rm D}$ in horsepower, and $V_{\rm A}$ in kn (obsolete)	1
$B_{ m U}$		Taylor's propeller coefficient based on thrust horsepower	$n P_{\rm T}^{1/2} / V_{\rm A}^{2.5}$ with n in revs/min, $P_{\rm T}$ in horsepower, and $V_{\rm A}$ in kn (obsolete)	1
C_P		Power loading coefficient	$P_{\rm D}/(A_{\rm P} q_{\rm A} V_{\rm A})$	1
C_{Q^*}		Torque index	$Q/(A_{\rm P} q_{\rm S} D)$	1
C_{Th}		Thrust loading coefficient, energy loading coefficient	$T/(A_{\rm P} q_{\rm A}) = (T_{\rm P}/A_{\rm P})/q_{\rm A}$	1
C_{T^*}		Thrust index	$T/(A_{\rm P} q_{\rm S})$	1
J		Propeller advance ratio	$V_{\rm A}/(D n)$	1
$J_{ m A}$, $J_{ m H}$		Apparent or hull advance ra- tio	$V/(D n) = V_{\rm H}/(D n)$	1
$J_{ m P}$		Propeller advance ratio for ducted propeller	$V_{\rm P}/(D n)$	
J_T , $J_{\mathrm{P}T}$		Advance ratio of propeller determined from thrust iden- tity		1
J_Q , $J_{\mathrm{P}Q}$		Advance ratio of propeller determined from torque identity		1
K _P		Delivered power coefficient	$P_{\rm D} / (\rho \ n^3 \ D^5) = 2 \ \pi \ K_Q$	1
KQ		Torque coefficient	$Q/(\rho n^2 D^5)$	1
K _{SC}	Centrifugal spindle torque		$Q_{\rm SC}$ / ($ ho$ $n^2 D^5$)	1
K _{SH}		Hydrodynamic spindle torque coefficient	$Q_{ m SH}$ / ($ ho n^2 D^5$)	1
K _T		Thrust coefficient	$T/(\rho n^2 D^4)$	1
K _{TD}		Duct thrust coefficient for a ducted propeller unit	$\frac{T_{\rm D}}{T_{\rm D}} / (\rho n^2 D^4)$	1

Version 2024

Ships in General Resistance and Propulsion Propulsor Performance

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
5 yillool				Omt
K _{TP}		Propeller thrust coefficient for a ducted propeller unit	$T_{\rm P} / (\rho n^2 D^4)$	1
K _{TQ}		Thrust coefficient achieved by torque identity		1
<i>K</i> _{<i>T</i>T}		Total thrust coefficient for a ducted propeller unit	$K_{TP}+K_{TD}$	1
K_{Q0}		Torque coefficient of propel- ler converted from behind to open water condition	$K_{\mathcal{Q}}\eta_{\mathrm{R}}$	1
K _{QT}		Torque coefficient of propel- ler determined from thrust coefficient identity		1
P_{J}		Propeller jet power	$\eta_{\mathrm{TJ}} T V_{\mathrm{A}}$	
S _A S _R		Apparent slip ratio	1 - V/(nP)	1
S _R		Real slip ratio	$1 - V_{\rm A}/(n P)$	1
δ		Taylor's advance coefficient	$n D / V_A$ with <i>n</i> in revs/min, <i>D</i> in feet, V_A in kn	1
ηјр		Propeller pump or hydraulic efficiency	$P_{\rm J}/P_{\rm D}=P_{\rm J}/P_{\rm P}$	1
η JP0		Propeller pump efficiency at zero advance speed, alias static thrust coefficient	$T/(\rho \pi/2)^{1/3}/(P_{\rm D}D)^{2/3}$	1
η_1		Ideal propeller efficiency	Efficiency in non-viscous fluid	1
ηтј		Propeller jet efficiency	$2/(1+(1+C_{Th})^{1/2})$	1
η 0 , η тро		Propeller efficiency in open water	$P_{\rm T} / P_{\rm D} = T V_{\rm A} / (Q \omega)$ all quantities measured in open water tests	1
λ		Advance ratio of a propeller	$V_{\rm A}/(n D)/\pi = J/\pi$	1
τ		Ratio between propeller thrust and total thrust of ducted propeller	$T_{\rm P}/T_{\rm T}$	1
2.3.3.3 Induc	ced Velocities	etc.		
$U_{ m A}$		Axial velocity induced by propeller		m/s
$U_{ m AD}$		Axial velocity induced by duct of ducted propeller		m/s
$U_{ m RP}$		Radial velocity induced by propeller of ducted propeller		m/s
$U_{ m RD}$		Radial velocity induced by duct of ducted propeller		m/s
$U_{ m AP}$		Axial velocity induced by propeller of ducted propeller		m/s

Ships in General Resistance and Propulsion Propulsor Performance

ITTC	Acronym	Name	Definition or	SI-
Symbol	Reforiyin	Tunic	Explanation	Unit
			I	
$U_{ m R}$		Radial velocity induced by propeller		m/s
$U_{ m TD}$		Tangential velocity induced by duct of ducted propeller		m/s
$U_{ m TP}$		Tangential velocity induced by propeller of ducted pro- peller		m/s
U_{T}		Tangential velocity induced by propeller		m/s
β		Advance angle of a propeller blade section	$\operatorname{arctg}(V_{\mathrm{A}}/r\omega)$	rad
β_{I}		Hydrodynamic flow angle of a propeller blade section	Flow angle taking into ac- count induced velocity	rad
eta^*		Effective advance angle	arctg ($V_{\rm A}$ / (0.7 $R \omega$))	rad

Version 2024

Version 2024

Ships in General Resistance and Propulsion Unsteady Propeller Forces

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

2.3.4 Unsteady Propeller Forces

$\frac{2.3.4.1 \text{ Basic Qu}}{C_{uv}}$	Generalized stiffness		
D_{uv}	Generalized damping		
F _u	Generalized vibratory force	u = 1,, 6 u = 1, 2, 3: force u = 4, 5, 6: moment	N N Nm
F _i	Vibratory force	i = 1, 2, 3	N
K _{Fu}	Generalized vibratory force coefficients	According to definitions of K_{Fi} and K_{Mi}	1
K _{Fi}	Vibratory force coefficients	$F_i / (\rho n^2 D^4)$	1
K _{Mi}	Vibratory moment coeffi- cients	$\frac{M_i}{(\rho n^2 D^5)}$	1
K_p	Pressure coefficient	$p/(\rho n^2 D^2)$	1
M_i	Vibratory moment	i = 1, 2, 3	Nm
M _{uv}	Generalized mass		1
p	Pressure		Pa
R _u	Generalized vibratory bear- ing reaction	u = 1,, 6 u = 1, 2, 3: force u = 4, 5, 6: moment	N N Nm
Vi	Velocity field of the wake	i = 1, 2, 3	m/s
x y z	Cartesian coordinates	Origin O coinciding with the centre of the propeller. The longitudinal <i>x</i> -axis coincides with the shaft axis, positive forward; the trans-verse <i>y</i> - axis, positive to port; the third, <i>z</i> -axis, positive upward	m m m
Х 1	Cylindrical coordinates	Cylindrical system with origin O and longitudinal <i>x</i> - axis as defined before; angu- lar a-(attitude)-coordinate, zero at 12 o'clock position, positive clockwise looking forward; <i>r</i> distance measured from the <i>x</i> -axis	m 1 m
δ _u	Generalized vibratory dis- placement	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m m rad
ό _u	Generalized vibratory veloc- ity	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m/s m/s rad/s

Version 2024

Ships in General Resistance and Propulsion Unsteady Propeller Forces

ITTC Definition or SI-Acronym Name Symbol Explanation Unit m/s² m/s² *u* = 1,.., 6 Generalized vibratory accel- $\ddot{\delta}_u$ u = 1, 2, 3: linear eration rad/s² u = 4, 5, 6: angular

Version 2024

Ships in General Resistance and Propulsion Water Jets

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

2.3.5 Water Jets

C_p	Local pressure coefficient	$(p-p_0)/(\rho V^2/2)$	1
C _{Tn}	Thrust loading coeffi- cient:viscous pressure	$\frac{\frac{(p-p_0)}{(\rho V^2/2)}}{\frac{1}{2}\rho U_0^2 A_n}$	1
<i>c</i> _{es}	Energy velocity coefficient at station <i>s</i>		1
c _{ms}	Momentum velocity coefficient at station <i>s</i>		
Dp	Pressure differential of flow rate transducer	rate transducer	
E_j	Energy flux at station <i>j</i>	$E_j = (\rho/2) \int V_{Ej}^2 dQ_j$ Q_J	W
Es	Total energy flux at station s (kinetic + potential + pres- sure)	$ \left \iint_{A_{s}} \rho \left(\frac{1}{2} \boldsymbol{u}^{2} + \frac{p}{\rho} - g_{j} \boldsymbol{x}_{j} \right) \boldsymbol{u}_{i} \boldsymbol{n}_{i} dA \right $	W
$E_{s\xi}$	Energy flux at station j $E_j = (\rho/2) \int V_{Ej}^2 dQ_j$ Q_J Total energy flux at station s (kinetic + potential + pressure) $\iint_{A_s} \rho \left(\frac{1}{2} u^2 + \frac{p}{\rho} - g_j x_j\right) u_i n_i dA$ Total axial (in ξ direction) energy flux at station s $\iint_{A_s} \rho \left(\frac{1}{2} u_{\xi}^2 + \frac{p}{\rho} - g_j x_j\right) u_i n_i dA$		W
F _D	Skin friction correction in a self propulsion test carried out at the ship self-propul- sion point		N
H_1	Local total head at station 1		m
H ₃₅	Mean increase of total head across pump and stator or several pump stages		m
I _{VR}	Intake velocity ratio	VI/V	1
J _{VR}	Jet velocity ratio	VJ/V	1
K _Q	Impeller torque coefficient:	$\frac{Q}{\rho n^2 D^5}$	
K _{QJ}	Flow rate coefficient:	$\left \frac{Q_J}{nD^3} \right $	1
\overline{M}_{is}	Momentum flux at station <i>s</i> in <i>i</i> direction	Momentum flux at station s $\iint \rho u_i(u_i n_i) dA$	
NVR	Nozzle velocity ratio:	$\frac{\overline{u_{6\xi}}}{U_0}$	1
T _{jx}	Jet thrust (can be measured directly in bollard pull con- dition)		N
n	Impeller rotation rate		Hz

Version 2024

Ships in General Resistance and Propulsion Water Jets

TTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
- <u>-</u>		-		
n _i		Unit normal vector in <i>i</i> direction		1
P _D		Delivered Power to pump impeller		W
P_E		Effective power:	$R_{\rm TBH}U_0$	W
P _{JSE}		Effective Jet System Power	$Q_J H_{1A7}$	W
P _{PE}		Pump effective power:	$Q_I H_{35}$	W
P_{TE}		Effective thrust power		W
p_0		Ambient pressure in undis- turbed flow		Pa
p _s		Local static pressure at sta- tion <i>s</i>		Ра
Q		Impeller torque		Nm
$Q_{ m bl}$		Volume flow rate inside boundary layer		m³/s
Q_J		Volume flow rate through water jet system		m³/s
R _{TBH}		Total resistance of bare hull		N
$T_{\text{jet}x}$		Jet thrust (can be measured directly in bollard pull con- dition)		N
T _{net}		Net thrust exerted by the jet system on the hull		Ν
t		Thrust deduction fraction	$(1-t) = \frac{R_{\rm TBH}}{T_{\rm net}}$	1
U ₀		Free stream velocity		m/s
ū _{eis}		Mean energy velocity in <i>i</i> direction at station s	$\sqrt{\frac{1}{Q_J}\iint u_{\xi}^3 dA}$	m/s
\overline{u}_{es}		Mean (total) energy velocity at station <i>s</i>	$\sqrt{\frac{1}{Q_J}\iint u^3 dA}$	m/s
u _{is}		Velocity component in <i>i</i> -di- rection at station <i>s</i>		m/s
u _s		Velocity at station s		m/s
$u_{7\varphi}$		Local tangential velocity at station 7		m/s
<i>w</i> ₁		Geometric intake width at station 1		m
W _{1A}		Width of capture area meas- ured over hull surface at sta- tion 1A		m

Ships in General Resistance and Propulsion Water Jets

TTC	Acronym	Nama	Definition or	SI-
Symbol	- 2		Explanation	Unit
Z ₆		Vertical distance of nozzle centre relative to undisturbed surface		m
ΔM		Change of momentum flux		Ν
$\Delta \overline{M}_x$		Change in Momentum Flux in <i>x</i> direction		Ν
η_D		Overall propulsive effi- ciency:	$\frac{P_E}{P_D}$	1
$\eta_{ m duct}$		Ducting efficiency:	$\frac{P_{\text{JSE}}}{P_{\text{DE}}}$	1
$\eta_{ m eI}$		Energy interaction effi- ciency:	$\frac{P_{\text{JSE0}}}{P_{\text{JSE}}}$	1
η_I		Ideal efficiency, equivalent to jet efficiency in free stream conditions	$\frac{P_{\text{TE0}}}{P_{\text{JSE0}}}$	1
$\eta_{ m inst}$		Installation efficiency to ac- count for the distorted flow delivered by the jet intake to the pump		1
$\eta_{ m INT}$		Total interaction efficiency:	$\frac{\eta_{\rm eI}}{\eta_{\rm mI}}(1-t)$	1
$\eta_{ m jet}$		Momentum or jet efficiency:	$\frac{\eta_{\rm mI}}{P_{\rm TE}}$	1
$\eta_{ m JS}$		Jet system efficiency:	$\frac{P_{\text{JSE}}}{P_D}$	1
$\eta_{ m mI}$		Momentum interaction effi- ciency:	$\frac{T_{\rm net0}}{T_{\rm net}}$	1
η_P		Pump efficiency	$\frac{P_{\rm PE}}{P_D}$	1
$\eta_{ m P0}$		Pump efficiency from a pump loop test		1
η_0		Free stream efficiency:	$\eta_P \eta_{ m duct} \eta_I$	1
$ heta_n$		Jet angle relative to the hori- zontal at the nozzle (station 6)		rad
ρ		Mass density of fluid		kg/m³
ζ_{ij}		Energy loss coefficient be- tween station <i>i</i> and <i>j</i>		1
ζ_{13}		Inlet duct loss coefficient:	$\frac{E_3 - E_1}{\frac{1}{2}\rho U_0^2}$	1

84

Ships in General Resistance and Propulsion S Water Jets

85

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
ζ ₅₇		Nozzle duct loss coefficient	$= \frac{E_7 - E_5}{\frac{1}{2}\rho \overline{u}_{e6}^2}$	1

Version 2024

Ships in General Manoeuvrability and Seakeeping Manoeuvrability

ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

2.4 Manoeuvrability and Seakeeping

2.4.1 Manoeuvrability2.4.1.1 Geometrical Quantities

see also Section 1.3.1 and Section 1.3.3

Afb	Projected area of bow fins		m^2
$A_{ m HL}$	Lateral area of the hull	The area of the profile of the underwater hull of a ship when projected normally upon the longitudinal centre plane	m ²
ALV	Lateral area of hull above water		m ²
A_{R}	Total lateral area of rudder		m^2
A _{Rmov}	Lateral area of movable part of rudder		m ²
$A_{ m RN}$	Nominal lateral area of rud- der	$(A_{\rm R} + A_{\rm Rmov}) / 2$	m ²
$b_{ m R}$	Rudder span	Maximum distance from root to tip	m
$b_{\rm RM}$	Mean span of rudder		m
C_{AL}	Coefficient of lateral area of ship	$A_{ m HL}$ / (L T)	1
h	Water depth		m
$h_{ m M}$	Mean water depth		m
x _R	Longitudinal position of rud- der axis		m
δ	Rudder angle, helm angle		rad
$\Lambda_{\rm R}$	Aspect ratio of rudder	$b_{\rm R}^2/A_{\rm R}$	1
2.4.1.2 Motions an	nd Attitudes		
p	Roll velocity, rotational ve- locity about body <i>x</i> -axis		1/s
<i>q</i>	Pitch velocity, rotational ve- locity about body y-axis		1/s
r	Yaw velocity, rotational ve- locity about body <i>z</i> -axis		1/s
<i>p</i>	Roll acceleration, angular acceleration about body <i>x</i> - axis	dp / dt	1/s ²
ġ	Pitch acceleration, angular acceleration about body <i>y</i> - axis	dq / dt	1/s ²
<i>r</i> ̀	Yaw acceleration, angular acceleration about body <i>z</i> - axis	dr / dt	1/s ²

Ships in General Manoeuvrability and Seakeeping Manoeuvrability

ITTC	Acronym	Name	Definition or	SI-
Symbol	-		Explanation	Unit
		Surge velocity lineer veloc		
ı		Surge velocity, linear veloc-		m/s
		ity along body <i>x</i> -axis		
,		Sway velocity, linear veloc-		m/s
		ity along body y-axis		
W		Heave velocity, linear veloc- ity along body <i>z</i> -axis		m/s
		Surge acceleration, linear ac-		
ù		celeration along body <i>x</i> -axis	du / dt	m/s^2
		Sway acceleration, linear ac-		
ġ		celeration along body y-axis	dv / dt	m/s^2
		Heave acceleration, linear		
Ŵ		acceleration along body <i>z</i> -	dw / dt	m/s^2
V		axis		111/5
		Linear velocity of origin in		
V		body axes		m/s
$V_{\rm A}, V_0$		Approach speed		m/s
V _u		Generalized velocity		m/s
v u IŻ		Generalized acceleration		m/s^2
Żu V _F		Flow or current velocity		m/s
V F VWR		Relative wind velocity		m/s
Vwr		True wind velocity		m/s
		Course angle or heading		rad
ψ χ		Yaw angle		rad
$d_{t\psi}$		Rate of change of course	$d\psi/dt$	rad/s
Ψ_{O}		Original course		rad
9		Pitch angle		rad
φ		Roll angle		rad
	Angles etc.	Kon angle		Tau
.4.1.5 110W P	Aligies etc.		Angle of attack in pitch on	
α		Pitch angle	the hull	rad
в		Drift angle	Angle of attack in yaw on the hull	rad
Bwr		Angle of attack of relative wind		rad
δ		Angle of a control surface, rudder angle, helm angle		rad
δ_0		Neutral rudder angle		rad
		Effective rudder inflow an-		
$\delta_{ m EFF}$		gle		rad
$\delta_{ m FB}$		Bow fin angle		rad
S _{FS}		Stern fin angle		rad
δ _R		Rudder angle		rad
SRO		Rudder angle, ordered		rad
μC		Course of current velocity		rad

Version 2024

Ships in General Manoeuvrability and Seakeeping Manoeuvrability

ITTC Definition or SI-Acronym Name Symbol Explanation Unit

$\psi_{ m WA}$	Absolute wind direction	see also section 3.4.2, Wind	rad
Ψwr	Relative wind direction		rad

77	Roll moment on body, mo-		NT
X	ment about body x-axis		Nm
	Pitch moment on body, mo-		
M	ment about body y-axis		Nm
A.7	Yaw moment on body, mo-		NT
V	ment about body z-axis		Nm
N7	Derivative of yaw moment	21/2.	N
Vr	with respect to yaw velocity	∂N/∂r	Nms
	Derivative of yaw moment		
N _r	with respect to yaw accelera-	∂N/∂ŕ	Nms ²
	tion		
N _v	Derivative of yaw moment	$\partial N / \partial v$	Ns
	with respect to sway velocity	011/00	18
	Derivative of yaw moment		
N _v	with respect to sway acceler-	$-\partial N/\partial \dot{v}$	Nms ²
	ation		
N _δ	Derivative of yaw moment	∂Ν/∂δ	Nm
V0	with respect to rudder angle	011/00	
$Q_{\rm FB}$	Torque of bow fin		Nm
$Q_{\rm R}$	Torque about rudder stock		Nm
$Q_{\rm FS}$	Torque of stern fin		Nm
X	Surge force on body, force		Ν
A	along body <i>x</i> -axis		11
X _R	Longitudinal rudder force		N
	Derivative of surge force		
X _u	with respect to surge veloc-	дХ/ди	Ns/m
	ity		
	Derivative of surge force		
X _ü	with respect to surge accel-	∂X/∂ů	Ns ² /m
	eration		
Y	Sway force, force in direc-		Ν
	tion of body axis y		
Yr	Derivative of sway force	∂Y/∂r	Ns
	with respect to yaw velocity	01/01	
Y _R	Transverse rudder force		N
	Derivative of sway force		2
$Y_{\dot{r}}$	with respect to yaw accelera-	∂Y/∂r̈́	Ns^2
	tion		
Y _v	Derivative of sway force	∂Y/∂v	Ns/m
Υ _ν	with respect to sway velocity		1 10/111

2.4.1.4 Forces and Derivatives

ITTC Symbols

Ships in General Manoeuvrability and Seakeeping Manoeuvrability

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
bymoor				Omt
		Derivative of sway force		
$Y_{\dot{\nu}}$		with respect to sway acceler-	$\partial Y / \partial \dot{v}$	Ns²/m
		ation		
Y_{δ}		Derivative of sway force	<i>∂Υ/∂δ</i>	Ν
10		with respect to rudder angle	01700	
Ζ		Heave force on body, force		Ν
		along body <i>z</i> -axis		
	near Models	Directional stability anitarian	V (N mun) N (V mu)	N^2s^2
C_r		Static stability lever	$\frac{Y_{v}(N_{r} - mux_{G}) - N_{v}(Y_{r} - mu)}{N_{v} / Y_{v}}$	
L_{b} , l_{b}		Damping stability lever	$(N_r - mux_G) / (Y_r - mu)$	m m
$L_{ m d}$, $l_{ m d}$		Time constant of the 1 st or-	$(I_r - Mux_G) / (I_r - Mu)$	111
Т		der manoeuvring equation		S
		First time constant of		
T_1		manoeuvring equation		S
		Second time constant of		
T_2		manoeuvring equation		S
<i>m</i>		Third time constant of		
T_3		manoeuvring equation		S
V		Gain factor in linear		1/2
Κ		manoeuvring equation		1/s
		P-number, heading change		
P_n		per unit rudder angle in one		1
		ship length		
	rning Circles			T
Dc		Steady turning diameter		m
D _C '		Non-dimensional steady	$D_{\rm C}$ / $L_{\rm PP}$	1
-		turning diameter		
D_0		Inherent steady turning di-		m
		ameter $\delta_R = \delta_0$ Non-dimensional inherent		
D_0'		steady turning diameter	D_0 / $L_{ m PP}$	1
		Loop height of $r - \delta$ curve for		
l_r		unstable ship		rad/s
		Loop width of $r - \delta$ curve for		
l_{δ}		unstable ship		rad
rc		Steady turning rate		1/s
		Non-dimensional steady		
$r_{\rm C}'$		turning rate	$r_C L_{\rm PP} / U_{\rm C}$ or $2 L_{\rm PP} / D_{\rm C}$	m
R_C		Steady turning radius		m
		Time to reach 90 degree		0
<i>t</i> ₉₀		change of heading		S
t_{180}		Time to reach 180 degree		s
180		change of heading		0

Version 2024

ITTC Symbols

2 **Ships in General**

2.4 Manoeuvrability and Seakeeping

2.4.1 Manoeuvrability

Definition or SI-Name Acronym Symbol Explanation Unit $U_{\rm C}$ Speed in steady turn m/s Advance at 90° change of m *x*090 heading Advance at 180° change of m *x*0180 heading Maximum advance $x_{0 max}$ m Transfer at 90° change of V090 m heading Tactical diameter (transfer at m **V**0180 180° change of heading) Maximum transfer m y0max Drift angle at steady turning βc rad 2.4.1.7 Zig-Zag Manoeuvres Initial turning time ta S First time to check yaw S t_{c1} (starboard) Second time to check yaw t_{c2} S (port) Period of changes in heading thc S Reach time s tr Maximum transverse deviam V0max tion Maximum value of rudder rad δ_{\max} angle Switching value of course rad Ψs angle First overshoot angle rad ψ_{01} Second overshoot angle rad ψ_{02} **Stopping Manoeuvres** 2.4.1.8 Distance along track, SF m track reach Head reach x_{0F} m Lateral deviation m y0F Stopping time s t_F

Version 2024

ITTC

Version 2024

Ships in General 2 2.4 Manoeuvrability and Seakeeping 2.4.2 Seakeeping

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

2.4.2 Seakeeping

Related information is to be found in Chapter 3 on General Mechanics in Sections 3.1.2 on Time and Frequency Domain Quantities, 3.1.3 on Stochastic Processes, 3.2.1 on Inertial Properties,, 3.2.2 on Loads, 3.2.3 on Rigid Body Motions, and 3.4.1 on Waves. 2.4.2.1 Basic Quantities

$A_{\rm FS}$	Projected area of stern fins		m^2
ai	Attitudes of the floating system	i = 1, 2, 3, e.g. Euler angles of roll, pitch, and yaw, re- spectively	rad
f	Frequency	1 / T	Hz
fE	Frequency of wave encoun- ter	$1/T_{\rm E}$	Hz
f_z	Natural frequency of heave	$1/T_z$	Hz
fθ	Natural frequency of pitch	$1/T_{ heta}$	Hz
f_{φ}	Natural frequency of roll	$1/T_{\varphi}$	Hz
FL	Wave excited lateral shear force	Alias horizontal!	N
F _N	Wave excited normal shear force	Alias vertical!	N
ML	Wave excited lateral bending moment	Alias horizontal!	Nm
M _N	Wave excited normal bend- ing moment	Alias vertical!	Nm
M _T	Wave excited torsional mo- ment		Nm
n _{AW}	Mean increased rate of revo- lution in waves		1/s
P _{AW}	Mean power increased in waves		W
$Q_{ m AW}$	Mean torque increased in waves		Nm
R _{AW}	Mean resistance increased in waves		N
$S_{\eta}(f), S_{\eta\eta}(f), S_{\eta}(\omega), S_{\eta\eta}(\omega)$	Wave elevation auto spectral density	see also section 1.4.1, Waves	m ² s
x _i	Absolute displacement of the ship at the reference point	i = 1, 2, 3 :surge, sway, and heave respectively	m
X _u	Generalized displacement of a ship at the reference point	u = 16 surge, sway, heave, roll, pitch, yaw	m, rad
T _{AW}	Mean thrust increase in waves		N
Т	Wave period		s
Te	Wave encounter period		s
T_z	Natural period of heave		S

Ships in General Manoeuvrability and Seakeeping Seakeeping

ITTC	Acronym	Name	Definition or	SI-
Symbol	Acronym	Ivaille	Explanation	Unit
$rac{T_{ heta}}{T_{arphi}}$		Natural period of pitch		S
T_{arphi}		Natural period of roll		S
$Y_{z}(\omega),\ A_{z\zeta}(\omega)$		Amplitude of frequency re- sponse function for transla- tory motions	$z_a(\omega) / \zeta_a(\omega)$ or $z_a(\omega) / \eta_a(\omega)$	1
$Y_{ heta\zeta}(\omega),\ A_{ heta\zeta}(\omega)$		Amplitude of frequency re- sponse function for rotary motions	$egin{aligned} & artheta_a(\omega) \ / \ \zeta_a(\omega) \ ext{or} \ \Theta_a(\omega) \ / \ (\omega^{2/} \ (g \zeta_a(\omega))) \end{aligned}$	1
Л		Tuning factor	$ \begin{array}{c} \Lambda_{z} = \frac{\omega_{E}}{\omega_{Z}} \Lambda_{\theta} = \frac{\omega_{E}}{\omega_{\theta}} \Lambda_{\varphi} = \frac{\omega_{E}}{\omega_{\phi}} \\ \text{Or} \\ \Lambda_{Z} = \frac{T_{Z}}{T_{E}} \Lambda_{\theta} = \frac{T_{\theta}}{T_{E}} \Lambda_{\varphi} = \frac{T_{\phi}}{T_{E}} \end{array} $	
μ		Wave encounter angle	Angle between ship positive <i>x</i> axis and positive direction of waves (long crested) or dominant wave direction (short crested)	rad

Version 2024

Version 2024

Ships in General Manoeuvrability and Seakeeping Large Amplitude Motions Capsizing 93

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

2.4.3 Large Amp	litude Motions Capsizing		
Α	Assumed centre of gravity above keel used for cross curves of stability - I99/1.2.4.1		1
AB	Longitudinal centre of buoy- ancy from aft perpendicular - I99/1.2.4.2	Distance of centre of buoy- ancy from aft perpendicular	m
A _C	Area of deck available to crew		m²
ĀF	Distance of the centre of flo- tation from after perpendicu- lar		m
\overline{AG}_L	Longitudinal centre of grav- ity from aft perpendicular	Distance of centre of gravity from aft perpendicular	m
\overline{AG}_T	Transverse distance from as- sumed centre of gravity A to actual centre of gravity G		m
\overline{AG}_V	Vertical distance from as- sumed centre of gravity A to actual centre of gravity G		m
A _{LV}	Lateral area of hull above water		m²
A _{RL}	Positive area under righting lever curve		m²
A _{SI} I _{AS}	Attained subdivision index		1
A _S	Area of sails in profile ac- cording to ISO 8666		m²
$A_{ m V}$	Projected lateral area of the portion of the ship and deck cargo above the waterline - IMO/IS, IMO/HSC'2000		m²
ĀZ	Righting arm based on hori- zontal distance from as- sumed centre of gravity A to Z	Generally tabulated in cross curves of stability	m
В	Centre of buoyancy	Centroid of the underwater volume	
Всв	Breadth between centres of buoyancy of side hulls		m

nnlitudo Moti na Consizi 2/2 I ۸

Ships in General Manoeuvrability and Seakeeping Large Amplitude Motions Capsizing 94

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
BM		Transverse metacentre above centre of buoyancy	Distance from the centre of buoyancy CB to transverse metacentre M $\overline{BM} = \frac{I_T}{\overline{V}} = \overline{KM} - \overline{KB}$	m
\overline{BM}_L		Longitudinal metacentre above centre of buoyancy	$\overline{BM}_L = \overline{KM}_L - \overline{KB}$	m
b		Centre of flotation of added buoyancy layer or centre of lost buoyancy of the flooded volume		
b		Maximum tank breadth		m
C_{D}		Crew density	Proportion of boat plan needed for crew	
C_H		Height coefficient, depend- ing on the height above sea level of the structural mem- ber exposed to the wind		1
CLcpi		Crew limit	Maximum number of per- sons on board	
C_{MTL}		Longitudinal trimming coef- ficient - I99/1.2.4.3	Trimming moment divided by change in trim which ap- proximately equals \overline{BM}_L/L	1
Cs		Shape coefficient, depending on the shape of the structural member exposed to the wind		1
d		Draught, moulded, of ship hull - I99/1.2.1		m
d		Density coefficient for sub- merged test weights		1
F		Centre of flotation of the wa- ter plane		
F		Wind force - IMO/IS		
f		Freeboard	From the freeboard markings to the freeboard deck, ac- cording to official rules	m
FB			Distance of centre of buoy- ancy from forward perpen- dicular	m
FF		14	Distance of centre of floata- tion from forward perpendic- ular	m

Ships in General Manoeuvrability and Seakeeping Large Amplitude Motions Capsizing 95

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
				1
FG		Longitudinal centre of grav- ity, from forward perpendic- ular	Distance of centre of gravity from forward perpendicular	m
G		Centre of gravity of a vessel		
g		Centre of gravity of an added or removed weight (mass)		1
<u>GG</u> 1		Vertical stability lever caused by a weight shift or weight addition	$\overline{KG}_1 = \overline{KG}_0 + \overline{GG}_1$	m
\overline{GG}_H		Horizontal stability lever caused by a weight shift or weight addition		m
\overline{GG}_L		Longitudinal stability lever caused by a weight shift or weight addition		m
\overline{GG}_V		Vertical stability lever caused by a weight shift or weight addition	$\overline{KG}_1 = \overline{KG}_0 + \overline{GG}_1$	m
GM		Transverse metacentric height	Distance of centre of gravity to the metacentre $\overline{GM} = \overline{KM} - \overline{KG}$ (not corrected for free sur- face effect)	m
<u>GM</u> _{EFF}		Effective transverse meta- centric height	<i>GM</i> Corrected for free sur- face and/or free communica- tion effects	m
$\overline{GM_L}$		Longitudinal metacentric height	Distance from the centre of gravity G to the longitudinal metacentre M_L $\overline{GM}_L = \overline{KM}_L - \overline{KG}$	m
<u>GZ</u>		Righting arm or lever	$\overline{GZ} = \overline{AZ} - \overline{AG}_V \sin \phi - \overline{AG}_T \cos \phi$	m
GZ		Arm of static stability cor- rected for free surfaces - IMO/table		m
<u>GZ</u> _{MAX}		Maximum righting arm or lever		m
h		Maximum tank height		m
h_{CE}		Height of centre of area of A _{SP} above waterline at SSM		m
HL		Heeling lever (due to various reasons) - IMO/HSC'2000		m

Ships in General Manoeuvrability and Seakeeping Large Amplitude Motions Capsizing 96

ITTC Symbol	Acronym	Name	Definition or	SI-
Symbol			Explanation	Unit
		Height of waterline above		
$h_{ m LP}$		centre of area of immersed profile		m
K		Keel reference		
KA		Assumed centre of gravity above moulded base of keel	Distance from the assumed centre of gravity A to the moulded base of keel or K	m
KB		Centre of buoyancy above moulded base of keel	Distance from the centre of buoyancy <i>B</i> to the moulded base of keel or <i>K</i>	m
KG		Centre of gravity above moulded base of keel	Distance from the centre of gravity <i>G</i> to the moulded base of keel or <i>K</i>	m
Kg		Vertical centre of gravity of added or removed weight above moulded base of keel	Distance from the assumed centre of gravity, g , to the moulded base of keel or K	m
KM		Transverse metacentre above moulded base of keel	Distance from the transverse metacentre <i>M</i> to the moulded base of keel or <i>K</i>	m
\overline{KM}_L		Longitudinal metacentre above moulded base of keel	Distance from the longitudi- nal metacentre $M_{\rm L}$ to the moulded base of keel or <i>K</i>	m
k		Roll damping coefficient ex- pressing the effect of bilge keels		1
L		Length of the vessel on the waterline in maximum load condition - IMO/IS		m
l		Arm of dynamic stability corrected for free surfaces - IMO/table		m
l		Longitudinal trimming arm	$X_{\rm CG} - X_{\rm CB}$	m
l		Maximum tank length		m
ls		Actual length of enclosed superstructure extending from side to side of the ves- sel		m
$l_{ m w}$		Wind heeling lever		m
М		Metacentre of a vessel	See subscripts for qualifica- tion	
т		Ship mass	W/g	kg
M _C		Maximum offset load mo- ment due to crew		Nm

Ships in General Manoeuvrability and Seakeeping Large Amplitude Motions Capsizing 97

ITTC	Acronym	Name	Definition or	SI-
Symbol	J		Explanation	Unit
Mc		Minimum capsizing moment as determined when account is taken of rolling		Nm
$M_{\rm FS}$		Free surface moment at any inclination		Nm
m _{LCC}		Mass in light craft condition		kg
<i>m</i> LDC	LDC Mass in loaded displacement condition according to		kg	
$m_{\rm MTL}$		Maximum total load (mass)		kg
$M_{ m R}$	R Heeling moment due to turn- ing			Nm
$M_{ m S}$		Moment of ship stability in general	$\Delta \overline{GZ}$. Other moments such as those of capsizing, heel- ing, etc. will be represented by $M_{\rm S}$ with additional sub- scripts as appropriate.	Nm
m _{SSC}		Mass in standard sailing conditions according to		kg
M _{TC}		Moment to change trim one centimetre		Nm/cm
M_{TM}		Moment to change trim one meter	ΔC_{MTL}	Nm/m
$M_{ m W}$		Maximum heeling moment due to wind		Nm
$M_{ m v}$		Dynamically applied heeling moment due to wind pres- sure		Nm
<u>OG</u>		Height of centre of gravity above waterline		m
Pv		Wind pressure		Pa
r		Effective wave slope coefficient		1
R _{SI}		Required subdivision index		1
5		Wave steepness		1
STIX		Actual stability index value according to		1
<u>STIX</u>		Required stability index value, see		1
Т		Equivalent transverse heel- ing arm	Heeling moment/ Δ	m
TL		Turning lever		m
t _s t _{KL}		Static trim	$T_{\rm A}$ - $T_{\rm F}$ - $d_{\rm KL}$	m

Ships in General Manoeuvrability and Seakeeping Large Amplitude Motions Capsizing 98

ITTC	Acronym	Name	Definition or	SI-	
Symbol	7 teronym	Truine	Explanation	Unit	
			1	1	
V		Tank total capacity		m³	
V		Speed of craft in the turn			
V_0		Speed of craft in the turn - IMO/HSC'2000		m/s	
v 0		Service speed - IMO/IS		111/ 5	
		Wind speed used in calcula-			
VW		tion		m/s	
W		Ship weight	m g	N	
,,			Longitudinal distance from	11	
X _{CB}		Longitudinal centre of float-	reference point to the centre	m	
лсв		ation of added buoyant layer	of the added buoyant layer, b		
			Longitudinal distance from		
$X_{\rm CB}$		Longitudinal centre of buoy-	reference point to the centre	m	
L _{CB}		ancy (L_{CB})	of buoyancy, B	111	
**		.	Longitudinal distance from		
X _{CF}		Longitudinal centre of flota-	reference point to the centre	m	
$L_{\rm CF}$		tion $(L_{\rm CF})$	of flotation, F		
			Longitudinal distance from		
		Longitudinal centre of grav-	reference point to the centre		
XCG		ity of added weight (mass)	of gravity, g, of an added or	m	
			removed weight (mass)		
V		Longitudinal control of anon	Longitudinal distance from		
X _{CG}		Longitudinal centre of grav-	reference point to the centre	m	
$L_{\rm CG}$		ity (L _{CG})	of gravity, G		
X_1, X_2		Roll damping coefficients		1	
ХD		Distance of down flooding		m	
٨D		opening from end of boat		111	
Y _{CG} ,		Lateral displacement of cen-	Lateral distance from a ref-		
YCG		tre of gravity (Y_{CG})	erence point to the centre of	m	
,			gravity, G		
УD		Distance of down flooding		m	
·		opening from gunwale			
yd'		Distance of down flooding		m	
		opening off centreline			
7		Intersection of righting arm with line of action of the			
Ζ					
		centre of buoyancy Vertical distance from the			
		centre of A to the centre of			
		the underwater lateral area			
Ζ		or approximately to a point		m	
		at one half the draught -			
		IMO/IS			

Version 2024

Ships in General Manoeuvrability and Seakeeping Large Amplitude Motions Capsizing 99

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit	
2			•		
Z, h		Vertical distance from the		m	
-		centre of A to the waterline			
ZD		Height above waterline of down flooding opening		m	
ZSA		Static sinkage at AP	Caused by loading	m	
7 <i>S</i> F		Static sinkage at FP	Caused by loading	m	
ZS		Mean static sinkage	$(z_{SF}+z_{SA})/2$	m	
δ		Tank block coefficient		1	
$\delta t_{\rm KL}$		Change in static trim		m	
		Displacement (buoyant)			
Δ		force	$g \rho \nabla$	Ν	
Δ_m			$\rho \nabla$	kg	
\overline{V}		Displacement volume $\Delta/(\rho_g)$		m ³	
$V_{ m fw}$		Displacement volume of flooded water	$\Delta_{\rm fw} / (\rho g)$	m³	
ϕ		Heel angle		rad	
ϕ_0		Heel angle during offset load		rad	
φ_0		tests		144	
$\phi_{0(\text{REQ})}$		Maximum permitted heel an- gle during		rad	
$\phi_{ m D}$		Actual down flooding angle according to		rad	
$\phi_{\rm D(REQ)}$		Required down flooding an-		rad	
Ø DC		Down flooding angle to non-		rad	
$\phi_{ m DH}$		Down flooding angle to any main access hatchway		rad	
$\phi_{\rm F}$		Heel angle at flooding		rad	
¢gzmax		Angle of heel at which maxi- mum righting moment oc- curs		rad	
$\phi_{ m R}$		Assumed roll angle in a sea- way		rad	
¢vs		Heel angle for vanishing sta- bility		rad	
$\phi_{ m W}$		Heel angle due to calculation wind		rad	
μ		wind The ratio of the volume of flooding water in a compartment to the total volume of the compartment		1	

Ships in General Manoeuvrability and Seakeeping Large Amplitude Motions Capsizing 100

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actoliyili	Ivaille	Explanation	Unit
		Capsizing angle under the		
$ heta_{ m c}$		action of a gust of wind		rad
		IMO/IS		
		Heel angle corresponding to		
$\phi_{ m m}$		the maximum of the statical		rad
		stability curve		
$\theta_{\rm S}$		Static trim angle	$\tan^{-1}((z_{SF}-z_{SA})/L)$	rad
ρ		(Liquid) mass density		kg/m³
$ ho_{ m A}$		(Air) mass density		kg/m³
$ ho_{\otimes}$		(Water) mass density		kg/m³
	ools for Attribut	tes and Subscripts		<u>.</u>
A		Aft		
E		Entrance		
F		Fore		
R		Run		
Z		Heave		
θ		Pitch		
φ		Roll		

Version 2024

Special Craft 3

3.1 Planing and Semi-Displacement Vessels

Geometry and Hydrostatics 3.1.1 101

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

3. **SPECIAL CRAFT**

3.1 **Planing and Semi-Displacement Vessels**

Geometry and Hydrostatics 3.1.1

See also Section 1.2.1, Hull Geometry and Section 1.2.2 Propulsor Geometry

bee albo be	cuon 1.2.1, fiun Ocomeny and Section	1.2.2 Tropulsor Geometry	
$A_{ m P}$	Planing bottom area	Horizontally projected plan- ing bottom area (at rest), ex- cluding area of external spray strips	m ²
B _{LCG}	Breadth at longitudinal posi- tion of the centre of gravity	Breadth over spray strips	m
B _{PC}	Breadth over chines	Breadth over chines, exclud- ing external spray strips	m
B _{PA}	Mean breadth over chines	$A_{\rm P}$ / $L_{\rm P}$	m
B _{PT}	Transom breadth	Breadth over chines at tran- som, excluding external spray strips	m
B _{PX}	Maximum breadth over chines	Maximum breadth over chines, excluding external spray strips	m
L _{SB}	Total length of shafts and bossings		m
L _{PR}	Projected chine length	Length of chine projected in a plane parallel to keel	m
β	Deadrise angle of planing bottom	Angle between a straight line approximating body sec- tion and the intersection be- tween basis plane and sec- tion plane	rad
$\beta_{\rm M}$	Deadrise angle at midship section		rad
β_{T}	Deadrise angle at transom		rad
€SH	Shaft angle	Angle between shaft line and reference line (positive, shaft inclined downwards)	

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.2 Geometry and Levers, Underway 10 102

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

3.1.2 Geometry and Levers, Underway

5.1.2.1 Geometry		Vertical depth of trailing		
d _{TR}	Immersion of transom, un- derway	edge of boat at keel below	m	
		water surface level		
la_	Wetted height of strut palms		m	
$h_{ m P}$	(flange mounting)		m	
h _R	Wetted height of rudders		m	
	Wetted chine length, under-			
L _C	way		m	
	Lever of resultant of pres-	Distance between centre of		
lcp	sure forces, underway	pressure and aft end of plan-	m	
	sure forces, underway	ing surface		
$L_{\rm K}$	Wetted keel length, under-		m	
	way			
L_{M}	Mean wetted length, under-	$(L_{\rm K} + L_{\rm C}) / 2$	m	
	way	~ -/		
	Wetted area underway of	Principal wetted area	2	
S _{WHP}	planing hull	bounded by trailing edge,	m^2	
		chines and spray root line		
	Wetted bottom area, under-	Area bounded by stagnation	2	
$S_{ m WB}$	way	line, chines or water surface	m^2	
		underway and transom		
		Total wetted surface of hull		
$S_{ m WHE}$	Wetted hull area, underway	underway, including spray	m^2	
		area and wetted side area,		
		w/o wetted transom area		
	Area of wetted sides	Wetted area of the hull side	2	
S _{WHS}		above the chine or the design	m ²	
		water line		
		Wetted area between design	2	
Sws, Ss	Area wetted by spray	line or stagnation line and	m^2	
		spray edge		
		Angle between projected		
		keel and stagnation line in a		
α _B	Angle of stagnation line	in plane normal to centre	rad	
		plane and parallel to refer-		
		ence line		
$\alpha_{\rm BAR}$	Barrel flow angle	Angle between barrel axis	rad	
		and assumed flow lines		
EWL	Wetted length factor	$L_{\rm M}/L_{\rm WL}$	1	
EWS	Wetted surface area factor	$S \neq S_0$	1	

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.2 Geometry and Levers, Underway 10 103

ITTC Symbol	Acronym	Name	Definition or	SI- Unit
Symbol			Explanation	Unit
$ heta_{\mathrm{DWL}},$		Running trim angle based on design waterline	Angle between design water- line and running waterline (positive bow up)	rad
$ heta_{ m S}, \ heta_0$		Static trim angle	Angle between ship design waterline and actual water line at rest (positive bow up) $\tan^{-1}((z_{SF} - z_{SA}) / L)$	rad
$ heta_V$, $ heta_{ m D}$		Running (dynamic) trim an- gle	Angle between actual water line at rest and running water line (positive bow up) $\tan^{-1}((z_{VF} - z_{VA}) / L)$	rad
λw		Mean wetted length-breadth ratio	$L_{\rm M}$ / ($B_{\rm LCG}$)	1
τ		Running trim angle based on design waterline	Angle between design water- line and running waterline (positive bow up)	deg
$ au_{ m DWL}$		Reference line angle	Angle between the reference line and the design waterline	rad
τ _R		Angle of attack relative to the reference line	Angle between the reference line and the running water- line	rad
ØSP		Spray angle	Angle between stagnation line and keel (measured in plane of bottom)	rad
δ_{λ}		Dimensionless increase in total friction area	Effective increase in friction area length-breadth ratio due to spray contribution to drag	1
.1.2.2 Lever	s, Underway			1
eA		Lever of appendage lift force $N_{\rm A}$	Distance between N_A and centre of gravity (measured normally to N_A)	m
eв		Lever of bottom normal force $N_{\rm B}$	Distance between $N_{\rm B}$ and centre of gravity (measured normally to $N_{\rm B}$)	m
₽PN		Lever of propeller normal force N_{PN}	Distance between propeller centreline and centre of gravity (measured along shaft line)	m
ерр		Lever of resultant of propel- ler pressure forces <i>N</i> _{PP}	Distance between N_{PP} and centre of gravity (measured normally to N_{PP})	m
e _{PS}		Lever of resultant propeller suction forces <i>N</i> _{PS}	Distance between N_{PS} and centre of gravity (measured normal to N_{PS})	m

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.2 Geometry and Levers, Underway 10 104

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actoliyili	Name	Explanation	Unit
e _{RP}		Lever of resultant of rudder pressure forces <i>N</i> _{RP}	Distance between N_{RP} and centre of gravity (measured	m
fаа		Lever of wind resistance R_{AA}	normal to N_{RP}) Distance between R_{AA} and centre of gravity (measured normal to R_{AA})	m
f _{AP}		Lever of appendage drag R_{AP}	Distance between R_{AP} and	m
fF		Lever of frictional resistance $R_{\rm F}$	Distance between R_F and centre of gravity (measured normal to R_F)	m
fк		Lever of skeg or keel re- sistance <i>R</i> _K	Distance between $R_{\rm K}$ and centre of gravity (measured normal to $R_{\rm K}$)	m
f _R		Lever of augmented rudder drag $\Delta R_{\rm RP}$	Distance between $\Delta R_{\rm RP}$ and centre of gravity (measured normal to $\Delta R_{\rm RP}$)	m
fs		Lever of axial propeller thrust	Distance between axial thrust and centre of gravity (measured normal to shaft line)	m
fT		Lever of total resistance R _T	Distance between $R_{\rm T}$ and centre of gravity (measured normal to $R_{\rm T}$)	m

Version 2024

ITTC Symbols

Version 2024

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.3 Resistance and Propulsion 1

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
0 j 11 c 01				<u>e</u> me
	stance and Propu also Sections 2.2	llsion 3.1 on Hull Resistance		
C_{L0}		Lift coefficient for zero deadrise	$\Delta / (B_{\rm CG}^2 q)$	1
$C_{L\beta}$		Lift coefficient for deadrise surface	$\varDelta / (B_{\rm CG}^2 q)$	1
C_V		Froude number based on breadth	$V / (B_{ m CG} g)^{1/2}$	1
C_{\varDelta}		Load coefficient	$\Delta / (B_{\rm CG}^3 \rho g)$	1
Lvhd		Vertical component of hy- drodynamic lift		Ν
L _{VS}		Hydrostatic lift	Due to buoyancy	Ν
F _{TA}		Appendage drag force (par- allel to reference line)	Drag forces arising from ap- pendages inclined to flow, assumed to act parallel to the reference line	N
F _{TB}		Bottom frictional force (par- allel to reference line)	Viscous component of bot- tom drag forces assumed acting parallel to the refer- ence line	N
F _{TK}		Keel or skeg drag force (par- allel to reference line)	Drag forces arising from keel or skeg, assumed to act parallel to the reference line	N
F _{TRP}		Additional rudder drag force (parallel to reference line)	Drag forces arising from in- fluence of propeller wake on the rudder assumed to act parallel to the reference line	N
N _A		Appendage lift force (nor- mal to reference line)	Lift forces arising from ap- pendages inclined to flow, assumed to act normally to reference line	N
N _B		Bottom normal force (nor- mal to reference line)	Resultant of pressure and buoyant forces assumed act- ing normally to the reference line	N
N _{PP}		Propeller pressure force (normal to reference line)	Resultant of propeller pres- sure forces acting normally to the reference line	N
N _{PS}		Propeller suction force (nor- mal to reference line)	Resultant of propeller suc- tion forces acting normally to the reference line	N
$N_{ m RP}$		Rudder pressure force (nor- mal to reference line)	Resultant of rudder pressure forces acting normally to the reference line	N

3 Special Craft
3.1 Planing and Semi-Displacement Vessels
3.1.3 Resistance and Propulsion 1

106

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actonym	Ivallie	Explanation	Unit
R _K		Keel drag		Ν
R_{π}		Induced drag	$g \rho \nabla tan \tau$	Ν
R _{PAR}		Parasitic drag	Drag due to inlet and outlet openings	N
<i>R</i> _{PS}		Pressure component of spray drag		N
R_{T}		Total resistance	Total towed resistance	Ν
R _{VS}		Viscous component of spray drag	CF Sws qs	N
$V_{ m BM}$		Mean bottom velocity	Mean velocity over bottom of the hull	m/s
$V_{ m SP}$		Spray velocity	Relative velocity between hull and spray in direction of the spray	m/s

Version 2024

3 Special Craft 3.2 Multi-Hull Vessels

3.2.1 Geometry and Hydrostatics

ITTC	A	Name	Definition or	SI-
Symbol	Acronym		Explanation	Unit

3.2 Multi-Hull Vessels

3.2.1 Geometry and Hydrostatics

See also	Section 2.2.1	, Hull Geometry
----------	---------------	-----------------

AI	Strut-hull intersection area		m ²
BB	Box breadth	Breadth of main deck	m
Bs	Hull spacing	Distance between hull centre lines	m
B _{TV}	Tunnel width	Minimal distance of the demihulls at the waterline	m
D _H	Hull diameter	Diameter of axis symmetric submerged hulls	m
Dx	Hull diameter at the longitu- dinal position "X"		m
H _{DK}	Deck clearance	Minimum clearance of wet deck from water surface at rest	m
H _{SS}	Strut submerged depth	Depth of strut from still wa- ter line to strut-hull intersec- tion	m
i _{EI}	Half angle of entrance at tunnel (inner) side	Angle of inner water line with reference to centre line of demihull	rad
i _{EO}	Half angle of entrance at outer side	Angle of outer water line with reference to centre line of demihull	rad
L _{CH}	Length of centre section of hull	Length of prismatic part of hull	m
L _{CS}	Length of centre section of strut	Length of prismatic part of strut	m
L _H	Box length	Length of main deck	m
L _{NH}	Length of nose section of hull	Length of nose section of hull with variable diameter	m
L _{NS}	Length of nose section of strut	Length of nose section of strut with variable thickness	m
Ls	Strut length	Length of strut from leading to trailing edge	m
L _{SH}	Length of submerged hull		m
ts	Maximum thickness of strut		m

3 Special Craft

3.2 Multi-Hull Vessels

3.2.2 Resistance and Propulsion

 R_{TMH} - ΣR_{T}

ITTC Definition or SI-Acronym Name Symbol Explanation Unit **Resistance and Propulsion** 3.2.2 3.2.2.1 Resistance Components See also Section 2.3.1 on Hull Resistance Frictional resistance of *R*_{FMH} Ν multi-hull vessel Frictional resistance interfer-N $R_{\rm FINT}$ $R_{\rm FMH}$ - $\Sigma R_{\rm F}$ ence correction Residuary resistance correc-Ν $R_{\rm RMH}$ R_{TMH} - R_{FMH} tion of multi-hull Residuary resistance inter- $R_{\rm RI}$ $R_{\rm RMH}$ - $\Sigma R_{\rm R}$ Ν ference correction Total resistance of multi-hull

Total resistance interference

vessel

correction

Version 2024

*R*_{TMH}

 $R_{\rm TI}$

108

Ν

N

Version 2024

3 Special Craft3.3 Hydrofoil Boats3.3.1 Geometry and Hydrostatics

ITTC	Acronym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

3.3 Hydrofoil Boats3.3.1 Geometry and Hydrostatics

See Sec	tions 2.2.1	and 2.2.4

118 2.2.1 aliu 2.2.4		
Foil area (general)	Foil area in horizontal plane	m^2
Total foil plane area		m^2
Maximum vessel breadth in-		m
cluding foils		m
Span of struts		m
Transverse horizontal dis-		
tance of struts		m
Chord length at centre plane		m
Chord length of flap		m
Mean chord length		m
Chord length of a strut		m
tersection with foil		m
Chord length at foil tips		m
<u> </u>		N
Ŭ		rad
		rad
		m ³
L		
		m ²
U		m^2
		m ²
		m
		m
looding adga		
Froude number based on foil	-1/2	
distance	$V / (g L_{\rm F})^{1/2}$	1
	1/2	_
	$V / (g c_{\rm M})^{1/2}$	1
	Distance of centre of gravity	
	• •	m
Flight height	-	m
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	at rest	
Keel clearance	mean water surface foilborne	m
	Foil area (general)Total foil plane areaMaximum vessel breadth including foilsSpan of strutsTransverse horizontal distance of strutsChord length at centre planeChord length of flapMean chord lengthChord length of a strutChord length of strut at intersection with foilChord length at foil tipsWeight of foilGeometric angle of twistDihedral angleFoil displacement volumey, UnderwayEmerged area of foilSubmerged foil areaSubmerged foil plan area at take-off speedSubmerged strut areaFoil span wettedDistance of centre of pressure on a foil or flap from laading adge	Foil area (general)Foil area in horizontal planeTotal foil plane areaMaximum vessel breadth in- cluding foilsSpan of strutsTransverse horizontal dis- tance of strutsChord length at centre planeChord length of flapMean chord lengthChord length of a strutChord length of strut at in- tersection with foilChord length at foil tipsWeight of foilGeometric angle of twistDihedral angleFoil displacement volume', UnderwayEmerged area of foilSubmerged foil areaSubmerged foil areaSubmerged foil plan area at take-off speedSubmerged strut areaFoil span wettedDistance of centre of pres- sure on a foil or flap from leading edgeFroude number based on foil distanceV/ (g c_M) ^{1/2} Height of centre of gravity above mean water surface Height heightFlight heightKeel clearanceDistance between keel and

3 Special Craft3.3 Hydrofoil Boats3.3.1 Geometry and Hydrostatics

ITTC	Aaronym	Name	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit
				1
$l_{ m F}$		Horizontal distance of centre of pressure of front foil to centre of gravity		m
l _{FR}		Horizontal distance between centres of pressure of front and rear foils	$l_{\rm F} + l_{\rm R}$	m
R		Horizontal distance of centre of pressure of rear foil to centre of gravity		m
$T_{ m F}$		Foil immersion	Distance between foil chord and mean water surface	m
$T_{ m FD}$		Depth of submergence of apex of a dihedral foil	Distance between foil apex and mean water surface	m
T _{FM}		Mean depth of foil submerg- ence		m
$\alpha_{\rm IND}$		Downwash or induced angle		rad
$\alpha_{ m M}$		Angle of attack of mean lift coefficient for foils with twist		rad
$\alpha_{\rm s}$		Angle of attack for which flow separation (stall) occurs		rad
α _{TO}		Incidence angle at take-off speed		rad

Version 2024

Version 2024

3 Special Craft3.3 Hydrofoil Boats3.3.2 Resistance and Propulsion

ITTC	Acronym Name	Nomo	Definition or	SI-
Symbol		Inallie	Explanation	Unit

3.3.2 Resistance and Propulsion

See also **Section 2.3.1 Hull Resistance** 3.3.2.1 Basic Quantities

D _F	Foil drag	Force in the direction of mo- tion of an immersed foil	Ν
D _{FR}	Drag force on rear foil	$C_{DF} A_{FR} q$	N
D _{FF}	Drag force on front foil	$C_{DF}A_{FF}q$	N
DI	Induced drag	For finite span foil, the com- ponent of lift in the direction of motion	N
D _{INT}	Interference drag	Due to mutual interaction of the boundary layers of inter- secting foil	N
D _{P0}	Profile drag for angle of at- tack equal to zero lift	Streamline drag	N
Ds	Spray drag	Due to spray generation	N
D _{ST}	Strut drag		Ν
D _W	Wave drag	Due to propagation of sur- face waves	N
D _V	Ventilation drag	Due to reduced pressure at the rear side of the strut base	N
L _F	Lift force on foil	$C_L A_{\rm FT} q$	Ν
L _{FF}	Lift force on front foil	$C_L A_{\rm FF} q$	N
L _{FR}	Lift force on rear foil	$C_L A_{\rm FR} q$	N
L ₀	Profile lift force for angle of attack of zero	$C_{L0}A_{\rm FT}q$	N
L _{TO}	Lift force at take off	$C_{LTO}A_{FT}q$	N
М	Vessel pitching moment		Nm

Version 2024

3 Special Craft3.3 Hydrofoil Boats3.3.2 Resistance and Propulsion

ITTC	A	Nome	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

3.3.2.2 Derived Quantities

5.5.2.2 Denved Quan		1	
C_{DF}	Drag coefficient of foil	$D_{\rm F}/(A_{\rm FS} q)$	1
C_{DI}	Induced drag coefficient	$D_{\rm I}/(A_{\rm FS} q)$	1
CDINT	Interference drag coefficient	$D_{\rm INT} / (A_{\rm FS} q)$	1
C_{D0}	Section drag coefficient for angle of attack equal to zero	$D_{ m P}/(A_{ m FS} q)$	1
C _{DS}	Spray drag coefficient	$D_{\rm S} / (A_{\rm FS} q)$	1
C _{DVENT}	Ventilation drag coefficient	$D_{\rm V}/(A_{\rm FS} q)$	1
C _{DW}	Wave drag coefficient	$D_{\rm W}/(A_{FS} q)$	1
C_{LF}	Foil lift coefficient	$L_{\rm F}/(A_{\rm FS} q)$	1
CLO	Profile lift coefficient for an- gle of attack equal to zero	$L_0 / (A_{\rm FS} q)$	1
C_{LTO}	Lift coefficient at take-off condition	$L_{ m TO}/(A_{ m FS} q)$	1
C_{LX}	Slope of lift curve	$dC_L/d\alpha$	1
C_M	Pitching moment coefficient	$M/((A_{\mathrm{FF}} + A_{\mathrm{FR}})(l_{\mathrm{F}} - l_{\mathrm{R}})q)$	1
M _F	Load factor of front foil	$L_{\rm FF}/\Delta$	1
M _R	Load factor of rear foil	$L_{\rm FR}/\Delta$	1
€ _F	Lift/ Drag ratio of foil	L/D	1

3 Special Craft3.4 ACV and SES3.4.1 Geometry and Hydrostatics

ITTC	A	Nome	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

3.4 ACV and SES

3.4.1 Geometry and Hydrostatics

See als	o Section 1.2.1

L. L.			1
Ac	Cushion area	Projected area of ACV or SES cushion on water sur- face	m ²
B _C	Cushion breadth	SES cushion breadth meas- ured between the side walls	m
B _{WLT}	Total waterline breadth of SES	At the water line	m
H _{CG}	Height of centre of gravity above mean water plane be- neath craft		m
h _{BS}	Bow seal height	Distance from side wall keel to lower edge of bow seal	m
H _{SK}	Skirt depth	<u> </u>	m
h _{SS}	Stern seal height	Distance from side wall keel to lower edge of stern seal	m
LB	Deformed bag contact length		m
Lc	Cushion length		m
LE	Effective length of cushion	$A_{\rm C}/B_{\rm C}$	m
S _{H0}	Wetted area of side hulls at rest off cushion	Total wetted area of side walls under way on cushion	m ²
S _{SHC}	Wetted area of side hulls un- der way on cushion	Total wetted area of side walls under way on cushion	m ²
S _{SH}	Wetted area of side hulls un- der way off cushion	Total wetted area of side walls under way off cushion	m ²
Х _Н , <i>L</i> _Н	Horizontal spacing between inner and outer side skirt hinges or attachment points to structure	needs clarification	m
X _S , L _S	Distance of leading skirt contact point out-board or outer hinge of attachment point to structure	needs clarification	m
Z _H , H _H	Vertical spacing between in- ner and outer side skirt hinges or attachment points to structure	needs clarification	m
$\delta B_{ m C}$	Increase in cushion breadth due to water contact		m
EWS	Wetted surface factor	$S_{\rm SHC}$ / $S_{\rm SH0}$	1
$\theta_{\rm B}$	Bag contact deformation an- gle		rad

Version 2024

3 Special Craft3.4 ACV and SES3.4.1 Geometry and Hydrostatics

ITTC	Aaronum	Name	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit
$ heta_{ m F}$		Finger outer face angle		rad
$ heta_{ m W}$		Slope of mean water plane for surface level beneath cushion periphery		rad
ρΑ		(ACV and SES) Mass density of air	Mass of air per unit volume	kg/m ³
ζc		Height of cushion generated wave above mean water plane at leading edge side of the skirt		m

Version 2024

Special Craft ACV and SES Geometry and Hydrostatics

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actoliyili	Iname	Explanation	Unit

3.4.2 Resistance and Propulsion

See also	Section 2.3.1	on Hull Resistance
----------	---------------	--------------------

C_{Δ}	Cushion loading coefficient	$\Delta / (g \rho_{\rm A} A_{\rm C}^{3/2})$	1
Cpr	Aerodynamic profile drag coefficient	$R_0 / (\rho_A V_R^2 A_C / 2)$	1
C _{WC}	Cushion wave making coef- ficient		1
p _B	Mean bag pressure		Pa
D BS	Bow seal pressure	Pressure in the bow seal bag	Pa
р _{CE}	Mean effective skirt pressure		Pa
PCU	Cushion pressure	Mean pressure in the cush- ion	Ра
ØFT	Fan total pressure		Pa
PLR	Cushion pressure to length ratio	$P_{\rm CU}/L_{\rm C}$	Pa/m
ØSK	Skirt pressure in general		Pa
2 _{SS}	Stern seal pressure	Pressure in the stern seal bag	Pa
P _{FCU}	Power of lift fan		W
P _{FSK}	Power of skirt fan		W
$Q_{\rm BS}$	Bow seal air flow rate	Air flow rate to the bow seal	m ³ /s
Q _{CU}	Cushion air flow rate	Air flow rate to cushion	m ³ /s
Qss	Stern seal air flow rate	Air flow rate to the stern seal	m ³ /s
Q_{T}	Total air volume flow		m ³ /s
Q _{TS}	Total air volume flow of skirt		m ³ /s
R _{AT}	Total aerodynamic re- sistance	$R_M + R_0$	N
R _H	Hydrodynamic resistance	$R_{\rm W} + R_{ m WET}$	Ν
R _M	Intake momentum resistance in general	$ ho_{ m A} Q_{ m T} V_{ m A}$	N
R _{MCU}	Intake momentum resistance of cushion	$ ho_{ m A}Q_{ m CU}V_{ m A}$	N
R _{ASK}	Intake momentum resistance of skirt	$ ho_{ m A} Q_{ m TS} V_{ m A}$	N
R _{WET}	Resistance due to wetting		Ν
T _C	Cushion thrust		N

Version 2024

Special Craft Ice going Vessels S.1 Resistance and Propulsion

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

3.5 Ice Going Vessels

3.5.1 Resistance and Propulsion

(See Figure 3.4, p 225 and Figure 3.8, p 231 of Vol. 1 of the <i>Proceedings of the 21st ITTC</i>)
--

CI	Coefficient of net ice re-	$R_{\rm I} / (\rho_I g h^2 B)$	1
C _{IW}	sistance Coefficient of water re- sistance in the presence of	$R_{\rm IW} / (S q_{\rm IW})$	1
	ice		
$F_{ m IN}$	Normal ice force on a body	Projection of hull - ice inter- action force on the external normal	N
FIT	Tangential ice force on a body	Projection of the hull - ice interaction force on the di- rection of motion	N
Fr _I	Froude number based on ice thickness	$V/(g h_{\rm I})^{1/2}$	1
F_{XI} F_{YI}	Components of the local ice		N N
F_{ZI}	force		N
fiD	Coefficient of friction be- tween surface of body and ice (dynamic)	Ratio of tangential force to normal force between two bodies (dynamic condition)	1
fīs	Coefficient of friction be- tween surface of body and ice (static)	The same as above (static condition)	1
hI	Thickness of ice		m
hsn	Thickness of snow cover		m
K _{QIA}	Average coefficient of torque in ice	Q_{IA} / ($\rho_{\rm W}$ n_{IA}^2 D^5)	1
<i>K</i> _{TIA}	Average coefficient of thrust in ice	$T_{IA} / (\rho_{\rm W} n_{IA}^2 D^4)$	1
n _{IA}	Average rate of propeller revolution in ice		Hz
P _{DI}	Delivered power at propeller in ice	$2 \pi Q_{\mathrm{IA}} n_{\mathrm{IA}}$	W
Q_{IA}	Average torque in ice		Nm
RI	Net ice resistance	$R_{\rm IT}$ - $R_{\rm IW}$	Ν
R _{IT}	Total resistance in ice	Ship towing resistance in ice	N
R _{IW}	Hydrodynamic resistance in presence of ice	Total water resistance of ship in ice	N
T _{IA}	Average total thrust in ice		N
$\eta_{ m ICE}$	Relative propulsive effi- ciency in ice	ηі / ηδ	1

Special Craft Ice going Vessels S.1 Resistance and Propulsion

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
η_{ID}		Propulsive efficiency in ice	$R_{\rm IT} V / (2 \pi n_{\rm IA} Q_{\rm IA})$	1

Version 2024

Special Craft Sailing Vessels Geometry and Hydrostatics

ITTC	onym Name	Definition or	SI-
Symbol Acr		Explanation	Unit

3.6 Sailing Vessels3.6.1 Geometry and Hydrostatics

See also Section 2.2.1 on Hull Geometry

See also Se	ection 2.2.1 on Hull Geometry	1	
$A_{ m J}$	Area of jib or genoa		m^2
$A_{ m LK}$	Lateral area of keel		m^2
$A_{ m LT}$	Total lateral area of yacht		m^2
A _m	Area of mainsail		m ²
A _N	Normalized sail area		m ²
Asp	Area of spinnaker		m ²
$A_{\rm S}, S_A$	Sail area in general	(P E + I J) / 2	m ²
A _{WPT}	Representative projected area of WPT		m ²
BOA	Breadth, overall		m
C_{pi} E	Center of pressure for A _i Mainsail base		m
Ι	Fore triangle height		m
J	Fore triangle base		m
Р	Mainsail height		m
L _{EFF}	Effective length for Reyn- olds Number		m
Sc	Wetted surface area of ca- noe body		m ²
Sĸ	Wetted surface area of keel		m ²
S _R	Wetted surface area of rud- der		m²
T _C	Draught of canoe body		m
$T_{ m EFF}$	Effective draught	$F_{\rm H}/(\rho V_{\rm B}^2 R)^5$	m
Z _{CE}	Height of centre of effort of sails above waterline in vertical centre plane		m
$V_{\rm C}$	Displaced volume of canoe body		m ³
$V_{\rm K}$	Displaced volume of keel		m ³
V _R	Displaced volume of rud- der		m ³
Δc	Displacement force (weight) of canoe body		N
⊿ĸ	Displacement force (weight) of keel		Ν
$\Delta_{\mathbf{R}}$	Displacement force (weight) of rudder		Ν

Version 2024

Special Craft Sailing Vessels Resistance and Propulsion

ITTC SI-Definition or Acronym Name Symbol Explanation Unit

3.6.2 Resistance and Propulsion

6.6.2 Resist	tance and Pro	1	1	
$C_{ m FU}$		Frictional resistance coeffi-	$R_{\rm FU}$ / (S q)	1
		cient (upright)		
Cru		Residuary resistance coeffi-	$R_{\rm RU}$ / (S q)	1
CRU		cient (upright)	π_{K0} (5 q)	1
Ctu		Total resistance coefficient	$R_{\rm TU}$ / (S q)	1
210		(upright)	$(5 \mathbf{q})$	1
Cwu		Wave resistance coefficient		1
-wU		(upright)		1
$C_{T\phi}$		Total resistance coefficient	$R_{\mathrm{T}\varphi}/(S q)$	1
$\sim 1 \varphi$		with heel and leeway	$K_{1\varphi} / (S q)$	1
CI		Induced resistance coeffi-		1
-1		cient		1
C_{x}, C_{y}, C_{z}		Force coefficients		1
7н		Heeling force of sails		Ν
Ŕ		Driving force of sails		N
ν.		Vertical force of sails		N
H		Side force		N
HY		Hydrodynamic lift force		N
		Mean added resistance in		
R _{AW}		waves		Ν
R _{FU}		Friction resistance (upright)		N
		Residuary resistance (up-		
$R_{ m RU}$		right)		Ν
_		Resistance increase due to		
RI		side (induced resistance)		Ν
R _{TU}		Total resistance (upright)		N
$R_{T\varphi}$		Total resistance when heeled	$R_{\text{TU}} + R_{\alpha}$	N
·		Resistance increase due to	πισικφ	
R_{arphi} , $R_{ m H}$		heel (with zero side force)		Ν
		Components of resultant		
X, Y, Z		force along designated axis		Ν
1		Vessel velocity		m/s
		Speed through water in		111/ 5
/	STW	heading direction		m/s
WR	AWS	Apparent wind velocity		m/s
/wr	TWS	True wind velocity		m/s
7 W I		Velocity made good on		111/ 5
V _{mc}				m/s
		Course Valacity made good to		
7		Velocity made good to		
V _{mg}		windward (contrary to wind		m/s
0		direction)		
3 _L		leeway angle		rad

Special Craft Sailing Vessels Resistance and Propulsion

Version 2024

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
$eta_{ m WA}$	AWA	apparent wind angle (relative to boat course)		rad
$eta_{ m WT}$	TWA	true wind angle (relative to boat course)		rad
Ψ		Heading relative earth		rad

4. BACKGROUND AND

REFERENCES

4.1 Symbols and Terminology Group

The tasks of the former Symbols and Terminology Group (SaT) have been handed over to the Quality Systems Group in 2002.

4.2 Description of the List of Symbols

4.2.1 Classification

The prime concern of the QS Group was to revise and try to complement the list of ITTC Standard Symbols sticking to the system for the classification of concepts.

With this regard, the following design requirements and goals have been maintained:

- 1. a coherent document, meeting the present and possibly the future requirements of the ITTC community in general and particular user groups
- 2. an open ended matrix structure that can be easily expanded as requirements arise, without the need of restructuring and repetition or too many explicit cross-references
- 3. minimized departures from the well established and widely accepted previous list of symbols

On the other hand, to facilitate the practical use of the list, a second version in which the symbols are arranged in alphabetic order was prepared. Symbols which have been listed several times in the matrix structured document have been maintained and for each symbol the field in which it is used is given in italic letters prior to the meaning of the symbol.

4.2.2 Structure of the Lists

The concepts related to a given subject area or model are designated by the ITTC Symbol and called by their Name. Their meaning can in principle only be concluded from the context of the model. The logically consistent, so called 'implicit' definition is derived from a definitely defined statement of the model, ideally a generally accepted system or an equivalent, e.g. a drawing. The problem is that traditionally in lists of symbols, as in dictionaries, these explicit models are missing for various reasons. One reason is that many subject areas under discussion are far from being developed and understood to the extent necessary. A consequence of this situation is that the symbols proposed are not always as coherent as would be necessary for advanced and systematic work, for which explicit models and adequate notations are essential.

The problem under discussion is of course the same in national and international standards. However there is an accepted international standard which deals with the general principles concerning physical quantities, equations, quantity and unit symbols, and coherent unit systems for general use within the various fields of science and technology (ISO 31.

4.2.3 Organization of the matrix structured list

As has been emphasized the development of symbols is a continuing process and as the subject develops, further amendments and additions, as approved by the Conference, will be included in future editions of the list.

In order to avoid any extra problems the symbols are arranged in alphabetical order in each subject area as in previous lists. Continuous page numbering was discarded in earlier versions. The idea was to establish a loose leaf organization as the most appropriate, in view of new draughts to be incorporated.

In view of the tremendous effort which explicit mathematical models, explanations, and sketches take for their preparation, the present QS Group can only follow the former SaT Group and state that the Technical Committees and other interested parties are urged to provide further material for review by the QS Group and future inclusion into the list.

It has been noted that some users dislike the disruption of the list of symbols by lengthy explanations. The present QS Group feels that the subject and the sensible use of the symbols require such explanations, also as the fundamentals of the theory of science and terminology often are not taught to students of naval architec-

ture and marine engineering. However the arrangement has been changed so that these explanations can be visited by using hyperlinks and the list is not disrupted any more.

5. **PRINCIPLES OF NOTATION**

In Figure 5 the principles of notation in according to ISO 31 are shown.

Symbols representing physical quantities normally are one Latin or Greek letter with Subscripts for further identification. They are written in *italic* style letters.

Numbers are normally written in **roman** style letters. For more details, look at the list below or in the Excerpts of ISO 31 below or in standard itself.

Superscripts signify operators e.g.

- exponentiation
- the various aspects of complex quantities

- the various aspects of spectra and
- the various aspects of random quantities and stochastic processes e.g. probability operators.

Subscripts signify identifiers

- matrix components,
- identifiers tested, e.g. ship S or model M, appendages (App)or the various bodies in a multi-body problem,
- identifiers of coordinate systems and of the reference points, quantities(*L*_{PP})

Symbols for physical units	italic, one letter, except dimensionless quantities	A (e.g. Area in m ²)
Symbols for characteristic num- bers	2 letters italic	Re, Fr
Numbers	roman, generally	10^{3}
Symbols representing numbers	italic	Xij
Units	roman, lower case unless derived from name	m, Pa
Prefix of units	roman	μm
Symbols for chemical elements	roman	H ₂ O
Symbols for universal constants	italic	$g = 9,80665 \text{ m/s}^2$

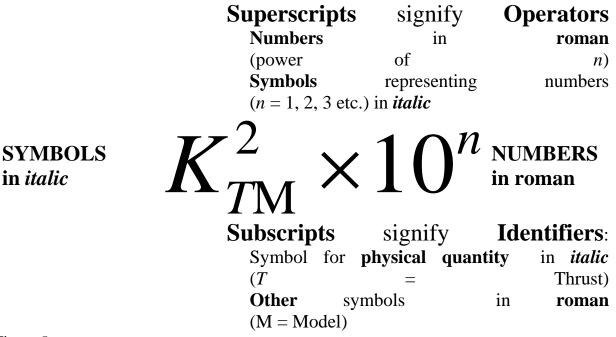


Figure 5

5.1 Excerpts of ISO 31

1 Scope

This part of ISO 31 gives general information about principles concerning physical quantities, equations, quantity and unit symbols, and coherent unit systems, especially the International System of Units, SI.

The principles laid down in this part of ISO 31 are intended for general use within the various fields of science and technology and as a general introduction to the other parts of ISO 31.

2. Quantities and units

2.1 Physical quantity, unit and numerical value

In ISO 31 only physical quantities used for the quantitative description of physical phenomena are treated. Conventional scales, such as the Beaufort scale, Richter scale and colour intensity scales, and quantities expressed as the results of conventional tests, e.g. corrosion resistance, are not treated here, neither are currencies nor information contents.

Physical quantities may be grouped together into categories of quantities which are mutually comparable. Lengths, diameters, distances, heights, wavelengths and so on would constitute such a category. Mutually comparable quantities are called "quantities of the same kind".

If a particular example of a quantity from such a category is chosen as a reference quantity, called the *unit*, then any other quantity from this category can be expressed in terms of this unit as a product of this unit and a number. This number is called the *numerical value* of the quantity expressed in this unit.

In formal treatments of quantities and units, this relation may be expressed in the form

$A = \{A\} - [A]$

where A is the symbol for the physical quantity, [A] the symbol for the unit and {A} symbolizes the numerical value of the quantity A expressed in the unit [A]. For vectors and tensors the components are quantities which may be expressed as described above.

If a quantity is expressed in another unit which is k times the first unit, then the new numerical value becomes 1/k times the first numerical value; the physical quantity, which is the product of the numerical value and the unit, is thus independent of the unit.

REMARK ON NOTATION FOR NUMERICAL VALUES

It is essential to distinguish between the quantity itself and the numerical value of the quantity expressed in a particular unit. The numerical value of a quantity expressed in a particular unit could be indicated by placing braces (curly brackets) around the quantity symbol and using the unit as a subscript. It is, however, preferable to indicate the numerical value explicitly as the ratio of the quantity to the unit.

2.2 Quantities and equations

2.2.1 Mathematical operations with quantities

Two or more physical quantities cannot be added or subtracted unless they belong to the same category of mutually comparable quantities.

Physical quantities are multiplied or divided by one another according to the rules of algebra; the product or the quotient of two quantities, *A* and *B*, satisfies the relations

 $AB = \{A\} \{B\} - [A] [B]$

Thus, the product $\{A\}$ $\{B\}$ is the numerical value $\{AB\}$ of the quantity AB, and the product [A] [B] is the unit [AB] of the quantity AB. Similarly, the quotient $\{A!/\{B\}\}$ is the numerical value $\{A/B\}$ of the quantity A/B, and the quotient [A]/[B] is the unit [A/B] of the quantity A/B.

2.2.2 Equations between quantities and equations between numerical values

5.1 Excerpt of ISO 31

Two types of equation are used in science and technology: *equations between quantities*, in which a letter symbol denotes the physical quantity (i.e. numerical value \times unit), and *equations between numerical values*. Equations between numerical values depend on the choice of units, whereas equations between quantities have the advantage of being independent of this choice. Therefore the use of equations between quantities should normally be preferred.

2.2.3 Empirical constants

An empirical relation is often expressed in the form of an equation between the numerical values of certain physical quantities. Such a relation depends on the units in which the various physical quantities are expressed.

An empirical relation between numerical values can be transformed into an equation between physical quantities, containing one or more empirical constants. Such an equation between physical quantities has the advantage that the form of the equation is independent of the choice of the units. The numerical values of the empirical constants occurring in such an equation depend, however, on the units in which they are expressed, as is the case with other physical quantities.

2.2.4 Numerical factors in quantity equations

Equations between quantities sometimes contain *numerical factors*. These numerical factors depend on the definitions chosen for the quantities occurring in the equations.

EXAMPLE $E_k = \frac{1}{2}mv^2$

2.2.5 Systems of quantities and equations between quantities; base quantities and derived quantities

Physical quantities are related to one another through equations that express laws of nature or define new quantities.

For the purpose of defining unit systems and introducing the concept of dimensions, it is convenient to consider some quantities as mutually independent, i.e. to regard these as *base quantities*, in terms of which the other quantities can be defined or expressed by means of equations; the latter quantities are called *derived quantities*.

It is a matter of choice how many and which quantities are considered to be base quantities.

The whole set of physical quantities included in ISO 31 is considered as being founded on seven base quantities: length L, mass M, time T, electric current I, thermodynamic temperature Θ , amount of substance N and luminous intensity J.

In the field of mechanics a system of quantities and equations founded on three base quantities is generally used. In ISO 31-3, the base quantities used are length, mass and time.

In the field of electricity and magnetism a system of quantities and equations founded on four base quantities is generally used. In ISO 31-5, the base quantities used are length, mass, time and electric current.

In the same field, however, systems founded on only three base quantities, length, mass and time, in particular the "Gaussian" or symmetric system, have been widely used. (See ISO 31-5:1992, annex A.)

2.2.6 Dimension of a quantity

Any quantity Q can be expressed in terms of other quantities by means of an equation. The expression may consist of a sum of terms. Each of these terms can be expressed as a product of powers of base quantities A, B, C, ... from a chosen set, sometimes multiplied by a numerical factor ξ , i.e. $\xi A^{\alpha}B^{\beta}C^{\gamma}$..., where the set of exponents (α, β, γ ...) is the same for each term.

The *dimension* of the quantity Q is then expressed by the dimensional product

 $\dim Q = A^{\alpha}B^{\beta}C^{\gamma} ..$

where A, B, C, ... denote the dimensions of the base quantities *A*, *B*, *C*, ..., and where α , β , γ are called the *dimensional exponents*.

A quantity all of whose dimensional exponents are equal to zero is often called a *dimen*- 126

sionless quantity. Its dimensional product or dimension is $A^0 B^0 C^0 \dots = 1$. Such a quantity of *dimension one is* expressed as a number.

In the system founded on the seven base quantities length, mass, time, electric current, thermodynamic temperature, amount of substance and luminous intensity, the base dimensions may be denoted by L, M, T, I, O, N and J respectively and the dimension of a quantity Q becomes in general

 $\dim Q = L^{\alpha} M^{\beta} T^{\gamma} I^{\delta} \Theta^{\varepsilon} N^{\zeta} J^{\eta}.$

EXAMPLES

Quantity	Dimension
velocity	LT^{-1}
angular velocity	T-1
force	LMT ⁻²
energy	L^2MT^{-2}
relative density	1

2.3 Units

2.3.1 Coherent unit systems

Units might be chosen arbitrarily, but making an independent choice of a unit for each quantity would lead to the appearance of additional numerical factors in the equations between the numerical values.

It is possible, however, and in practice more convenient, to choose a system of units in such a way that the equations between numerical values have exactly the same form (including the numerical factors) as the corresponding equations between the quantities. A unit system defined in this way is called *coherent* with respect to the system of quantities and equations in question. The SI is such a system. The corresponding system of quantities is given in ISO 31-1 to ISO 31-10 and in ISO 31-12 and ISO 31-13.

For a particular system of quantities and equations, a coherent system of units is obtained by first defining units for the base quantities, the *base units*. Then for each derived quantity, the definition of the corresponding *derived unit* in terms of the base units is given by an algebraic expression obtained from the dimensional product (see 2.2.6) by replacing the symbols for the base dimensions by those of the base units. In particular, a quantity of dimension one acquires the unit 1. In such a coherent unit system no numerical factor other than the number 1 ever occurs in the expressions for the derived units in terms of the base units.

2.3.2 SI units and their decimal multiples and sub-multiples

The name International System of Units (Système International d'Unités), with the international abbreviation SI was adopted by the 11th General Conference on Weights and Measures (Conférence Générale des Poids et Mesures, CGPM) in 1960.

This system includes

- base units

- derived units including supplementary units

which together form the coherent system of SI units.

2.3.2.1 Base units

The seven base units are listed in Table 1.

Table 1 - SI base un

	SIb	SI base unit	
Base quantity	Name	Symbol	
length	metre	m	
mass	kilogram	kg	
time	second	S	

	ampere	А
thermodynamic tem- perature	kelvin	К
amount of substance	mole	mol
luminous intensity	candela	cd

2.3.2.2 Derived units including supplementary units

The expressions for the coherent derived units in terms of the base units can be obtained from the dimensional products by using the following formal substitutions:

$L \rightarrow m$	$I \rightarrow A$
$M \rightarrow kg$	$\Theta \rightarrow K$
$T \rightarrow s$	N →mol
	$J \rightarrow cd$

In 1960, the CGPM classified the SI units radian, rad, and steradian, sr, for plane angle and solid angle respectively as "supplementary units".

In 1980, the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM) decided to interpret the class of supplementary units in the SI as a class of dimensionless derived units for which the CGPM allows the freedom of using or not using them in expressions for SI derived units.

Although, as a consequence of this interpretation, the coherent unit for plane angle and for solid angle is the number 1, it is convenient to use the special names radian, rad, and steradian, sr, instead of the number 1 in many practical cases.

Table 2 - SI derived units with special names, including SI supplementary units

	SI derived uni	SI derived unit		
Derived quantity	Special name	Symbol	Expressed in terms of SI base units and SI derived	
plane angle	radian	rad	1 rad = 1 m/m = 1	
solid angle	steradian	sr	$1 \text{ sr} = 1 \text{ m}^2 / \text{m}^2 = 1$	
frequency	hertz	Hz	$1 \text{ Hz} = 1 \text{ s}^{-1}$	
force	newton	Ν	$1 N = 1 kg . m/s^2$	
pressure,	pascal	Ра	$1 Pa = 1 N/m^2$	
stress				

5 Principles of Notation

5.1 Excerpt of ISO 31

Version 2024

ioule J 1 J = 1 N - menergy, work, quantity of heat W 1 W = 1 J/spower, watt radiant flux electric charge, coulomb С 1 C = 1 A - squantity of electricity electric potential, V 1 V = 1 W/Avolt potential difference. tension. electromotive force capacitance farad F 1 F = 1 C/Velectric resistance ohm S2 $1\Omega = 1 \text{ V/A}$ electric conductance siemens S $1 \text{ S} = 1 \Omega^{-1}$ magnetic flux weber Wb $1 \text{ Wb} = 1 \text{ V} \cdot \text{s}$ magnetic flux density tesla Т $1 T = 1 Wb/m^2$ inductance henry 1 H = 1 Wb/AΗ Celsius temperature degree °C $1 \,^{\circ}\text{C} = 1 \,\text{K}$ Celsius') luminous flux lumen Im $1 \, \text{lm} = 1 \, \text{cd} \, . \, \text{sr}$ illuminance Ix $1 \, lx = 1 \, lm/m^2$ lux 1) Degree Celsius is a special name for the unit kelvin for use in stating values of Celsius temperature. (See also ISO 31-4:1992, items 4-1.a and 4-2.a.)

EXAMPLES Quantity

Symbol for SI unit expressed in terms of the seven base units (and the supplementary units in some cases)

values, decimal multiples and sub-multiples	of
the SI units are added to the coherent syste	em
within the framework of the SI. They are form	ed
by means of the prefixes listed in Table 4.	

Table 4 - Sl prefixes

In order to avoid large or small numerical

velocity	m/s
angular velocity	rad/s or s⁻'
force	kg . m/s ²
energy	kg . m^2/s^2
relative density	1

For some of the SI derived units, special names and symbols exist; those approved by the CGPM are listed in tables 2 (and 3).

It is often of advantage to use special names and symbols in compound expressions for units.

2.3.2.3 SI prefixes

Prefix Factor Name Symbol 10^{24} Y yotta 10^{21} zetta Z 10¹⁸ E exa 10^{15} Р peta 10^{12} Т tera 10^{9} G giga 10^{6} Μ mega 10^{3} kilo k 10^{2} hecto h 10 deca da 10-1 deci d 10^{-2} centi с

5 Principles of Notation

5.1 Excerpt of ISO 31

Version 2024

10-3	milli	m
10-6	micro	μ
10-9	nano	n
10-12	pico	р
10-15	femto	f
10-18	atto	a
10 ⁻²¹	zepto	Ζ
10-24	yocto	у

For information about the use of the prefixes, see 3.2.4.

The SI units and their decimal multiples and submultiples formed by use of the prefixes are specially recommended.

2.3.3 The unit one

The coherent SI unit for any quantity of dimension one is the unit one, symbol 1. It is generally not written out explicitly when such a quantity is expressed numerically. EXAMPLE

Refractive index $n = 1,53 \times 1 = 1,53$

In the case of certain such quantities, however, the unit 1 has special names that could be used or not, depending on the context.

EXAMPLES

Plane angle	$\alpha = 0,5$
rad = 0,5,	
Solid angle	$\Omega = 2,3 \text{ sr}$
= 2,3	

Decimal multiples and sub-multiples of the unit one are expressed by powers of 10. They shall not be expressed by combining the symbol 1 with a prefix.

In some cases the symbol % (per cent) is used for the number 0,01.

NOTES

3 In some countries the symbol % o ("per mill", or per thousand) is used for the number 0,001. This symbol should be avoided.

4 Since per cent and per mill are numbers it is in principle meaningless to speak about percentage by mass or percentage by volume. Additional information, such as % (m/m) or % (V/V), should not therefore be attached to the unit symbol. The preferred way of expressing a mass fraction is: "the mass fraction is 0,67" or "the mass fraction is 67 %", and the preferred way of expressing a volume fraction is: "the volume fraction is 0,75" or "the volume fraction is 75 %". Mass and volume fractions can also be expressed in the form 5 μ g/g or 4,2 ml/m3.

Abbreviations such as ppm, pphm and ppb shall not be used.

2.3.4 Other unit systems and miscellaneous units

The CGS system of mechanical units is a coherent system the base units of which are centimetre, gram and second for the three base quantities length, mass and time.

In practice this system was enlarged by adding the kelvin, the candela and the mole as base units for the base quantities thermodynamic temperature, luminous intensity and amount of substance.

Units used in electricity and magnetism have been defined in the CGS system in several ways depending on the system of quantities and equations chosen. The "Gaussian" or symmetric CGS system, coherent with the "Gaussian" or symmetric system of quantities and equations founded on three base quantities, has been widely used. For further information on this system, see ISO 31-5:1992, Annex A.

The special names and symbols for derived CGS units such as dyne, erg, poise, stokes, gauss, oersted and maxwell shall not be used together with the Sl.

Table 5 - Units used with the SI

Quantity	Unit			
	Name	Sym- bol	Definition	
time	minute hour day	min h d	1 min= 60s 1 h = 60 min 1 d = 24 h	

plane an-	degree	0	1 °	=
gle	minute	'	(π/180)rad	=
-	second	"	(n/180) rad	
			$1' = (1/60)^{\circ}$	
			1" = (1/60)'	
volume	litre	I, L ¹⁾	$11 = 1 \text{ dm}^3$	
			= 1 dm	
mass	tonne ²⁾	t	$1 t = 10^3 kg$	

¹⁾ The two symbols for litre are on an equal footing. The CIPM will, however, make a survey on the development of the use of the two symbols in order to see if one of the two may be suppressed.

²⁾ Also called the metric ton in the English language.

Table 6 - Units used with the SI, whose values inSI units are obtained experimentally

Quan-	Unit			
tity	Name	Sym- bol	Definition	
energy	electronvolt	eV	The electronvolt is the kinetic energy acquired by an elec- tron in passing through a potential difference of 1 volt in vacuum: 1 eV \approx 1,602 177 ×10 ⁻¹⁹ J.	
mass	unified atomic mass unit	u	The unified atomic mass unit is equal to (1 /12) of the mass of an atom of the nuclide ${}^{12}C$: 1u \approx 1,660 540 $\times 10^{-27}$ kg.	

In other parts of ISO 31, the special names for the derived CGS units are given in informative annexes which are not integral parts of the standards.

There are certain units outside the SI which are recognized by the CIPM as having to be retained for use together with the SI, e.g. minute, hour and electronvolt. These units are given in Tables 5 and 6.

Other coherent systems of units have been defined, e.g. a system based on the units foot, pound and second and a system based on the units metre, kilogram-force and second.

Apart from these, other units have been defined which do not belong to any coherent system, e.g. the atmosphere, **the nautical mile** and the curie.

3 Recommendations for printing symbols and numbers

3.1 Symbols for quantities

3.1.1 Symbols

The symbols for physical quantities are generally single letters of the Latin or Greek alphabet, sometimes with subscripts or other modifying signs. These **symbols** are printed in *italic* (sloping) type (irrespective of the type used in the rest of the text).

The symbol is not followed by a full stop except for normal punctuation, e.g. at the end of a sentence.

NOTES

5 Symbols for quantities are given in ISO 31-1 to ISO 31-10 and in ISO 31-12 and ISO 31-13.

6 Notations for vectorial and other non-scalar quantities are given in ISO 31-11, on mathematical signs and symbols.

7 Exceptionally, symbols made up of two letters are sometimes used for combinations of dimension one of quantities (e.g. Reynolds number, Re). If such a two-letter symbol appears as a factor in a product, it is recommended that it be separated from the other symbols.

3.1.2 Rules for the printing of subscripts

When, in a given context, different quantities have the same letter symbol or when, for one quantity, different applications or different values are of interest, a distinction can be made by use of subscripts.

The following principles for the printing of subscripts are recommended:

A subscript that represents a symbol for a physical quantity is printed in italic (sloping) type.

Other subscripts are printed in roman (upright) type.

EXAMPLES

Upri scrip	0	Slopin	g subscripts
$m{C}_{ m g}$	(g gas)	C_p	(p: pressure)
g _n	(n: normal)	$\sum_{n}a_{n}\delta_{n}$	(<i>n:</i> running number)
μ_r	(r: relative)	$\sum_{x} a_{x} b_{x}$	(<i>x:</i> running number)
Eĸ	(k: kinetic)	8ik	(<i>i</i> , <i>k</i> : running numbers)
χe	(e: electric)	p_x	(<i>x:x</i> -coordi- nate)
$T_{1/2}$	(1/2: half)	l_{λ}	(λ wavelength)

NOTES

8 Numbers as subscripts should be printed in roman (upright type. However, letter symbols representing numbers are generally printed in italic (sloping) type.

3.1.3 Combination of symbols for quantities; elementary Operations with quantities

When symbols for quantities are combined in a product, this process of combination may be indicated in one of the following ways:

 $ab, a b, a \cdot \bullet b, a \times b$

NOTES

10 In some fields, e.g. in vector analysis, distinction is made between $a \cdot b$ and $a \times b$.

11 For multiplication of numbers, see 3.3.3.

12 In systems with limited character sets a dot on the line may be used instead of a half-high dot.

Division of one quantity by another may be indicated in one of the following ways: $\frac{a}{b} a/b$ or by writing the product of *a* and *b*⁻¹,

e.g. $a \cdot b^{-1}$

3.2 Names and symbols for units3.2.1 International symbols for units

When international symbols for units exist, they, and no other, shall be used. They shall be printed in roman (**upright**) type (irrespective of the type used in the rest of the text), shall remain unaltered in the plural shall be written without a final full stop (period) except for normal punctuation, e.g. at the end of a sentence.

Any attachment to a unit symbol as a means of giving information about the special nature of the quantity or context of measurement under consideration is incorrect.

EXAMPLE

 $U_{\rm max} = 500 \text{ V} \text{ (not } U = 500 \text{ V}_{\rm max} \text{)}$

The unit symbols shall in general be printed in lower case letters except that the first letter is printed in upper case when the name of the unit is derived from a proper name.

EXAMPLES

metre
second
ampere
weber

3.2.2 Combination of symbols for units

When a compound unit is formed by multiplication of two or more units, this should be indicated in one of the following ways:

N·m, N m

NOTES

13 In systems with limited character sets a dot on the line may be used instead of a half high dot.

14 The latter form may also be written without a space, provided that special care is taken when the symbol for one of the units is the same as the symbol for a prefix.

EXAMPLE

mN means millinewton, not metre newton.

When a compound unit is formed by dividing one unit by another, this should be indicated in one of the following ways:

 $\frac{m}{s}$ m/s m·s⁻¹

A solidus (/) shall not be followed by a multiplication sign or a division sign an the same line unless parentheses are inserted to avoid any ambiguity. In complicated cases negative powers or parentheses shall be used.

3.2.3 Printing of symbols for units

No recommendation is made or implied about the font of upright type in which symbols for units are to be printed.

NOTE 15 In this series of publications the font used in such cases is generally that of the associated text, but this does not constitute a recommendation.

3.2.4 Printing and use of prefixes

Symbols for prefixes should be printed in roman (upright) type without a space between the symbol for the prefix and the symbol for the unit. Compound prefixes shall not be used.

EXAMPLE

Write nm (nanometre) for 10^{-9} m, not mµm.

The symbol of a prefix is considered to be combined with the single unit symbol to which

5 Principles of Notation

5.1 Excerpt of ISO 31

132

it is directly attached, forming with it a new symbol (for a decimal multiple or sub-multiple) which can be raised to a positive or negative power, and which can be combined with other unit symbols to form symbols for compound units (see 3.2.2).

EXAMPLES

 $1 \text{ cm}^3 = (10^{-2} \text{ m})^3 = 10^{-6} \text{ m}^3$ 1 $\mu \text{s}^{-1} = (10^{-6} \text{ s})^{-1} = 10^6 \text{ s}^{-1}$ 1 kA/m = (10³ A)/m = 10³ A/m

NOTE 16 For historical reasons the name of the base unit or mass, the kilogram, contains the name of the SI prefix ,"kilo". Names of the decimal multiples and sub-multiples of the unit of mass are formed by adding the prefixes to the word "gram" e.g. milligram (mg) instead of microkilogram (µkg).

3.3 Numbers

3.3.1 Printing of numbers

Numbers should generally be printed in roman (upright) type.

To facilitate the reading of numbers with many digits, these may be separated into suitable groups, preferably of three, counting from the decimal sign towards the left and the right; the groups should be separated by a small space, and never by a comma or a point, or by any other means.

3.3.2Decimal sign

The decimal sign is a comma on the line.

If the magnitude of the number is less than unity, the decimal sign should be preceded by a zero.

NOTE 17 In documents in the English language. a dot is often used instead of a comma. If a dot is used, it should be on the line. In accordance with an ISO Council decision, the decimal sign is a comma in ISO documents.

3.3.3 Multiplication of numbers

The sign for multiplication of numbers is a cross (×) or a dot half-high (\cdot).

NOTES

18 If a dot half-high is used as the multiplication sign, a comma should be used as the decimal sign. If a dot is used as the decimal sign, a cross should be used as the multiplication sign.

19. In ISO documents, the dot is not used directly between numbers to indicate multiplication.

3.4 Expressions for quantities

The symbol of the unit shall be placed after the numerical value in the expression for a quantity, leaving a space between the numerical value and the unit symbol. It should be noted that, in accordance with this rule, the symbol °C for degree Celsius shall be preceded by a space when expressing a Celsius temperature.

The only exceptions to this rule are for the units degree, minute and second for plane angle, in which case there shall be no space between the numerical value and the unit symbol.

If the quantity to be expressed is a sum or a difference of quantities then either parentheses shall be used to combine the numerical values, placing the common unit symbol after the complete numerical value, or the expression shall be written as the sum or difference of expressions for the quantities.

EXAMPLES

l = 12 m - 7 m = (12 - 7) m = 5 m $t = 28.4 \text{ }^{\circ}\text{C} \pm 0.2 \text{ }^{\circ}\text{C} = (28.4 \pm 0.2) \text{ }^{\circ}\text{C}$ (not 28,4 \pm 0,2 °C) $\lambda = 220 \times (1 \pm 0.02) \text{ W/(m·K)}$

Symbols for chemical elements and nu-3.5 clides

Symbols for chemical elements shall be written in roman (upright) type (irrespective of the type used in the rest of the text). The symbol is not followed by a full stop except for normal punctuation, e.g. at the end of a sentence.

EXAMPLES

Η He С Ca

Principles of Notation

Excerpt of ISO 31

5 5.1

> A complete list of the symbols for the chemical elements is given in ISO 31-8:1992, annex A, and 150 31-9:1992, annex A.

> The attached subscripts or superscripts specifying a nuclide or molecule shall have the following meanings and positions.

> The nucleon number (mass number) of a nuclide is shown in the left superscript position, e.g. ^{14}N

> The number of atoms of a nuclide in a molecule is shown in the right subscript position, e.g. $^{14}N_{2}$

> The proton number (atomic number) may be indicated in the left subscript position, e.g. 64Gd

> If necessary, a state of ionization or an excited state may be indicated in the right superscript position.

EXAMPLES

State of ionization:	Na ⁺
	PO_4^{3-} or $(PO_4)^{3-}$
Electronic excited state:	He*', N0*'
Nuclear excited state:	$^{110}Ag^{*}, ^{110}Ag^{m}$

3.6 Mathematical signs and symbols

Mathematical signs and symbols recommended for use in the physical sciences and technology are given in 1S031-11.

5 Principles of Notation5.1 Excerpt of ISO 31

Version 2024

ITTC Symbols

3.7 Greek alphabet (upright and sloping types)

alpha	Α	а	A	a
beta	B	β	B	β
gamma	Γ		Γ	
	Δ	γ δ	Δ	γ δ
delta				
epsilon	Е	ε ζ	Ε	ε ζ
zeta	Ζ	ζ	Ζ	ζ
eta	Н	η	Η	η
theta	Θ	θ, θ	Θ	θ, θ
iota	Ι	ι	Ι	ı
kappa	Κ	κ	K	κ
lambda	Λ	λ	Λ	λ
mu	М	μ	M	μ
nu	N E O	ν	N	v
xi	[1]	ν ξ	Ξ	ν ζ
omicron		0	0	0
pi	П	π	Π	π
rho	P Σ Τ	ρ	P	ρ,
sigma	Σ	σ	Σ	σ
tau	Т	τ	Т	τ
upsilon	Y	υ	$ \begin{array}{c} N \\ \overline{\Xi} \\ O \\ \Pi \\ P \\ \overline{\Sigma} \\ T \\ Y \\ \Psi \\ \end{array} $	υ
phi	Φ	φ	Φ	φ
chi	Х	χ	X	χ
psi	Ψ	Ψ	Ψ	ψ
omega	Ω	ω	Ω	ω

5.2 Computer Symbols

Wherever possible the symbols in the second column of the tables have been chosen so that their meaning is readily apparent. They have been constructed from the CCITT International Telegraph Alphabet, restricted character set. They are therefore suitable for use in a wide range of situations e. g.: Telex messages, letters, computer printouts etc.

To ensure that the symbols can be used in a wide range of programming languages they currently have been kept to less than six characters long. The symbols should be used as defined, and, in accordance with modern programming practice, should have their type explicitly declared before use. The following rules were applied in the derivation of the symbols:

- Only upper case letter A Z and digits 0

 9 have been used.
- 2. Formerly Greek letters have been spelled out, if necessary in abbreviated form or with changed spelling. This practice is considered obsolete.

- 3. The Froude 'circular' symbols are defined by the prefix CIRC.
- 4. All symbols start with a letter.
- 5. Qualifiers and operators, preferably two characters, are currently suffixed to the main symbol line, without spacing.
- No one computer compatible symbol should be used for different concepts in a given context. This goal has not been completely achieved for the whole list. Ad hoc solutions have been attempted but discarded as unsatisfactory.
- 7. Since the computer compatible symbols have been proposed as the basis of attribute names for data exchanges, the above rules will probably be further developed in the near future.

A final remark on the Computer Symbols: in the computer, the letter O and figure 0 (zero) have fundamentally different meanings, but owing to their resemblance they can be easily confused. Thus it is necessary to distinguish rigorously between them. As a matter of fact there are contradictory conventions being widely used.

5.3 Documentation

5.3.1 ITTC Documents

- 1. International Towing Tank Conference, Standard Symbols 1971, BSRA Technical Memorandum No.400, August 1971.
- 2. International Towing Tank Conference, Standard Symbols 1976. BSRA T.M. No.500, 1976.
- 3. ITTC Dictionary of Ship Hydrodynamics. RINA Maritime Technology Monograph No.6, 1978.
- 4. Translation of Overall Index of Titles of Dictionary of Ship Hydrodynamics., Vol. 1: CETENA, Genova, 1984,

Vol. 2: University of Tokyo, 1984.

5. Bibliography and Proposed Symbols on Hydrodynamic Technology as Related Model Tests of High Speed Marine Vehicles. Prep. by 17th ITTC High-Speed Marine Vehicle Committee. SPPA Maritime Research and Consulting. Rep. No.101, 1984.

5.3.2 Translations

A number of translations of the List of ITTC Standard Symbols into languages other than English have been made including French, German, Italian, Japanese, Russian, Spanish and Chinese. For obvious reasons these translations are no longer up-to-date as the present accepted list in English and the Russian one.

- 1. French Translation of ITTC Standard Symbols 1971., Association Francaise de Normalisation (AFNOR).
- International vereinbarte Buchstabensymbole und Bezeichnungen auf dem Gebiet der Schiffshydrodynamik. Collatz, G. Schiff und Hafen 27 (1975) No.10.
- Italian Translation of ITTC Standard Symbols 1971. Luise E. Appendix II, Report of Presentation Committee. Proceedings 14th ITTC, Vol. 4, Ottawa 1975.

- 4. Japanese Translation of ITTC Standard Symbols. Transactions of the Society of Naval Architects of Japan, No.538, April 1974.
- 5. Russian Translation of ITTC Standard Symbols 1971. Brodarski Institute Publication No.28, Zagreb 1974.
- Simbolos Internacionales en Arquitectura Naval. Asociacion de Investigacion de la Construccion Naval,
 Publication 7/75, Juli 1075, Madrid

Publication 7/75, Juli 1975, Madrid.

- 7. Report of Information Committee, Proc. 17th ITTC, Göteborg 1984.
- 8. Chinese Translation of ITTC Standard Symbols. China Ship Scientific Research Centre, Wuxi.

5.3.3 Other References

Apart from the organizations represented on the ITTC these symbols have been recommended for use in technical writing on naval architecture by a number of organizations concerned with marine matters including The Royal Institution of Naval Architects, the American Society of Naval Architects and Marine Engineers and the American, British, Canadian, Australian, and Italian Navies. Where possible, the symbols for Section 3.4.1, Waves are consistent with the IAHR/PIANC List of Sea State Parameters, Supplement to Bulletin No 52, January 1986.

In 1985 the Draught International Standard ISO/DIS 7463 Shipbuilding - Symbols for Computer Applications - has been published. The symbols are based on the list approved by the ITTC in Ottawa 1975 and a related list produced by the ISSC in 1974, inconsistencies having been removed. The ISO/TC8/SC15 has been notified that major changes of the ITTC Symbols are under discussion. Subsequently processing of ISO/DIS 7463 has not been postponed, but the standard has been published as ISO 7463 in 1990.