

ITTC Symbols and Terminology List

Alphabetic

Version 2024

November 2024

Supersedes all previous versions

Updated by the 30th ITTC Quality Systems Group

NOTE: bold letters are used to denote vectors **Red colour identifies the additions/modifications of this version of the List**

Table of Contents

Table of most frequently used acronyms not relating to ITTC	
Symbols	5
A, a	5
B , b	11
C, c	14
D , d	23
E , e	26
F , f	27
G, g	34
\mathbf{H}, \mathbf{H}	37
I, i	41
J, j	43
K , k	44
L, l	48
M , m	53
N, n	57
O , o	59
P, p	60
Q, q	64
R , r	67
S , s	73
T , t	78
Ú, u	84
V , v	89
W, w	94
X, x	97
Y, y	105
Z, z	109
Α, α	111
Β, β	113
Γ, γ	115
$\Delta, \dot{\delta}$	116
Ε, ε	120
-	

Ζ, ζ	121
$\mathbf{H}, \mathbf{\eta}$	
$\Theta, \overline{\theta}$	
I, 1	
Κ, κ	
Λ, λ	
Μ, μ	
N, v	
Ξ, ξ	
O , o	
Π, π	
Ρ, ρ	
Σ, σ	
Τ, τ	
Υ, υ	
Φ, φ	140
$\mathbf{X}, \boldsymbol{\chi}$	142
Ψ, Ψ	143
Ω, ω	144
∇	145
∂	146
Identifiers (Subscripts)	
Operators (Superscripts)	
- r	

Table of most frequently used acronyms not relating to ITTC Symbols

Acronym	Definition
AC	Advisory Council
EC	Executive Council
BIPM	Bureau International des Poids et
DII M	Mesures
CFD	Computational fluid dynamics
COG	Course over ground
EFD	Experimental fluid dynamics
GNSS	Global navigation satellite system
GPS	Global positioning system
GUM	Guide to the expression of Uncer-
UUM	tainty in Measurement
HSMV	High-speed marine vehicle
IMO	International Maritime Organization
ISO	International Organization for
	Standardization
JCGM	Joint Committee for Guides in Me-
ICCM WC1	ICCM Washing Crosse 1
JCGM-WGI	
JCGM-WG2	JCGM Working Group 2
LDV	Laser Doppler velocimetry
MSC	Marine Safety Committee
NMI	National Metrology Institute
PIV	Particle imaging velocimetry
SOG	Speed over ground
SPIV	Stereo-PIV
UV	Underwater vehicle
V&V	Verification and validation
VIM	International vocabulary of metrol-
V 11V1	ogy
VIM	Vortex induced motion
VIV	Vortex induced vibration
WPT	Wind Propulsion Technology

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
A		(fundamental, statistical, stochastic) Average, sample mean		
Α		(fluid mechanics, lifting sur- faces) Projected area	$b c_M$	m ²
Α		(ships, basic quantities) Area in general		m ²
A		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) As- sumed centre of gravity above keel used for cross curves of stability		1
A _O		(ships, propulsor perfor- mance, propulsor geometry) Propeller disc area	$\pi D^2 / 4$	m ²
A_n, A_6		(ships, propulsor geometry, water jets) Nozzle discharge area		m ²
AB		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of buoy- ancy from aft perpendicular	Distance of centre of buoy- ancy from aft perpendicular	m
$A_{ m BL}$		(ships, hull geometry) Area of bulbous bow in longitudi- nal plane	The area of the ram projected on the middle line plane for- ward of the fore perpendicu- lar	m ²
$A_{ m BT}$		<i>(ships, hull geometry)</i> Area of transverse cross-section of a bulbous bow (full area port and star-board)	The cross sectional area at the fore perpendicular. Where the water lines are rounded so as to terminate on the forward perpendicular A_{BT} is measured by continu- ing the area curve forward to the perpendicular, ignoring the final rounding;	m ²
Ac		(ships, appendage geome- try) Area under cut-up		m ²
A _C		(ACV and SES) Cushion area	Projected area of ACV or SES cushion on water sur- face	m ²

Ac	(seakeeping, large ampli- tude motions capsizing) Area of deck available to crew		m²
$A_{ m D}$	(ships, propulsor geometry) Developed blade area	D eveloped blade area of a screw propeller outside the boss or hub	m ²
Aden	<i>(ships, propulsor geometry)</i> Duct entry area		m^2
A _{DEX}	<i>(ships, propulsor geometry)</i> Duct exit area		m ²
$A_{ m E}$	(ships, propulsor geometry) Expanded blade area	Expanded blade area of a screw propeller outside the boss or hub	m ²
ĀF	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Dis- tance of the centre of flota- tion from aft perpendicular		m
A _F	(hydrofoil boats) Foil area (general)	Foil area in horizontal plane	m ²
$A_{ m FB}$	(ships, appendage geometry, ships, manoeuvrability) Pro- jected area of bow fins		m ²
$A_{ m FE}$	(hydrofoil boats) Emerged area of foil		m^2
$A_{ m FF}$	(hydrofoil boats) Sub- merged area of front foil		m^2
A _{FR}	(ships, appendage geome- try) Frontal area	Projected frontal area of an appendage	m ²
$A_{ m FS}$	(ships, appendage geometry, seakeeping) Projected area of stern fins		m ²
$A_{\rm FS}$	(hydrofoil boats) Sub- merged foil area		m^2
A _{FST0}	(hydrofoil boats) Sub- merged foil plan area at take-off speed		m ²
A _{FT}	(hydrofoil boats) Total foil plan area		m ²
\overline{AG}_L	(seakeeping, large ampli- tude motions capsizing) Longitudinal centre of grav- ity from aft perpendicular	Distance of centre of gravity from aft perpendicular	m

Version 2024

Acronym

Name

ITTC

Symbol

Definition or SI-Explanation Unit

Symbol	Acronym	Name	Explanation	SI- Unit
\overline{AG}_T		(seakeeping, large ampli- tude motions capsizing) Transverse distance from as- sumed centre of gravity A, to actual centre of gravity G		m
\overline{AG}_V		(seakeeping, large ampli- tude motions capsizing) Vertical distance from as- sumed centre of gravity A, to actual centre of gravity G		m
$A_{ m HL}$		(ships, manoeuvrability) Lateral area of the hull	The area of the profile of the underwater hull of a ship when projected normally upon the longitudinal centre plane	m ²
A_{I}		(<i>multi-hull vessels</i>) Strut- hull intersection area		m ²
A_{ij}		(solid body mechanics, in- ertial and hydro properties) Added mass coefficient in i^{th} mode due to j^{th} motion		1
$A_{ m J}$		(sailing vessels) Area of jib or genoa		m ²
$A_{ m LK}$		(<i>sailing vessels</i>) Lateral area of keel		m ²
$A_{ m LT}$		<i>(sailing vessels)</i> Total lateral area of yacht		m ²
$A_{ m LV}$		(ships, manoeuvrability, seakeeping, large amplitude motions capsizing)) Lateral area of hull above water		m ²
$A_{ m M}$		(ships, hull geometry) Area of midship section	Midway between fore and aft perpendiculars	m ²
$A_{ m m}$		(sailing vessels) Area of mainsail		m ²
$A_{ m N}$		<i>(sailing vessels)</i> Normalized sail area		m ²
A_n		(ships, propulsor geometry, water jets)Nozzle discharge area		m ²
$A_{ m P}$		(ships, propulsor geometry) Projected blade area	Projected blade area of a screw propeller outside the boss or hub	m ²
$A_{ m PB}$		Wetted Surface Area of Pod Main Body		m ²

Definition or

A, a

SI-

ITTC Symbols

Version 2024

ITTC

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
		Wetted Surface Area of Bot-		
$A_{ m PBF}$		tom Fin		m^2
$A_{\rm PS}$		Wetted Surface Area of Strut		m ²
$A_{ m R}$		(ships, manoeuvrability) To- tal lateral area of rudder		m ²
$A_{ m RF}$		(ships, appendage geome- try) Lateral area of rudder flap		m ²
$A_{ m RL}$		(seakeeping, large ampli- tude motions capsizing) Pos- itive area under righting lever curve		m²
$A_{ m Rmov}$		(<i>ships, manoeuvrability</i>) Lateral area of the movable part of rudder		m ²
$A_{ m RN}$		<i>(ships, manoeuvrability)</i> Nominal lateral area of rud- der	$(A_{\rm R} + A_{\rm Rmov}) / 2$	m ²
$A_{\rm RP}$		(<i>ships, appendage geome-</i> <i>try</i>)Lateral area of rudder in the propeller race		m ²
$A_{ m RT}$		(ships, appendage geome- try) Total lateral area of rud- der	$A_{\rm RX} + A_{\rm Rmov}$	m ²
$A_{ m RX}$		(<i>ships, appendage geome-</i> <i>try</i>) Lateral area of the fixed part of rudder		m ²
$A_{ m S}$		(seakeeping, large ampli- tude motions capsizing, sail- ing vessels) Sail area in gen- eral, Area of sails in profile according to ISO 8666	(P E + I J) / 2	m ²
A _s		(ships, propulsor geometry, water jets) Cross sectional area at station s		m ²
$A_{ m SFR}$		(hydrofoil boats) Sub- merged area of rear foil		m ²
$A_{ m SI}$		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) At- tained subdivision index		1
Ask		(ships, appendage geome- try) Projected skeg area		m^2

Version 2024

A, a

7

Acr	(sailing vessels) Area of		m^2
Asp	spinnaker		111
1 ~~	(hydrofoil boats) Sub-		m^2
ASS	merged strut area		111
	(ships, hull geometry) Area	Cross-sectional area of tran-	
A_{T}	of transom (full area port	som stern below the load wa-	m^2
	and starboard)	terline	
	(ships, hull geometry, sea-		
	keeping, large amplitude		
	<i>motions capsizing</i>) Pro-	Area of portion of ship above	
	iected lateral area of the por-	waterline projected normally	2
$A_{\rm V}$	tion of the ship and deck	to the direction of relative	m²
	cargo above the waterline –	wind	
	$(IMO/IS_IMO/HSC'2000)$		
	Area exposed to wind		
	(ships, hull geometry) Area		2
$A_{ m W}$	of water-plane		m²
	(ships, hull geometry) Area		
Awa	of water-plane aft of mid-		m_2
	ship		
	(ships hull geometry) Area		
Awe	of water-plane forward of		m^2
ΥWΓ	midshin		
	(Sailing vessels) Repre-		
AWDT	sentative projected area of		m^2
21WF1	WPT		
	(ships hull geometry) Area		
$A_{\mathbf{v}}$	of maximum transverse sec-		m ²
	tion		
	(shins hull geometry shin		
	(smps,null geometry, smp	Projected area of the ship	
Δ	projected area above the wa-	above the waterline projected	m^2
	terline including superstruc-	on a transversal plane	111
	tures	on a transversar plane	
	(seakeening large ampli-		
	tude motions cansizing		
	ships hydrostatics stability)		
17	Righting arm based on hori-	Generally tabulated in cross	m
AL	zontal distance from as-	curves of stability	111
	sumed centre of gravity A		
	to 7		
	(shing seakeening) Ampli		
	tude of frequency response	$z_{\tau}(\omega)/\zeta_{\tau}(\omega)$ or	
$A_{z\zeta}(\omega)$	function for translatory mo	$z_a(\omega) / z_a(\omega)$ or $z_a(\omega) / n_a(\omega)$	1
	tions		
	uons	1	

Version 2024

ITTC Symbol

			A, a
Acronym	Name	Definition or Explanation	SI- Unit

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
$A_{ heta\zeta}(\omega)$		(<i>ships, seakeeping</i>) Ampli- tude of frequency response function for rotary motions	$\Theta_a(\omega) / \zeta_a(\omega)$ or $\Theta_a(\omega) / (\omega^2 / (g\zeta_a(\omega)))$	1
a, a^1		(ships, basic quantities) Lin- ear or translatory accelera- tion	dv / dt	m/s ²
а		(fundamental, time and fre- quency domain quantity) Damping	<i>s^r</i> , in Laplace variable	1/s
a		(<i>ships, performance</i>) Re- sistance augment fraction	$(T - R_{\mathrm{T}}) / R_{\mathrm{T}}$	1
a		(ships, unsteady propeller forces) Cylindrical coordi- nates	Cylindrical system with origin O and longitudinal <i>x</i> - axis as defined before; angu- lar <i>a</i> -(attitude)-coordinate, zero at 12 o'clock position, positive clockwise looking forward, <i>r</i> distance measured from the <i>x</i> -axis	
a		Half-width of a rectangular distribution	Half-width of a rectangular distribution of possible val- ues of input quantity X_i : $a = (a_+ - a)/2$	
a _D		(ships, propulsor geometry) Developed blade area ratio	$A_{\mathrm{D}}/A_{\mathrm{0}}$	1
$a_{\rm E}$		(ships, propulsor geometry) Expanded blade area ratio	$A_{\rm E}/A_0$	1
a _i		(ships, seakeeping) Atti- tudes of the floating system	i = 1, 2, 3, e.g. Euler angles of roll, pitch, and yaw, re- spectively	rad
a_{P}		(ships, propulsor geometry) Projected blade area ratio	$A_{\rm P}/A_0$	1
<i>a</i> +		Upper bound	Upper bound, or upper limit, of input quantity X_i :	
<i>a</i> .		Lower bound	Lower bound, or lower limit, of input quantity X_i :	

A, a

ITTC Symbols

Version 2024

ITTC Symbols				
Version 20)24			B, b
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Actonym	Iname	Explanation	Unit

В	(ships, basic quantities, hull geometry) Breadth, moulded, of ships hull		m
В	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Cen- tre of buoyancy	Centroid of the underwater volume	
BB	<i>(multi-hull vessels)</i> Box breadth	Breadth of main deck	m
B _C	(ACV and SES) Cushion breadth	SES cushion breadth meas- ured between the side walls	m
B ^C	(ships, hull geometry) R.E. Froude's breadth coefficient	$B \neq \nabla^{1/3}$	1
B _{CB}	(seakeeping, large amplitude motions capsizing) Breadth between centres of buoyancy of side hulls		m
B _f	(ships, ship performance) Bluntness coefficient	See 7.5-04-01-01.1	1
B _{FOA}	(hydrofoil boats) Maximum vessel breadth including foils		m
B _{ij}	(solid body mechanics, iner- tial and hydro properties) Damping coefficient in <i>i</i> th mode due to <i>i</i> th motion		
B _{LCG}	<i>(planing, semi-displacement vessels)</i> Breadth at longitudi- nal position of the centre of gravity	Breadth over spray strips measured at transverse sec- tion containing centre of gravity	m
B _M	(ships, hull geometry) Breadth, moulded of mid- ship section at design water line		m
BM	(hydrostatics, stability, sea- keeping, large amplitude motions capsizing) Trans- verse metacentre above cen- tre of buoyancy	Distance from the centre of buoyancy B to transverse metacentre M $\overline{BM} = \frac{I_T}{\nabla} = \overline{KM} - \overline{KB}$	m
\overline{BM}_L	(hydrostatics, stability, sea- keeping, large amplitude motions capsizing) Longitu- dinal metacentre above cen- tre of buoyancy	$\overline{BM}_L = \overline{KM}_L - \overline{KB}$	m

ITTC	Acronym	Name	Definition or	SI-
Symbol	•		Explanation	Unit
Во		(fluid mechanics, flow pa- rameter) Boussinesq number	$V / (g R_{\rm H})^{1/2}$	1
B_{OA}		(sailing vessels) Breadth, overall		m
B_P		(ships, propulsor perfor- mance) Taylor's propeller coefficient based on deliv- ered horsepower (obsolete)	$n P_{D}^{\frac{1}{2}} / V_{A}^{2.5}$ with <i>n</i> in revs/min, <i>P</i> _D in horsepower, and <i>V</i> _A in kn	1
BPA		<i>(planing, semi-displacement vessels)</i> Mean breadth over chines	$A_{\mathrm{P}}/L_{\mathrm{P}}$	m
$B_{\rm PC}$		(planing, semi-displacement vessels) Breadth over chines	Breadth over chines, exclud- ing external spray strips	m
$B_{ m PT}$		(planing, semi-displacement vessels) Transom breadth	Breadth over chines at tran- som, excluding external spray strips	m
B_{PX}		(planing, semi-displacement vessels) Maximum breadth over chines	Maximum breadth over chines, excluding external spray strips	m
B _S		(multi-hull vessels) Hull spacing	Distance between hull centre lines	m
B _T		(ships, hull geometry) Breadth, moulded of tran- som at design water line		m
$B_{\rm TV}$		<i>(multi-hull vessels)</i> Tunnel width	Minimal distance of the demihulls at the waterline	m
B_U		(ships, propulsor perfor- mance) Taylor's propeller coefficient based on thrust horsepower (obsolete)	$n P_{\rm T}^{1/2} / V_{\rm A}^{2.5}$ with <i>n</i> in revs/min, $P_{\rm T} \text{ in horsepower, and}$ $V_{\rm A} \text{ in kn}$	1
$B_{ m WL}$		<i>(ships, hull geometry)</i> Maxi- mum moulded breadth at de- sign water line		m
$B_{ m WLT}$		(ACV and SES) Total water- line breadth of SES	At the water line	m
Bx		(ships, hull geometry) Breadth, moulded of maxi- mum section area at design water line		m

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actonym	Name	Explanation	Unit
		(ships, hydrostatics, stabil-		
L		tude motions agnizing) Con		
		tra of flotation of addad		
U		buoyancy layer or centre of		
		lost buoyancy of the flooded		
		volume		
		(seakeeping, large amplitude		
b		motions capsizing) Maxi-		m
		mum tank breadth		
		(environmental mechanics,	Sampling frequency divided	
b		waves) Bandwidth of spec-	by the number of transform	Hz
		tral resolution	points	
h		(fluid mechanics, lifting sur-		m
0		<i>faces)</i> Wing or foil span		
$h_{\rm E}$		(fluid mechanics, lifting sur-		m
υr		<i>faces)</i> Flap span		m
$h_{\rm P}$		(ships, manoeuvrability)	Maximum distance from	m
		Rudder span	root to tip	
$b_{\rm RM}$		(ships, manoeuvrability)		m
		Mean span of rudder		
$b_{\rm S}$		(hydrofoil boats) Span of		m
		struts		
b_{ST}		(hydrofoil boats) Transverse		m
		norizontal distance of struts $(l - l - f)$		
$b_{ m w}$		(<i>nyarojou boais</i>) Foil span		m
			Upper bound or upper limit	
			of the deviation of input	
b_+			α_{i} and α_{i} from its estimate	
			x_i $b_+ = a_+ - x_i$	
			Lower bound, or lower limit.	
			of the deviation of input	
<i>b</i> -			quantity X_i from its estimate	
			$x_{i:} b_{-} = x_{i} - a_{-}$	

B, b

ITTC Symbols				
Version 20	24			C , c
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

С	(fundamental, statistical, sto- chastic) Population covari-		
	ance		
C	(ships, basic quantities)	Force normal to lift and	N
C	Cross force	drag (forces)	1
C_{10}	<i>(environmental mechanics, wind)</i> Surface drag coefficient	$(0.08 + 0.065U_{10})10^{-3}$	
СА	<i>(ships, hull resistance)</i> In- cremental resistance coeffi- cient for model ship corre- lation	$R_{\rm A}/(Sq)$	1
САА	<i>(ships, hull resistance)</i> Air or wind resistance coefficient	$R_{AA} / (S q) = C_{DA} \frac{\rho_A}{\rho_S} \frac{A_V}{S_S} = -C_X \frac{\rho_A}{\rho_S} \frac{A_V}{S_S}$	1
$C_{ m ADM}$	<i>(ships, performance)</i> Admiralty coefficient	$\Delta^{2/3} V^3 / P_{\rm S}$	1
C _{AL}	<i>(ships, manoeuvrability)</i> Coefficient of lateral area of ship	$A_{ m HL}$ / (L T)	1
C_{APP}	<i>(ships, hull resistance)</i> Appendage resistance coefficient	$R_{\rm APP}/(S q)$	1
CB	<i>(ships, hull geometry)</i> Block coefficient	$\nabla/(L B T)$	1
CBFTC	Thickness Cord Ratio of Bottom Fin		1
Cc	<i>(ships, basic quantities)</i> Cross force coefficient	$C_C = \frac{C}{qA}$	1
C ^C	<i>(ships, hull resistance)</i> R.E. Froude's resistance coefficient	$1000 R_{\rm T} / (\varDelta (K^{\rm C})^2)$	1
C _D	<i>(fluid mechanics, lifting surfaces)</i> Section drag co-efficient		1
CD	<i>(ships, hull resistance)</i> Drag coefficient	D/(Sq)	1
CD	(seakeeping, large ampli- tude motions capsizing) Crew density	Proportion of boat plan needed for crew	
C _{DA}	(ships, Resistance and Pro- pulsion, Hull resistance) Air or wind resistance coef- ficient, from wind tunnel tests	$= \frac{R_{\rm AA}}{A_{\rm V}\frac{1}{2}\rho_{\rm A}V^2}$	1

ITTC Sym	bols			
Version 20	24			C, c
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

	(hydrofoil boats) Drag co-		
C_{DF}	efficient of foil	$D_{\mathrm{F}}/(A_{\mathrm{FS}} q)$	1
C_{DI}	<i>(fluid mechanics, lifting surfaces)</i> Section induced drag coefficient		1
C_{DI}	<i>(hydrofoil boats)</i> Induced drag coefficient	D_{I} / (A _{FS} q)	1
C _{DINT}	(hydrofoil boats) Interfer- ence drag coefficient	$D_{ m INT}$ / ($A_{ m FS}$ q)	1
C_{D0}	<i>(hydrofoil boats)</i> Section drag coefficient for angle of attack equal to zero	$D_{ m P}$ / ($A_{ m FS}$ q)	1
C _{DS}	(hydrofoil boats) Spray drag coefficient	$D_{ m S}$ / ($A_{ m FS}$ q)	1
C_{DVENT}	(hydrofoil boats) Ventila- tion drag coefficient	$D_{ m V}/\left(A_{ m FS}~q ight)$	1
C_{DW}	(hydrofoil boats) Wave drag coefficient	$D_{ m W}$ / ($A_{ m FS}$ q)	1
$C_D \nabla$	<i>(ships, performance)</i> Power-displacement coefficient	$P_{\rm D} / (\rho \ V^3 \ V^{2/3} / 2)$	1
CF	<i>(ships, hull resistance)</i> Frictional resistance coefficient of a body	$R_{\mathrm{F}}/(S q)$	1
Cf	<i>(fluid mechanics, boundary layers)</i> Skin friction coefficient	$\tau / (\rho U_{e}^{2} / 2)$	1
$C_{ m F0}$	<i>(ships, hull resistance)</i> Frictional resistance coefficient of a corresponding plate	$R_{ m F0}$ / (S q)	1
$C_{ m FU}$	<i>(sailing vessels)</i> Frictional resistance coefficient (up- right)	$R_{\rm FU}$ / (S q)	1
C _{GM}	(ships, Geometry and Hy- drostatics, Hull Geometry) Dimensionless <u>GM</u> coeffi- cient	$\overline{GM}/\overline{V}^{4/3}$	1
C _{GZ}	(ships, Geometry and Hy- drostatics, Hull Geometry) Dimensionless <u>GZ</u> coeffi- cient	\overline{GZ} / $V^{1/3}$	1

ITTC Symbols					
Version 20	24			C , c	
ITTC	Acronym	Nomo	Definition or	SI-	
Symbol	Acronym	Name	Explanation	Unit	

Скд	(ships, Geometry and Hy- drostatics, Hull Geometry) Dimensionless \overline{KG} coefficient \overline{KG} / T	1
Сн	(seakeeping, large ampli- tude motions capsizing) Height coefficient, depend- ing on the height above sea level of the structural mem- ber exposed to the wind	1
CI	(sailing vessels) Induced resistance coefficient	1
CI	(<i>ice going vessels</i>) Coefficient of net ice resistance $R_{\rm I} / (\rho_{\rm I} g h^2 B)$	1
C _{ij}	(solid body mechanics, in- ertial and hydro properties) Restoring force coefficient in <i>i</i> th mode due to <i>j</i> th motion	
Сп	$\begin{array}{c c} (ships, hull geometry) \text{Co-} \\ \text{efficient of inertia of water} \\ \text{plane, longitudinal} \end{array} 12 I_L / (B L^3)$	1
Сп	(ships, hull geometry) Co- efficient of inertia of water plane, transverse $12 I_T / (B^3 L)$	1
C _{IW}	(ice going vessels) Coefficient of water resistance in the presence of ice $R_{IW} / (S q_{IW})$	1
CL	<i>(seakeeping, large amplitude motions capsizing)</i> Crew limit Maximum number of persons on board	
CL	(fluid mechanics, lifting surfaces) Section lift coef- ficient	1
C_{LF}	$\begin{array}{c} (hydrofoil \ boats) \ {\rm Foil \ lift} \\ {\rm coefficient} \end{array} L_{\rm F} / (A_{\rm FS} \ q) \end{array}$	1
<i>C</i> _{<i>L</i>0}	(hydrofoil boats) Profile lift coefficient for angle of at- tack equal to zero $L_0 / (A_{FS} q)$	1
<i>C</i> _{<i>L</i>0}	(planing, semi-displace- ment vessels) Lift coeffi- cient for zero deadrise $\Delta / (B_{CG}^2 q)$	1
Слто	$\begin{array}{c} (hydrofoil \ boats) \ \text{Lift coef-} \\ \text{ficient at take-off condition} \end{array} L_{\text{TO}} / (A_{\text{FS}} \ q) \end{array}$	1
C_{LX}	$\begin{array}{c} (hydrofoil \ boats) \ \text{Slope of} \\ \text{lift curve} \end{array} dC_L / d\alpha \end{array}$	1

ITTC Sym	bols			
Version 20	24			C , c
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

CLB	(planing, semi-displace- ment vessels) Lift coeffi- cient for dead rise surface	$\Delta / (B_{\rm CG}^2 q)$	1
См	<i>(fluid mechanics, lifting surfaces)</i> Section moment coefficient		1
C _M	(<i>ships, hull geometry</i>) Mid- ship section coefficient (mid- way between forward and aft perpendiculars)	A _M / (B T)	1
C_M	(hydrofoil boats) Pitching moment coefficient	$M/((A_{\mathrm{FF}}+A_{\mathrm{FR}})(l_{\mathrm{F}}-l_{\mathrm{R}})q)$	1
C _{MTL}	Longitudinal trimming coef- ficient	Trimming moment divided by change in trim which ap- proximately equals \overline{BM}_L/L	1
C_N	<i>(ships, performance)</i> Trial correction for propeller rate of revolution at speed iden- tity	$n_{\rm T}$ / $n_{\rm S}$	1
C_{NP}	(<i>ships, performance</i>) Trial correction for propeller rate of revolution at power iden- tity	$P_{\rm DT}/P_{\rm DS}$	1
Ср	<i>(ships, hull geometry)</i> Longi- tudinal prismatic coefficient	$\nabla / (A_{\rm X} L)$ or $\nabla / (A_{\rm M} L)$	1
C_P	(ships, performance) Trial correction for delivered power		1
C_P	(ships, propulsor perfor- mance) Power loading coeffi- cient	$P_{\rm D}$ / ($A_{\rm P}$ $q_{\rm A}$ $V_{\rm A}$)	1
C_p	(ships, hull resistance, water jets) Local pressure coeffi- cient	$(p-p_0)/(\rho V^2/2)$	1
Сра	(ships, hull geometry) Pris- matic coefficient, after body	$\overline{V_{\mathrm{A}}}$ / ($A_{\mathrm{X}}L/2$) or $\overline{V_{\mathrm{A}}}$ / ($A_{\mathrm{M}}L/2$)	1
CPE	<i>(ships, hull geometry)</i> Pris- matic coefficient, entrance	$\overline{V_{\rm E}}$ / (A _X L _E) or $\overline{V_{\rm E}}$ / (A _M L _E)	1
C _{PF}	<i>(ships, hull geometry)</i> Pris- matic coefficient fore body	$\overline{V_{\mathrm{F}}}$ / (A_{X} L / 2) or $\overline{V_{\mathrm{F}}}$ / (A_{M} L / 2)	1
C _{pi}	<i>(sailing vessels)</i> Center of pressure for A _i		1

ITTC Symbols				
Version 20)24			C , c
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Actonym	Iname	Explanation	Unit

C _{PR}	(<i>ships, hull resistance</i>) Pres- sure resistance coefficient,	$R_P / (S q)$	1
	including wave effect		
Cpp	(ships, hull geometry) Pris-	∇_{R} / (A_{X} L_{R}) or	1
CPR	matic coefficient, run	$\nabla_{\mathrm{R}} / (A_{\mathrm{M}} L_{\mathrm{R}})$	1
C_{PR}	(ACV and SES) Aerodynamic profile drag coefficient	$R_0 / (ho_{ m A} V_{ m R}^2 A_{ m C} / 2)$	1
	(ships, hull resistance) Vis-		
C_{PV}	cous pressure resistance coef- ficient	$R_{PV} / (S q)$	1
C	(ships, propulsor perfor-	O / (A = D)	1
C_{Q^*}	mance) Torque index	$Q / (A_{\rm P} q_{\rm S} D)$	1
	(fundamental, statistical, sto-		
CR	chastic) Population covari-		
	ance		
C_{R}	<i>(ships, hull resistance)</i> Re- siduary resistance coefficient	$R_{\mathrm{R}} / (S q)$	1
	(environmental mechanics,		
Cr	waves) Average reflection		1
	coefficient		
9	(ships, manoeuvrability, sea-		x ² 2
$C_{\rm r}$	<i>keeping</i>) Directional stability	$Y_{v}\left(N_{r} - mux_{G}\right) - N_{v}\left(Y_{r} - mu\right)$	N^2S^2
	criterion		
C(f)	(environmental mechanics, wayas) Reflection coefficient		1
$C_{r(j)}$	amplitude function		1
	(sailing vessels) Residuary		
$C_{ m RU}$	resistance coefficient (up-	$R_{\rm RU} / (S q)$	1
	right)		
CS	(fundamental, statistical, sto-		
C.5	chastic) Sample covariance		
Cs	(ships, hull resistance) Spray	$R_{\rm S}/(S_{\rm A})$	1
	resistance coefficient		1
C_S	(ships, hull geometry) Wetted	$S / (\nabla L)^{1/2}$	1
	surface coefficient		
	(seakeeping, large amplitude		
C	efficient depending on the		1
Cs	shape of the structural mem-		1
	ber exposed to the wind		
C	Thickness Cord Ratio of		1
USTC	Strut		1
	(ships, hull resistance) Total	$R_{\rm T}/(S_{\rm q})$	1
	resistance coefficient	N1 / (5 4)	1

ITTC Symbols				
Version 20	24			C , c
ITTC	Aanonym	Nome	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

C_{T^*}	(ships, propulsor perfor- mance) Thrust index	$T/(A_{\rm P} q_S)$	1
C _{Th}	(ships, propulsor perfor- mance) Thrust loading coef- ficient, energy loading coef- ficient	$T / (A_{\rm P} q_{\rm A}) = (T_{\rm P} / A_{\rm P}) / q_{\rm A}$	1
CTL	<i>(ships, hull resistance)</i> Tel- fer's resistance coefficient	$g R L / (\Delta V^2)$	1
C _{Tn}	(<i>ships, hull resistance, water</i> <i>jets</i>) Thrust loading coeffi- cient:	$\frac{T_{\text{net}}}{\frac{1}{2}\rho U_0^2 A_n}$	1
C _{TQ}	(ships, hull resistance) Quali- fied resistance coefficient	$C_{\mathrm{T}} \nabla / (\eta_{\mathrm{H}} \eta_{\mathrm{R}})$	1
C _{TU}	(sailing vessels) Total re- sistance coefficient (upright)	$R_{\mathrm{TU}} / (S q)$	1
$C_{\mathrm{T}} \nabla$	(ships, hull resistance) Re- sistance displacement	$R_{ m T}$ / ($ abla^{2/3} q$)	1
$C_{\mathrm{T} arphi}$	<i>(sailing vessels)</i> Total re- sistance coefficient with heel and leeway	$R_{\mathrm{T} \varphi} / (S q)$	1
C _{uv}	(ships, unsteady propeller forces) Generalized stiffness		
Cv	<i>(ships, hull resistance)</i> Total viscous resistance coefficient	$R_{ m V}$ / (S q)	1
$C_{ m V}$	(planing, semi-displacement vessels) Froude number based on breadth	$V / (B_{\rm CG} g)^{1/2}$	1
CVP	(<i>ships, hull geometry</i>) Pris- matic coefficient vertical	$\nabla / (A_W T)$	1
Cw	(ships, hull resistance) Wave making resistance coefficient	$R_{\rm W} / (S q)$	1
$C_{\mathrm{W}A}$	<i>(ships, hull geometry)</i> Water plane area coefficient, aft	A _{WA} / (B L / 2)	1
Cwc	(ACV and SES) Cushion wave making coefficient		1
C _{WF}	<i>(ships, hull geometry)</i> Water plane area coefficient, for- ward	A _{WF} /(B L / 2)	1
C_{WP}	<i>(ships, hull geometry)</i> Water plane area coefficient	$A_{\rm WP}$ /($L B$)	1
C _{WP}	<i>(ships, hull resistance)</i> Wave pattern resistance coefficient, by wave analysis		1
$C_{ m WU}$	<i>(sailing vessels)</i> Wave re- sistance coefficient (upright)		1

ITTC Symbols				
Version 20	24			C , c
ITTC	Acronym	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

	(ships, hull geometry) Maxi-	$A_{\rm X}$ / (<i>B T</i>), where B and T	
$C_{\rm X}$	mum transverse section coef-	are measured at the position	1
	ficient	of maximum area	
	(ships, hull resistance) Air or		
C	wind resistance coefficient,	$\mathbf{D} = (\mathbf{A} - \mathbf{a})$	1
CX	usually from wind tunnel	$-\kappa_{\rm AA}/(Av q_{\rm R})$	1
	tests		
C	(sailing vessels) Force coeffi-		1
C_X	cients		1
	(fundamental, statistical, sto-		
C_{xx}	chastic) Auto-covariance of a	$(x(t) - x^{E})(x(t + \tau) - x^{E})^{E}$	
	stationary stochastic process		
	(fundamental, statistical, sto-		
C	chastic) Cross-covariance of	$(\mathbf{r}(t) - \mathbf{r}^{E})(\mathbf{y}(t + \tau) - \mathbf{y}^{E})E$	
C_{xy}	two stationary stochastic pro-	(x(t) - x)(y(t + t) - y)	
	cesses		
C	(sailing vessels) Force coeffi-		1
Cy	cients		1
C	(sailing vessels) Force coeffi-		1
C_z	cients		1
$C \nabla$	(ships, hull geometry) Volu-	∇/I^3	1
	metric coefficient	V / L	1
C	(planing, semi-displacement	$A/(Bac^3 \circ g)$	1
	vessels) Load coefficient		1
C ₄	(ACV and SES) Cushion	$1/(a + Ac^{3/2})$	1
	loading coefficient	z (g pane)	1
C	(fluid mechanics, flow pa-	$(F/q)^{1/2}$	m/s
C	rameter) Velocity of sound	$(L \neq p)$	111/ 5
	(ships, propulsor geometry,		
C0.7	appendage geometry)Chord	Chord length at r/R=0.7	m
	length		
	(ships, propulsor geometry,		
C	appendage geometry) Chord		m
C	length, chord length of a foil		
	section		
CC.	(hydrofoil boats) Chord		m
	length at centre plane		
CE	(hydrofoil boats) Chord		m
	length of flap		
	(ships, hull resistance, water		
C _{es}	<i>jets)</i> Energy velocity coeffi-		1
	cient at station s		
CFT	(hydrofoil boats) Chord		m
~11	length at foil tips		

ITTC Sym	nbols			
Version 20)24			C , c
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	maine	Explanation	Unit

CG	(environmental mechanics, waves) Wave group velocity	The average :rate of ad- vance of the energy in a fi-	m/s
Ci	<i>(uncertainty)</i> Sensitivity co- efficient	$c_i = \partial f / \partial x_i.$	1
CLE	(ships, geometry and hydro- statics, propulsor geometry) Chord, leading part	The part of the Chord de- limited by the Leading Edge and the intersection between the Generator Line and the pitch helix at the considered radius	m
CM	(ships, appendage geometry, propulsor geometry, fluid mechanics, lifting surfaces hydrofoil boats) Mean chord length	The expanded or developed area of a propeller blade divided by the span from the hub to the tip, $A_{\rm RT}/S$	m
c _{ms}	(<i>ships, hull resistance, water</i> <i>jets</i>) Momentum velocity co- efficient at station s		1
CPF	<i>(hydrofoil boats)</i> Distance of centre of pressure on a foil or flap from leading edge		m
CR	(fluid mechanics, lifting sur- faces, ships, appendage ge- ometry) Chord length at the root		m
c _S	(<i>ships, propulsor geometry</i>) Skew displacement	The displacement between middle of chord and the blade reference line. Posi- tive when middle chord is at the trailing side regarding the blade reference line	m
cs	(hydrofoil boats) Chord length of a strut		m
CSF	<i>(hydrofoil boats)</i> Chord length of strut at intersection with foil		m
CT	(ships, appendage geometry) Chord length at the tip		m
Сте	Chord, trailing part	The part of the Chord de- limited by the Trailing Edge and the intersection between the Generator Line and the pitch helix at the considered radius	m

ITTC Symbols				
Version 20	24			C , c
ITTC	Acronym	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

CW	<i>(environmental mechanics, waves)</i> Wave phase velocity or celerity	$\frac{L_W}{T_W=}\sqrt{gL_W/2\pi}$ in deep water	m/s
C _{Wi}	<i>(environmental mechanics, waves)</i> Wave phase velocity of harmonic components of a periodic wave	const = c_W for periodic waves in deep water	m/s

ITTC	Aaronym	Nama	Definition or	SI-
Symbol	Acronym	Ivame	Explanation	Unit
				-
		(fundamental, statistical,		
D		stochastic) Population devi-		
		ation		
		(ships, hull geometry)		
D		Depth, moulded, of a ship		m
		hull		
מ		(ships, basic quantities)		m
D		Diameter		111
		(ships, propulsor geometry,		
D		propulsor performance)		m
		Propeller diameter		
		(ships, basic quantities)	Force opposing translatory	
D		Drag (force)	velocity, generally for a	N
			completely immersed body	
D		(ships, propulsor geometry,		
D		water jets) Impeller diame-		m
		ter (maximum)		
		(snips, manoeuvrability,		
D_0		stoody turning diameter		m
		$\delta_{\rm p} = \delta_{\rm p}$		
		$O_R = O_0$		
		(snips, manoeuvrability, turning circles) Non-dimen-		
D_0'		sional inherent steady turn-	$D_0 / L_{ m PP}$	1
		ing diameter		
		(ships, manoeuvrability,		
$D_{\rm C}$		turning circles) Steady turn-		m
-		ing diameter		
		(ships, manoeuvrability,		
D_{π}		turning circles) Non-dimen-	$D_{\rm C}$ / $L_{\rm PP}$	1
$D_{\mathbb{C}}$		sional steady turning diame-		1
		ter		
Dc		(fluid mechanics, cavitation)		Ν
20		Cavity drag		
D		(fluid mechanics, lifting sur-	Force in the direction of	N .7
$D_{ m F}$		<i>faces, hydrofoil boats)</i> Foil	motion of an immersed foil	N
		drag		
$D_{ m FF}$		(<i>nyarofoll boats</i>) Drag lorce	$C_{D\mathrm{F}}A_{\mathrm{FF}}q$	Ν
		(hydrofoil hoats) Drag force		
D_{FR}		(<i>nyurojon bouis</i>) Diag loice	$C_{DF}A_{FR}q$	Ν
		(multi-hull vassals) Hull di	Diameter of axis symmetric	
$D_{ m H}$		ameter	submerged hulls	m
		(shing hasic quantities)		
<i>D</i> ^h		Generalized hydrodynamic	∂F^{h}	
- uv		damning		
		Juanping		

Symbol	Acronym	Name	Explanation	Unit
D_{I}		(fluid mechanics, lifting sur- faces, hydrofoil boats) In- duced drag	For finite span foil, the com- ponent of lift in the direc- tion of motion	N
$D_{\rm INT}$		(fluid mechanics, lifting sur- faces, hydrofoil boats) Inter- ference drag	Due to mutual interaction of the boundary layers of inter- secting foil	Ν
D_{n}		<i>(ships, propulsor geometry, water jets)</i> Nozzle discharge diameter		m
$D_{ m P}$		<i>(fluid mechanics, lifting sur- faces)</i> Section or profile drag at zero lift	Streamline drag	N
Dp		Pressure differential of flow rate transducer		Ра
$D_{ m P0}$		<i>(hydrofoil boats)</i> Profile drag for angle of attack equal to zero lift	Streamline drag	Ν
$D_{ m PB}$		Maximum Diameter of Pod Body		m
DR		(<i>fundamental</i> , <i>statistical</i> , <i>stochastic</i>) Population devi- ation		
DS		(fundamental, statistical, stochastic) Sample devia- tion		
$D_{\rm SP}$		(hydrofoil boats) Spray drag	Due to spray generation	N
D _{ST}		(hydrofoil boats) Strut drag		N
D_{uv}		(ships, unsteady propeller forces) Generalized damp- ing		
$D_{ m V}$		(hydrofoil boats) Ventilation drag	Due to reduced pressure at the rear side of the strut base	Ν
$D_{ m W}$		(hydrofoil boats) Wave drag	Due to propagation of sur- face waves	Ν
Dx		<i>(multi-hull vessels)</i> Hull di- ameter at the longitudinal position "X"		m
$D_{\mathrm{X}}(f, heta), \ D_{\mathrm{X}}(\omega,\mu),$		(environmental mechanics, waves) Directional spread- ing function	$S(f,\theta) = S(f)D_X(f,\theta) \text{ where}$ $\int_0^{2\pi} D_X(f,\theta)d\theta = 1$	rad
d		(ships, basic quantities) Diameter		m
d		(underwater noise) Distance hydrophone to acoustic centre		m

Version 2024

Name

Acronym

ITTC

SI-

Definition or

ITTC Symbol	Acronym	Name	Definition or	SI- Unit
Symbol				Ullit
		(ships, hull geometry sea- keeping, large amplitude		
d		<i>motions capsizing))</i> Draught, moulded, of ship		m
d		(seakeeping, large ampli- tude motions capsizing) Density coefficient for sub- merged test weights		1
d_{A}		<i>(ships, hull geometry)</i> Draught at aft perpendicular		m
d_{D}		(ships, propulsor geometry) Propeller tip clearance	Clearance between propeller tip and inner surface of duct	m
$d_{ m F}$		(ships, hull geometry) Draught at forward perpen- dicular		m
$d_{ m h}$		(ships, propulsor geometry) Boss or hub diameter	2 <i>r</i> _h	m
$d_{ m ha}$		Hub diameter, aft	Aft diameter of the hub, not considering any shoulder	m
$d_{ m hf}$		Hub diameter, fore	Fore diameter of the hub, not considering any shoul- der	m
$d_{ m KL}$		(<i>ships, hull geometry</i>) De- sign drop of the keel line	$T_{\rm AD}$ - $T_{\rm FD}$ alias "keel drag"	m
d_{M}		(ships, hull geometry) Draught at midship	$(T_{\rm A} + T_{\rm F}) / 2$ for rigid bodies with straight keel	m
d_{TR}		<i>(planing, semi-displacement vessels)</i> Immersion of transom, underway	Vertical depth of trailing edge of boat at keel below water surface level	m
$d_{t\psi}$		(<i>ships, manoeuvrability</i>) Rate of change of course	$d\psi/dt$	rad/s

Version 2024

24

D, d

ITTC Sym	bols			
Version 20	24			E, e
ITTC	Acronym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

	(fluid mechanics, flow		
E	parameter) Modulus of		Pa
	elasticity		
Ε	Mainsail base		m
	(fundamental, statistical,		
Ε	stochastic) Expectation,		
	population mean		
E	(ships, basic quantities)		т
E	Energy		J
E	(sailing vessels) Mainsail		
E	base		m
	(environmental mechanics,		
E_{I}	<i>ice)</i> Modulus of elasticity of		Pa
	ice		
	(ships, hull resistance, water	$\iint (1 - p)^{1}$	
r.	<i>jets</i>) Total energy flux at	$\iint_{A} \rho \left(\frac{1}{2} u^{2} + \frac{1}{\rho} \right)$	XX 7
E_{S}	station s (kinetic + potential		W
	+ pressure)	$-g_j x_j u_i n_i dA$	
	(ships, hull resistance, water	$\int \int \frac{1}{2} p$	
	iets) Total axial (in E	$\prod_{i} \rho \left(\frac{1}{2} u_{\tilde{\xi}}^{2} + \frac{1}{\rho} \right)$	
$E_{S\xi}$	direction) energy flux at	$\gamma \gamma $	W
	station s	$-g_j x_j u_i n_i dA$	
	(fluid mechanics, flow fields)		5
e	Density of total flow energy	$\rho V^2 / 2 + p + \rho g h$	Pa
	(planing, semi-displacement	Distance between N_A and	
eA	vessels) Lever of appendage	centre of gravity (measured	m
	lift force $N_{\rm A}$	normally to $N_{\rm A}$)	
	(planing, semi-displacement	Distance between $N_{\rm B}$ and	
e_{B}	vessels) Lever of bottom	centre of gravity (measured	m
	normal force $N_{\rm B}$	normally to $N_{\rm B}$)	
		Distance between propeller	
	(planing, semi-alsplacement	centreline and centre of	
$e_{\rm PN}$	vessels) Lever of propeller	gravity (measured along	m
	normal force N _{PN}	shaft line)	
	(planing, semi-displacement	Distance between N_{PP} and	
epp	vessels) Lever of resultant of	centre of gravity (measured	m
	propeller pressure forces N _{PP}	normally to N_{PP})	
	(planing, semi-displacement	Distance between <i>N_{PS}</i> and	
eps	vessels) Lever of resultant	centre of gravity (measured	m
	propeller suction forces $N_{\rm PS}$	normal to $N_{\rm PS}$)	
	(planing, semi-displacement	Distance between N_{RP} and	
$e_{\mathrm RP}$	vessels) Lever of resultant of	centre of gravity (measured	m
	rudder pressure forces $N_{\rm RP}$	normal to $N_{\rm RP}$)	

IIIC	Acronym	Nomo	Definition or	51-
Symbol	Actollym	Indiffe	Explanation	Unit
-			-	
		(fluid machanics boundary		
F		(Juna mechanics, boundary	$1 / (U_e dQ / dx)$	1
Γ		(hull geometry) Fore body		
Γ		(null geometry) Fore body	Distance over water the	
F		(environmental mechanics,	Distance over water the	m
		wind) Fetch length	wind blows	
F		(ships, basic quantities)		Ν
		Force		
		(ships, hydrostatics, stabil-		
_		ity, seakeeping, large ampli-		
F		tude motions capsizing)		
		Centre of flotation of the		
		water plane		
		(seakeeping, large ampli-		
F		tude motions capsizing)		
		Wind force - IMO/IS		
F^0		(ships, basic quantities)		N
1		Force		1
		(solid body mechanics,		
$F^{0}{}_{1}$		<i>loads)</i> Force in direction of		Ν
		body axis x		
		(solid body mechanics,		
$F^{0}{}_{2}$		<i>loads)</i> Force in direction of		Ν
		body axis y		
		(solid body mechanics,		
F^0_3		<i>loads</i>) Force in direction of		Ν
		body axis z		
		(solid body mechanics,		
F_1		<i>loads</i>) Force in direction of		Ν
		body axis x		
		(ships, basic quantities) Mo-	First order moment of a	NT
F^{1}		ment of forces	force distribution	Nm
		(solid body mechanics,		
F^{1}		<i>loads</i>) Moment around body		Nm
•		axis x		
		(solid body mechanics.		
F^{1} 2		<i>loads</i>) Moment around body		Nm
- 2		axis v		
		(solid body mechanics		
F^{1} 3		loads) Moment around body		Nm
		axis 7		1 (111
		(solid body mechanics		
F_{2}		loads) Force in direction of		Nm
1 2		body axis y		1 1111
		(solid hody machanics		
F_{2}		loads) Force in direction of		Nm
1'3		body axis z		1111
		DUUY anis L		

Definition or

F, f

SI-

ITTC Symbols

Version 2024

ITTC

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
F_4		(solid body mechanics, loads) Moment around body axis x		Nm
F_5		(solid body mechanics, loads) Moment around body axis y		Nm
F_6		(solid body mechanics, loads) Moment around body axis z		Nm
FB		<i>(seakeeping, large ampli- tude motions capsizing)</i> Longitudinal centre of buoy- ancy, <i>L</i> _{CB} , from forward per- pendicular	Distance of centre of buoy- ancy from forward perpen- dicular	m
F^C		(<i>ships, hull resistance</i>) R.E. Froude's frictional resistance coefficient	$1000 R_{\rm F} / (\varDelta(K^{\rm C})^2)$	1
FD		Friction deduction force in self-propulsion test. Skin friction correction in a self- propulsion test carried out at the ship self-propulsion point	Towing force applied to a model to correct the model resistance for different <i>Re</i> between model and full scale.	N
FF		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of float- ation, L _{CF} , from forward per- pendicular	Distance of centre of flota- tion from forward perpen- dicular	m
F^{F_1}		(ships, basic quantities) Re- sistance, Drag (force)	Force opposing translatory velocity, generally for a completely immersed body	N
F^{F}_{2}		(ships, basic quantities) Cross force	Force normal to lift and drag	N
F^{F}_{3}		(ships, basic quantities) Lift (force)	Force perpendicular to translatory velocity	N
FG		(ships, hydrostatics, stabil- ity) Longitudinal centre of gravity from forward per- pendicular	Distance of centre of gravity from forward perpendicular	m
FG		(seakeeping, large ampli- tude motions capsizing) Longitudinal centre of grav- ity, from forward perpendic- ular	Distance of centre of gravity from forward perpendicular	m

Symbol	Acronym	Name	Explanation	Unit
F _H		<i>(sailing vessels)</i> Heeling force of sails		N
$F^{ m h}{}_{ m u}$		(solid body mechanics, iner- tial and hydro properties) Generalized hydrodynamic force		N
$F_{ m IN}$		(<i>ice going vessels</i>) Normal ice force on a body	Projection of hull - ice inter- action force on the external normal	N
F _{IT}		(<i>ice going vessels</i>) Tangen- tial ice force on a body	Projection of the hull - ice interaction force on the di- rection of motion	N
F_i		(ships, unsteady propeller forces) Vibratory force	<i>i</i> = 1, 2, 3	Ν
F_{L}		(ships, seakeeping) Wave excited lateral shear force	Alias horizontal!	Ν
$F_{ m N}$		(<i>ships, seakeeping</i>) Wave excited normal shear force	Alias vertical!	Ν
FP		<i>(hull geometry)</i> Fore perpendicular		
$F_{ m P}$		(<i>ships, performance</i>) Force pulling or towing a ship		Ν
$F_{ m P0}$		(ships, performance) Pull during bollard test		Ν
Fr		(fluid mechanics, flow pa- rameter) Froude number	$V / (g L)^{1/2}$	1
F_{R}		(sailing vessels) Driving force of sails		Ν
Fr _c		(hydrofoil boats) Froude number based on chord length	$V / (g \ c_{\rm M})^{1/2}$	1
Fr _h		<i>(fluid mechanics, flow pa- rameter)</i> Froude depth num- ber	$V / (g h)^{1/2}$	1
Fr _I		<i>(ice going vessels)</i> Froude number based on ice thick- ness	$V/(g h_{\rm I})^{1/2}$	1
<i>Fr</i> _L		(hydrofoil boats) Froude number based on foil dis- tance	$V/(g L_{\rm F})^{1/2}$	1
Frv		<i>(fluid mechanics, flow pa- rameter)</i> Froude displace- ment number	$V/(g \nabla^{1/3})^{1/2}$	1
$F^{S}{}_{i}$		(solid body mechanics, loads) Shearing force	$F^{S0}{}_2$, $F^{S0}{}_3$	Ν

Version 2024

Acronym

Name

ITTC

F, f

SI-

Definition or

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
F ^S u		<i>(solid body mechanics, loads)</i> Force or load acting at a given planar cross-section of the body, generalized, in section coordinates!	$ F^{S}{}_{i} = F^{S0}{}_{i} F^{S}{}_{3+i} = F^{S1}{}_{i} = M^{B}{}_{i} $	N Nm
F^{T}		(solid body mechanics, loads) Tensioning or normal force	F^{S0} 1	N
F _{TA}		<i>(planing, semi-displacement vessels)</i> Appendage drag force (parallel to reference line)	Drag forces arising from ap- pendages inclined to flow, assumed to act parallel to the reference line	N
F _{TB}		<i>(planing, semi-displacement vessels)</i> Bottom frictional force (parallel to reference line)	Viscous component of bot- tom drag forces assumed acting parallel to the refer- ence line	N
F _{TK}		<i>(planing, semi-displacement vessels)</i> Keel or skeg drag force (parallel to reference line)	Drag forces arising from keel or skeg, assumed to act parallel to the reference line	N
F_{TRP}		<i>(planing, semi-displacement vessels)</i> Additional rudder drag force (parallel to reference line)	Drag forces arising from in- fluence of propeller wake on the rudder assumed to act parallel to the reference line	N
F _u		(solid body mechanics, loads) Force, generalized, load, in body coordinates	$M^{F}_{u} = M^{M}_{u}$ $F_{i} = F^{0}_{i}$ $F_{3+i} = F^{1}_{i}$	N
F _u		(ships, unsteady propeller forces) Generalized vibra- tory force	u = 1,, 6 u = 1, 2, 3: force u = 4, 5, 6: moment	N N Nm
$F_{ m V}$		(sailing vessels) Vertical force of sails		N
F_{XI}		<i>(ice going vessels)</i> Components of the local ice force		N
F _x		(<i>fundamental, statistical</i>) Probability function (distri- bution) of a random quantity		1
F_x		(solid body mechanics, loads) Force in direction of body axis x		Nm
F_{xy}		(<i>fundamental, statistical</i>) Joint probability function (distribution) function of two random quantities		1
F _{YI}		<i>(ice going vessels)</i> Components of the local ice force		Ν

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
F_y		(solid body mechanics, loads) Force in direction of body axis y		N
F _{ZI}		<i>(ice going vessels)</i> Components of the local ice force		N
F_z		(solid body mechanics, loads) Force in direction of body axis z		N
f		(uncertainty) Function	Functional relationship be- tween measurand <i>Y</i> and in- put quantities X_i on which <i>Y</i> depends, and between out- put estimate <i>y</i> and input esti- mates x_i on which <i>y</i> de- pends.	1
f		(fundamental, time and fre- quency domain quantity, ships, seakeeping, environ- mental mechanics, wave, ships, basic quantities) Frequency	$2\pi\omega=1/T$	Hz
f		(ships, hull geometry, hydro- statics, stability, seakeeping, large amplitude motions, capsizing) Freeboard	From the freeboard mark- ings to the freeboard deck, according to official rules	m
f		(ships, propulsor geometry) Camber of a foil section		m
f		<i>(ships, appendage geometry)</i> Camber of an aerofoil or a hydrofoil	Maximum separation of me- dian and nose-tail line	m
f		(ships, hull resistance) Friction coefficient	Ratio of tangential force to normal force between two sliding bodies	1
<i>f</i> AA		(planing, semi-displacement vessels) Lever of wind resistance R _{AA}	Distance between R_{AA} and centre of gravity (measured normal to R_{AA})	m
fар		<i>(planing, semi-displacement vessels)</i> Lever of appendage drag <i>R</i> _{AP}	Distance between R_{AP} and centre of gravity (measured normal to R_{AP})	m
fbl		(<i>ships, hull geometry</i>) Area coefficient for bulbous bow	$A_{\rm BL}$ / (L T)	1
<i>f</i> вт		<i>(ships, hull geometry)</i> Tay- lor sectional area coefficient for bulbous bow	$A_{ m BT}$ / $A_{ m X}$	1

Version 2024

F, f

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
fc		(fundamental, time and fre- quency domain quantity) Basic frequency in repeating functions	1 / T _C	Hz
fD		(ships, propulsor geometry) Camber of duct profile		m
fЕ		(ships, seakeeping) Fre- quency of wave encounter	1 / T _E	Hz
f _F		(planing, semi-displacement vessels) Lever of frictional resistance $R_{\rm F}$	Distance between R_F and centre of gravity (measured normal to R_F)	m
fīD		<i>(ice going vessels)</i> Coefficient of friction between surface of body and ice (dynamic)	Ratio of tangential force to normal force between two bodies (dynamic condition)	1
fis		<i>(ice going vessels)</i> Coefficient of friction between surface of body and ice (static)	The same as above (static condition)	1
fi		<i>(fluid mechanics, flow fields)</i> Mass specific force	Strength of force fields, usu- ally only gravity field g _i	m/s ²
fк		<i>(planing, semi-displacement vessels)</i> Lever of skeg or keel resistance <i>R</i> _K	Distance between $R_{\rm K}$ and centre of gravity (measured normal to $R_{\rm K}$)	m
fL		<i>(fluid mechanics, lifting sur- faces)</i> Camber of lower side (general)		m
fр		<i>(environmental mechanics, waves)</i> Spectral peak in frequency	Frequency at which the spectrum has its maximum	Hz
f _R		(environmental mechanics, waves) Frequency resolution	$1/T_{\rm R}$	Hz
fr		(planing, semi-displacement vessels)Lever of augmented rudder drag $\Delta R_{\rm RP}$	Distance between $\Delta R_{\rm RP}$ and centre of gravity (measured normal to $\Delta R_{\rm RP}$)	m
fs		(fundamental, time and fre- quency domain quantity, en- vironmental mechanics, waves) Frequency of sam- pling, Sample frequency	1 / T _S period in repeating spectra	Hz
fs		(planing, semi-displacement vessels) Lever of axial pro- peller thrust	Distance between axial thrust and centre of gravity (measured normal to shaft line)	m
fT		(<i>planing, semi-displacement</i> vessels) Lever of total re- sistance $R_{\rm T}$	Distance between $R_{\rm T}$ and centre of gravity (measured normal to $R_{\rm T}$)	m

Version 2024

F, f

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
fт		(ships, hull geometry) Sec- tional area coefficient for transom stern	$A_{\mathrm{T}} / A_{\mathrm{X}}$	1
fu		(fluid mechanics, lifting sur- faces) Camber of upper side		m
fw		(environmental mechanics, waves) Basic wave fre- quency	1 / T _W	Hz
f _w		<i>(ships, performance)</i> Weather factor, a non-di- mensional coefficient indi- cating the decrease of speed in representative sea condi- tions	$f_{w} = \frac{speed in wind and waves}{speed in calm water} = \frac{V_{w}}{V_{ref}}$	1
fwi		<i>(environmental mechanics, waves)</i> Frequencies of harmonic components of a periodic wave	i f _W	Hz
fx		(<i>fundamental, statistical</i>) Probability density of a ran- dom quantity	$d F_x/dx$	
fxy		(<i>fundamental, statistical</i>) Joint probability density of two random quantities	$\partial^2 F_{xy}/(\partial x \partial y)$	
f_z		(<i>ships, seakeeping</i>) Natural frequency of heave	$1/T_z$	Hz
$f_{ heta}$		(ships, seakeeping) Natural frequency of pitch	$1 / T_{\theta}$	Hz
f_{φ}		(<i>ships, seakeeping</i>) Natural frequency of roll	$1 / T_{\varphi}$	Hz

F, f

ITTC Symbols

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
G		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Centre of gravity of a vessel		
$G^0 i$, G_i		(solid body mechanics, loads) Gravity or weight force in body coordinates!	$G_i = G^0_i = m^0_{ij} g_j$ $= mg_i$	N
$G^{1}{}_{i}$		(solid body mechanics, loads) Gravity or weight moment in body coordi- nates!	$G_{3+i} = G^{1}{}_{i} = \varepsilon_{ikj} x_k G^{0}{}_{j}$ $= m^{1}{}_{ij} g_j$	Nm
<u>GG</u> 1		<i>(seakeeping, large amplitude motions capsizing)</i> Vertical stability lever caused by a weight shift or weight addition	$\overline{KG}_1 = \overline{KG}_0 + \overline{GG}_1$	m
<u>G</u> G _H		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Hori- zontal stability lever caused by a weight shift or weight addition		m
<u>GG</u> L _□		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Longi- tudinal stability lever caused by a weight shift or weight addition		m
<u>G</u> G _V		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Vertical stability lever caused by a weight shift or weight addi- tion	$\overline{KG_1 = \overline{KG_0 + \overline{GG_1}}}$	m
GM		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Trans- verse metacentric height	Distance of centre of gravity to the metacentre $\overline{GM} = \overline{KM} - \overline{KG}$ (not corrected for free sur- face effect)	m
$\overline{GM}_{\rm EFF}$		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Effec- tive transverse metacentric height	<u><i>GM</i></u> Corrected for free sur- face and/or free communica- tion effects	m

G, <u>g</u>

ITTC Symbols

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
		/ 1 · 1 · 1	Distance from the control of	1
$\overline{GM_L}$		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Longi- tudinal metacentric height	bistance from the centre of gravity G to the longitudinal metacentre M_L $\overline{GM_L} = \overline{KM_L} - \overline{KG}$	m
Gu		(solid body mechanics, loads) Gravity or weight force, generalized, in body coordinates!	$G_u = m_{uv} g_v$	N
<u>GZ</u>		<i>(seakeeping, large amplitude motions capsizing)</i> Arm of static stability corrected for free surfaces - IMO/table		m
GZ		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Right- ing arm or lever	$\frac{\overline{GZ}}{\overline{AG}_V} = \overline{AZ} - \frac{1}{\overline{AG}_V} \sin \varphi \overline{AG}_T \cos \varphi$	m
<u>GZ</u> _{MAX}		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Maxi- mum righting arm or lever		m
$G_{ m Z}$		(<i>ships, propulsor geometry</i>) Gap between the propeller blades	$2\pi r\sin(\varphi)/z$	m
g		(ships, basic quantities) Ac- celeration of gravity	Weight force / mass, strength of the earth gravity field	m/s ²
g		(seakeeping, large amplitude motions capsizing, ships, hy- drostatics, stability) Centre of gravity of an added or re- moved weight (mass)		1
g^E		<i>(fundamental, statistical)</i> Expected value of a function of a random quantity	$E(g) = \int g(x) f_x(x) dx$ $x = -\infty \dots \infty$	
gi		(solid body mechanics, loads) Gravity field strength, in body coordinates!		m/s ²
g^M		(<i>fundamental, statistical</i>) Expected value of a function of a random quantity	$E(g) = \int g(x) f_x(x) dx$ $x = -\infty \dots \infty$	
g^{MR}		(<i>fundamental, statistical</i>) Expected value of a function of a random quantity	$E(g) = \int g(x) f_x(x) dx$ $x = -\infty \dots \infty$	
g ^{MR}		(<i>fundamental, statistical, stochastic</i>) Mean of a func- tion of a random quantity	$M(g(t)) = \lim_{t \to T/2} (1/T \int g(t) dt)$ $t = -T/2 \dots +T/2$ $T = -\infty \dots +\infty$	
Version 20	24			G, g
-----------------	---------	---	---	------------------
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
g ^{MS}		(fundamental, statistical, stochastic) Average or sam- ple mean of a function of a random quantity	$A(g(t)) = 1/T \int g(t)dt$ $t = 0 \dots + T$	
gu		(solid body mechanics, loads) Gravity field strength generalized, in body coordi- nates	$, \begin{array}{l} g_i = g^1{}_i \\ g_{3+i} = 0 \end{array}$	m/s ²

35

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
Н		(fluid mechanics, flow fields) Total head	e / w = h + p/w + q/w	m
Н		(ships, basic quantities) Height		m
Н		<i>(fluid mechanics, boundary layers)</i> Boundary layer shape parameter	δ^* / $oldsymbol{\Theta}$	1
Н		(sailing vessels) Side force		N
H_1		(<i>ships, hull resistance, water</i> <i>jets</i>) Local total head at sta- tion 1		m
H ₃₅		(ships, hull resistance, water jets) Mean increase of total head across pump and stator or several pump stages		m
$H_{\rm CG}$		(ACV and SES) Height of centre of gravity above mean water plane beneath craft		m
H _{DK}		(multi-hull vessels) Deck clearance	Minimum clearance of wet deck from water surface at rest	m
H _d		<i>(environmental mechanics, waves)</i> Wave height by zero down-crossing	The vertical distance be- tween a crest and a succes- sive trough.	m
$H_{ m E}$		(fluid mechanics, boundary layers) Entrainment shape parameter	$(\delta - \delta^*) / \Theta$	1
H _H		(ACV and SES) Vertical spacing between inner and outer side skirt hinges or at- tachment points to structure	needs clarification	m
H _{ij}		(ships, propulsor geometry, water jets) Head between station i and j		m
H _{JS}		(ships, propulsor geometry, water jets) Jet System Head	$\frac{P_{\text{JSE}}}{Q_J}$	m
HL		(seakeeping, large amplitude motions capsizing) Heeling lever (due to various rea- sons) - IMO/HSC'2000		
H _{mo}		<i>(environmental mechanics, waves)</i> Significant wave height based on zeroth moment for narrow banded spectrum	$4 (m_0)^{1/2}$	m

H _N	<i>(fluid mechanics, cavitation)</i> Net useful head of turbo-en- gines		m
H _{SK}	(ACV and SES) Skirt depth		m
H _{SS}	(multi-hull vessels) Strut submerged depth	Depth of strut from still wa- ter line to strut-hull intersec- tion	m
H _{TC}	(ships, propulsor geometry) Hull tip clearance	Distance between the propel- ler sweep circle and the hull	m
H _U	<i>(fluid mechanics, cavitation)</i> Total head upstream of turbo-engines		m
Hu	<i>(environmental mechanics, waves)</i> Wave height by zero up-crossing	The vertical distance be- tween a trough and a succes- sive crest	m
$H_{ m W}$	(environmental mechanics, waves) Wave height	The vertical distance from wave crest to wave trough, or twice the wave amplitude of a harmonic wave. $\eta_{\rm C}$ - $\eta_{\rm T}$	m
H _{W1/3}	<i>(environmental mechanics, waves)</i> Significant wave height. Sum of significant wave height of swell and wind waves	Average of the highest one third wave heights	m
H _{1/3S}	<i>(environmental mechanics, waves)</i> Significant wave height of swell	Average of the highest one third wave heights of the swell.	m
H _{1/3W}	(environmental mechanics, waves) Significant wave height of wind waves.	Average of the highest one third wave heights of the wind waves.	m
$H_{ m WV}$	<i>(environmental mechanics, waves)</i> Wave height estimated from visual observation		m
H_{σ}	<i>(environmental mechanics, waves)</i> Estimate of significant wave height from sample deviation of wave elevation record		m
h	(fluid mechanics, flow fields) Static pressure head	Δz_0 , z_0 -axis positive vertical up!	m
h	(ships, basic quantities, ships, manoeuvrability) Depth, Water depth		m

Version 2024			H, h	
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
h		(seakeeping, large amplitude motions capsizing) Maxi- mum tank height		m
h		(seakeeping, large amplitude motions capsizing) Vertical distance from the centre of A to the waterline		m
h_0		(ships, propulsor geometry) Immersion	The depth of submergence of the propeller measured vertically from the propeller centre to the free surface	m
h _{1A}		(ships, propulsor geometry, water jets) maximum height of cross sectional area of stream tube at station 1A		m
$h_{ m BS}$		(ACV and SES) Bow seal height	Distance from side wall keel to lower edge of bow seal	m
h _{CE}		(seakeeping, large amplitude motions capsizing) Height of centre of area of A _{SP} above waterline at SSM		m
h _{CG}		(hydrofoil boats) Height of centre of gravity foil borne	Distance of centre of gravity above mean water surface	m
$h_{ m F}$		(hydrofoil boats) Flight height	Height of foil chord at foil borne mode above position at rest	m
hI		<i>(ice going vessels)</i> Thickness of ice		m
hJ		(ships, propulsor geometry, water jets) Height of jet cen- treline above undisturbed water surface		m
h_{K}		(hydrofoil boats) Keel clear- ance	Distance between keel and mean water surface foil borne	m
$h_{ m LP}$		(seakeeping, large amplitude motions capsizing) Height of waterline above centre of area of immersed profile		m
$h_{ m M}$		(ships, manoeuvrability) Mean water depth		m
$h_{ m P}$		<i>(planing, semi-displacement vessels)</i> Wetted height of strut palms (flange mount-ing)		m

Version 20	24			H, h
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
		(planing, semi-disp	lacement	
<i>b</i>		wassals) Wattad hai	abt of	m

$n_{\rm R}$	vessels) welled height of		111
	rudders		
$h_{ m SN}$	<i>(ice going vessels)</i> Thickness of snow cover		m
$h_{\rm SS}$	(ACV and SES) Stern seal height	Distance from side wall keel to lower edge of stern seal	m
$h_{ m R}$	<i>(planing, semi-displacement vessels)</i> Wetted height of rudders		m

ITTC Symbol	Acronym	Name	Definition or Explanation
I		(fundamental, time and fre- quency domain quantity) Im- aginary variable	
Ι		(fluid mechanics, flow fields) Induction factor	Ratio between velocities in- duced by helicoidal and by straight line vortices
Ι		(ships, basic quantities) Mo- ment of inertia	Second order moment of a mass distribution
Ι		(sailing vessels) Fore trian- gle height	
I ₁₂ I ₂₃ I ₃₁		(solid body mechanics, iner- tial and hydro properties) Real products of inertia in case of non-principal axes	
<i>I^huv</i>		(solid body mechanics, iner- tial and hydro properties) Generalized hydrodynamic inertia	$\partial F_u^h / \partial \dot{V_v}$
I _{ij}		(solid body mechanics, iner- tial and hydro properties) Second moments of mass, i.e. inertia distribution	Alias mass moments of iner- tia
I _{AS}		(seakeeping, large amplitude motions capsizing) Attained subdivision index	
IL		(solid body mechanics, iner- tial and hydro properties) Longitudinal second mo- ment of water-plane area	About transverse axis through centre of floatation
IT		(solid body mechanics, iner- tial and hydro properties) Transverse second moment	About longitudinal axis through centre of floatation

of water-plane area

(ships, hull resistance, water

jets) Intake velocity ratio (solid body mechanics, inertial and hydro properties)

Real products of inertia in case of non-principal axes (solid body mechanics, inertial and hydro properties)

Pitch moment of inertia around the principal axis y $V_{\rm I}/V$

ITTC Symbols

Version 2024

 $I_{\rm VR}$

 I_{xy}

*I*_y , *I*_{yy},

I, i IT SI-Sy Unit Ι 1

1

m

kg m²

kg m²

kg m²

1

 m^4

m⁴

1

kg m²

 $kg m^2$

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
I _{yz}		(solid body mechanics, iner- tial and hydro properties) Real products of inertia in case of non-principal axes		kg m ²
I_z , I_{zz}		(solid body mechanics, iner- tial and hydro properties) Yaw moment of inertia around the principal axis z		kg m ²
I _{zx}		(solid body mechanics, iner- tial and hydro properties) Real products of inertia in case of non-principal axes		kg m ²
i		(fundamental, time and fre- quency domain quantity) Im- aginary unit	$\sqrt{-1}$	1
i _{EI}		<i>(multi-hull vessels)</i> Half an- gle of entrance at tunnel (in- ner) side	Angle of inner water line with reference to centre line of demihull	rad
$\dot{i}_{ m EO}$		(multi-hull vessels) Half angle of entrance at outer side	Angle of outer water line with reference to centre line of demihull	rad
i _E		(ships, hull geometry) Angle of entrance, half	Angle of waterline at the bow with reference to centre plane, neglecting local shape at stem	rad
i _G		(ships, propulsor geometry) Rake ISO symbol: Rk	The distance between the propeller plane and the gen- erator line in the direction of the shaft axis. Aft displace- ment is positive rake.	m
i _R		(ships, hull geometry) Angle of run, half	Angle of waterline at the stern with reference to the centre-plane, neglecting lo- cal shape of stern frame	rad
is		(ships, propulsor geometry) Rake, skew-induced	The axial displacement of a blade section which occurs when the propeller is skewed. Aft displacement is positive rake	m
i _T		(ships, propulsor geometry) Rake, total	The axial displacement of the blade reference line from the propeller plane $i_G + i_S = c_S \sin\varphi$ Positive direction is aft.	m

Version 2024

SI-Unit

I, i

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
J		(ships, propulsor perfor- mance) Propeller advance ratio	$V_{\rm A} / (D n)$	1
J		(sailing vessels) Fore trian- gle base		m
$J_{ m A}$		(ships, propulsor perfor- mance) Apparent or hull ad- vance ratio	$V/(D n) = V_{\rm H}/(D n)$	1
$J_{ m H}$		(ships, propulsor perfor- mance) Apparent or hull ad- vance ratio	$V/(D n) = V_{\rm H}/(D n)$	1
$J_{ m P}$		(ships, propulsor perfor- mance) Propeller advance ratio for ducted propeller	$V_{\rm P}/(D n)$	1
$J_{\mathrm{P}\mathcal{Q}}$		(ships, propulsor perfor- mance) Advance ratio of propeller determined from torque identity		1
J _{PT}		(ships, propulsor perfor- mance) Advance ratio of propeller determined from thrust identity		1
J_Q		(ships, propulsor perfor- mance) Advance ratio of propeller determined from torque identity		1
J_T		(ships, propulsor perfor- mance) Advance ratio of propeller determined from thrust identity		1
$J_{ m VR}$		(<i>ships, hull resistance, water jets</i>)) Jet velocity ratio	$V_{\rm J}/V$	1
j		(fundamental, time and fre- quency domain quantity) In- teger values	-∞+∞	s

J, j

ITTC Symbols

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actoliyili	Indiffe	Explanation	Unit
				-
		(ships, hydrostatics, stability		
V		seakeeping, large amplitude		
Λ		motions capsizing) Keel ref-		
		erence		
		(ships, manoeuvrability, sea-		
		keeping, solid body mechan-		
Κ		ics, loads) Roll moment on		Nm
		body, moment about body x-		
		axis		
		(ships, manoeuvrability, sea-		
Κ		<i>keeping</i>) Gain factor in linear		1/s
		manoeuvring equation		
		(solid body mechanics,		
Κ		<i>loads</i>) Moment around body		Nm
		axis x		
-		(ships, performance) Ship		
K_1		model correlation factor for	$\eta_{\rm DS} / \eta_{\rm DM}$	1
-		propulsive efficiency		
_		(ships, performance) Ship		
<i>K</i> ₂		model correlation factor for	$n_{\rm S}/n_{\rm M}$	1
_		propeller rate revolution		
		(ships, hydrostatics, stability,		
		seakeeping, large amplitude	Distance from the assumed	
KA		<i>motions capsizing</i>) Assumed	centre of gravity A to the	m
		centre of gravity above	moulded base or keel K	
		moulded base or keel		
			Scale effect correction factor	
V		(ships, performance) Ap-	for model appendage drag	1
A APP		pendage correction factor	applied at the towing force in	1
			a self-propulsion test	
		(ships, hydrostatics, stability,		
		seakeeping, large amplitude	Distance from the centre of	
KB		motions capsizing) Centre of	buoyancy B to the moulded	m
		buoyancy above moulded	base or keel K	
		base or keel		
		(ships, hull resistance) R.E.	$(A \pi)^{1/2} F_{r} = 0r$	
K^C		Froude's speed displacement	(4π) FV OI $(4-(-))^{1/2}W$ $(F^{1/6})$	1
		coefficient	$(4\pi/g)^{-1}V_{\mathrm{K}}/V^{-1}$	
		(ships, unsteady propeller		
K_{Fi}		<i>forces)</i> Vibratory force	$F_i / (\rho n^2 D^4)$	1
		coefficients		
		(ships, unsteady propeller	According to definitions of	
K _{Fu}		forces) Generalized vibratory	According to definitions of V and V	1
		force coefficients	$\mathbf{\Lambda}_{Fi}$ and $\mathbf{\Lambda}_{Mi}$	

K, k

ITTC Symbols

Version 2024

43

ITTC	Aaronym	Nama	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit
		(ships, hydrostatics, stability,		
		seakeeping, large amplitude	Distance from centre of grav-	
KG		motions capsizing) Centre of	ity G to the moulded base or	m
		gravity above moulded base	keel K	
		or keel		
		(ships, hydrostatics, stability,		
		seakeeping, large amplitude	Distance from centre of gray	
<u><i>K</i></u>		motions capsizing) Vertical	ity g to the moulded base or	m
ĸу		centre of gravity of added or	keel K	111
		removed weight above	Keel K	
		moulded base or keel		
К.,		(ships, propulsor geometry,	<u>g</u> H	
TH I I I I I I I I I I I I I I I I I I I		<i>water jets)</i> Head coefficient:	<i>n</i> ² <i>D</i> ⁵	
		(ships, hydrostatics, stability,		
		seakeeping, large amplitude	Distance from the transverse	
KM		motions capsizing) Trans-	metacentre M to the moulded	m
		verse metacentre above	base or keel K	
		moulded base or keel		
		(ships, unsteady propeller	2 - 5	
K_{Mi}		forces) Vibratory moment	$M_i / (\rho n^2 D^3)$	1
		coefficients		
		(ships, hydrostatics, stability,		
		seakeeping, large amplitude	Distance from the longitudi-	
KM_L		motions capsizing) Longitu-	nal metacentre M_L to the	m
		dinal metacentre above	moulded base or keel K	
		moulded base or keel		
V		(ships, propulsor perfor-	$P_{-}/(2\pi^{3}D^{5}) = 2 - K$	1
Kp		<i>mance</i>) Delivered power co-	$P_{\rm D}/(\rho n^{\circ} D^{\circ}) = 2 \pi K_Q$	1
K_p		(snips, unsteady propetter	$p / (\rho n^2 D^2)$	1
-		(shing monulacy perfor		
V		(snips, propulsor perjor-	$O((a m^2 D^5))$	1
κų		<i>iats</i>)) Torque coefficient	Q / (p n D)	1
		(ships hull resistance water	0.	
K_{QJ}		<i>(snips, null resistance, water iets)</i> Flow rate coefficient:	$\frac{Q}{nD^3}$	1
		(shins propulsor perfor-		
		(<i>snips</i> , <i>propulsor perjor</i> <i>mance</i>) Torque coefficient of		
K_{Q0}		propeller converted from be-	$K_Q \eta_{\rm R}$	1
		hind to open water condition		
		(ships, propulsor perfor-		
		<i>mance</i>) Torque coefficient of		
K_{QT}		propeller determined from		1
		thrust coefficient identity		
		(ice going vessels) Average	2 - 5	
K_{QIA}		coefficient of torque in ice	$Q_{\rm IA} / (\rho_{\rm W} n_{\rm IA}^2 D^3)$	1
		· .		

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
		(ships, propulsor perfor-		
K _{SC}		<i>mance</i>) Centrifugal spindle torque coefficient	$Q_{\rm SC} / (\rho n^2 D^5)$	1
K _{SH}		<i>(ships, propulsor perfor- mance)</i> Hydrodynamic spin- dle torque coefficient	Q_{SH} / ($ ho n^2 D^5$)	1
K_R		(ships, hull resistance) Re- sistance coefficient corre- sponding to K_Q , K_T	$R / (\rho D^4 n^2)$	1
K _T		(ships, propulsor perfor- mance) Thrust coefficient	$T/(\rho n^2 D^4)$	1
K _{TD}		(ships, propulsor perfor- mance) Duct thrust coeffi- cient for a ducted propeller unit	$T_{\rm D} / (ho \ n^2 \ D^4)$	1
K _{TIA}		(<i>ice going vessels</i>) Average coefficient of thrust in ice	$T_{\rm IA} / \left(\rho_{\rm W} n_{\rm IA}^2 D^4 \right)$	1
K _{TP}		(<i>ships</i> , <i>propulsor perfor-</i> <i>mance</i>) Propeller thrust coef- ficient for a ducted propeller unit	$T_{\rm P} / (\rho \ n^2 \ D^4)$	1
K _{TQ}		(<i>ships</i> , <i>propulsor perfor-</i> <i>mance</i>) Thrust coefficient achieved by torque identity		1
$K_{T\mathrm{T}}$		(<i>ships, propulsor perfor-</i> <i>mance</i>) Total thrust coeffi- cient for a ducted propeller unit	$K_{TP}+K_{TD}$	1
k		<i>(uncertainty)</i> Coverage fac- tor	Used to calculate expanded uncertainty $U = ku_c(y)$	1
k		(fluid mechanics, flow pa- rameter) Roughness height or magnitude	Roughness height, usually in terms of some average	m
k		(environmental mechanics, waves) Wave number	$2 \pi / L_{\mathrm{W}} = \omega^2 / g$	1/m
k		(<i>ships, hull resistance</i>) Three dimensional form factor on flat plate friction	$(C_{\rm V} - C_{\rm F0}) / C_{\rm F0}$	1
k		(solid body mechanics, iner- tial and hydro properties) Roll radius of gyration around the principal axis x	$(I_{xx}/m)^{1/2}$	m
k		(seakeeping, large amplitude motions capsizing) Roll damping coefficient express- ing the effect of bilge keels		1

Version 2024

Symbol	Acronym	Name	Explanation	Unit
k_p		<i>(uncertainty)</i> Coverage factor for probability <i>p</i>	Used for calculation of expanded uncertainty $U_p = k_p u_c(y)$	1
k _P		(ships, resistance and pro- pulsion, propulsor perfor- mance) Roughness height of Propeller blade surface		m
k _S		(fluid mechanics, flow pa- rameter) Sand roughness	Mean diameter of the equiva- lent sand grains covering a surface	m
$k_{ m S}$		(ships, resistance and pro- pulsion, ship performance) Roughness height of Hull surface		m
k _x , k _{xx}		(solid body mechanics, iner- tial and hydro properties) Roll radius of gyration around the principal axis x	$(I_{xx}/m)^{1/2}$	m
ky, kyy		(solid body mechanics, iner- tial and hydro properties) Pitch radius of gyration around the principal axis y	$(I_{yy}/m)^{1/2}$	m
kz, kzz		(solid body mechanics, iner- tial and hydro properties) Yaw radius of gyration around the principal axis z	$(I_{zz}/m)^{1/2}$	m
$k(\theta)$		<i>(ships, hull resistance)</i> Wind direction coefficient	CAA/ CAA0	1

Definition or

ITTC Symbols

Version 2024 ITTC

Name

Acronym

K, k SI-

L	(ships, hull geometry) Length of ship	Reference length of ship (generally length between the perpendiculars)	m
L	(ships, basic quantities) Length		m
L	(ships, basic quantities) Lift (force)	Force perpendicular to trans- latory velocity	N
L	(seakeeping, large amplitude motions capsizing) Length of the vessel on the waterline in maximum load condition - IMO/IS		m
L	<i>(mechanics in general, solid body mechanics)</i> Angular momentum	$L = I\omega (= r^2 m v)$	Kg m s ⁻¹
<i>L</i> ₀	(fluid mechanics, lifting sur- faces) Lift force for angle of attack of zero	$C_{L0}A_{\rm FT}q$	N
L ₀	(hydrofoil boats) Profile lift force for angle of attack of zero	$C_{L0}A_{\rm FT} q$	N
LB	(ACV and SES) Deformed bag contact length		m
L _b	(ships, manoeuvrability, sea- keeping) Static stability lever	$N_{v} \neq Y_{v}$	m
Lc	(planing, semi-displacement vessels) Wetted chine length, underway		m
LC	(ACV and SES) Cushion length		m
L _{CB}	(ships, hydrostatics, stabil- ity) Longitudinal centre of buoyancy (LCB)	Longitudinal distance from reference point to the centre of buoyancy, B such as X _{MCF} from Midships	m
L _{CF}	(ships, hydrostatics, stabil- ity) Longitudinal centre of flotation (LCF)	Longitudinal distance from reference point to the centre of flotation, F such as X _{MCF} from Midships	m
L _{CG}	(ships, hydrostatics, stabil- ity) Longitudinal centre of gravity (LCG)	Longitudinal distance from a reference point to the centre of gravity, G such as X_{MCG} from Midships	m
LCH	(<i>multi-hull vessels</i>) Length of centre section of hull	Length of prismatic part of hull	m

Version 20	24			L, l
ITTC	Aanonyma	Nomo	Definition or	SI-
Symbol	Actollylli	Inallie	Explanation	Unit

L _{CS}	(multi-hull vessels) Length of centre section of strut	Length of prismatic part of strut	m
L _D	(ships, propulsor geometry) Duct length		m
L _{den}	(ships, propulsor geometry) Duct entry part length	Axial distance between lead- ing edge of duct and propel- ler plane	m
L _{DEX}	(ships, propulsor geometry) Duct exit length	Axial distance between pro- peller plane and trailing edge of duct	m
$L_{ m d}$	(ships, manoeuvrability, sea- keeping) Damping stability lever	$(N_r - mux_{\rm G}) / (Y_r - mu)$	m
$L_{ m E}$	(ships, hull geometry) Length of entrance	From the forward perpendic- ular to the forward end of parallel middle body, or maximum section	m
$L_{\rm E}$	(ACV and SES) Effective length of cushion	$A_{\rm C} / B_{\rm C}$	m
$L_{ m EFF}$	(sailing vessels) Effective length for Reynolds Number		m
L _F	<i>(ships, appendage geometry)</i> Length of flap or wedge	Measured in direction paral- lel to keel	m
L _F	(hydrofoil boats) Lift force on foil	$C_L A_{\rm FT} q$	N
$L_{\rm FF}$	(hydrofoil boats) Lift force on front foil	$C_L A_{\rm FF} q$	N
L _{FR}	(hydrofoil boats) Lift force on rear foil	$C_L A_{\rm FR} q$	N
L _{FS}	(ships, hull geometry) Frame spacing	used for structures	m
L _H	(multi-hull vessels) Box length	Length of main deck	m
L _H	(ACV and SES) Horizontal spacing between inner and outer side skirt hinges or at- tachment points to structure	needs clarification	m
L _{HY}	(sailing vessels) Hydrody- namic lift force		N
L _K	(planing, semi-displacement vessels) Wetted keel length, underway		m
L _M	(planing, semi-displacement vessels) Mean wetted length, underway	$(L_{\rm K} + L_{\rm C}) / 2$	m

Version 2024

version 20	24			L/9 I
ITTC	Acronym	Nama	Definition or	SI-
Symbol	Actonym	Inallie	Explanation	Unit

L, l

IIIC	Acronym	Name	Definition of	51-
Symbol	Actoliyili	Ivanie	Explanation	Unit
-			•	
		(multi-hull vessels) Length	I ength of nose section of	
$L_{\rm NH}$		of nose section of hull	hull with variable diameter	m
		(multi-hull vassals) Length	I ength of nose section of	
$L_{\rm NS}$		(multi-null vessels) Length	strut with veriable thickness	m
			strut with variable thickness	
LOA		(snips, nuil geometry)		m
_		Length, overall		
Los		(ships, hull geometry)		m
-05		Length, overall submerged		
		(ships, hull geometry)	I ength of constant trans-	
$L_{ m P}$		Length of parallel middle	verse section	m
		body	verse section	
			L_p	
		(underwater noise)	$\left(\bar{p}_{rms}^{2}\right)$	
L_p		Sound pressure level	$= 10 \log_{10} \left(\frac{P rms}{r^2} \right) dB, p_{ref}$	
		Sound pressure level	(P_{ref})	
			$= 1 \mu Pa$	
		(ships, hull geometry)		m
		Length of Pod Main Body		
IDDE		(ships, hull geometry)	Code length of bottom fin	m
LPBF		Length of Bottom Fin	under pod main body	111
		(ships, hull geometry)		
$L_{\rm PP}$		Length between perpendicu-		m
		lars		
		(planing, semi-displacement		
$L_{\rm PR}$		vessels) Projected chine	Length of chine projected in	m
		length	a plane parallel to keel	
		(ships, hull geometry)	Code length of strut between	
$L_{\rm PS}$		Length of Upper Strut	forward edge and aft edge	m
			From section of maximum	
			area or after end of parallel	
In		(ships, hull geometry)	middle body to waterline ter-	m
LK		Length of run	minute body to waterine ter-	111
			point of the stern	
		(multi hull wasala) Strut	I on ath of strut from loading	
$L_{\rm S}$		length	to trailing adap	m
		(ACV and SEC) Distance f		
		(ACV and SES) Distance of		
Ls		leading skirt contact point	needs clarification	m
		out-board or outer hinge of		
		attachment point to structure		
		(undomustor rosis)		
		(underwater noise)	$=L_{\rm p}$	
$L_{\rm s}$		Underwater sound radiated	$\begin{bmatrix} d \end{bmatrix}_{12}$	
		noise level at a reference dis-	$+20 \log_{10} \left \frac{d_{ref}}{d_{ref}} \right dB, d_{ref}$	
		tance of 1m	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	
			— 1 III	

Version 2024

ITTC

Definition or

ITTC	Acronym	Name	Definition or	SI-
Symbol			Explanation	UIIIt
L _{SB}		(planing, semi-displacement vessels) Total length of shafts and bossings		m
L _{SH}		(multi-hull vessels) Length of submerged hull		m
L _{SS}		(ships, hull geometry) Sta- tion spacing		m
L _{TO}		(hydrofoil boats) Lift force at take off	$C_{LTO}A_{FT}q$	N
$L_{ m VHD}$		(planing, semi-displacement vessels) Vertical component of hydrodynamic lift		Ν
Lvs		(planing, semi-displacement vessels) Hydrostatic lift	Due to buoyancy	N
$L_{ m W}$		(environmental mechanics, waves) Wave length	The horizontal distance be- tween adjacent wave crests in the direction of advance	m
$L_{ m WV}$		(environmental mechanics, waves) Wave length esti- mated by visual observation	Measured in the direction of wave propagation	m
$L_{ m WL}$		(ships, hull geometry) Length of waterline		m
l		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal trimming arm	X _{CG} - X _{CB}	m
l		(seakeeping, large amplitude motions capsizing) Arm of dynamic stability corrected for free surfaces - IMO/table		m
l		(seakeeping, large amplitude motions capsizing) Maxi- mum tank length		m
lb		(<i>ships, manoeuvrability, sea-</i> <i>keeping</i>) Static stability lever	N_v / Y_v	m
lc		(fluid mechanics, cavitation) Cavity length	Streamwise dimension of a fully-developed cavitating region	m
l _{CP}		<i>(planing, semi-displacement vessels)</i> Lever of resultant of pressure forces, underway	Distance between centre of pressure and aft end of plan- ing surface	m
l _d		(ships, manoeuvrability, sea- keeping) Damping stability lever	$(N_r - mux_G) / (Y_r - mu)$	m

L, l

ITTC Symbols

IIIC	Δ cronym	Name	Definition or	51-
Symbol	reconym	ivanie	Explanation	Unit
		(hydrofoil boats) Horizontal		
1		distance of centre of pres-		m
ι_{F}		sure of front foil to centre of		111
		gravity		
		(hydrofoil boats) Horizontal		
l _{FR}		distance between centres of	1 . 1	
		pressure of front and rear	$l_{\rm F} + l_{\rm R}$	m
		foils		
			The length of the hub, in-	
$l_{ m h}$		Hub length	cluding any fore and aft	m
			shoulder	
			Length of the hub taken	
1		Hub longth off	from the propeller plane to	
l _{ha}		Hub length, alt	the aft end of the hub includ-	111
			ing aft shoulder	
			Length of the hub taken	
1		I had a sthe form	from the propeller plane to	
lhf		Hub length, fore	the fore end of the hub in-	111
			cluding fore shoulder	
		(hydrofoil boats) Horizontal		
1		distance of centre of pres-		m
ιR		sure of rear foil to centre of		111
		gravity		
		(ships, manoeuvrability,		
l_r		turning circles) Loop height		rad/s
		of $r \cdot \delta$ curve for unstable ship		
		(seakeeping, large amplitude		
		motions capsizing) Actual		
ls		length of enclosed super-		m
		structure extending from		
		side to side of the vessel		
		(seakeeping, large amplitude		
$l_{ m w}$		motions capsizing) Wind		m
		heeling lever		
		(ships, manoeuvrability,		
l_{δ}		turning circles) Loop width		rad
		of $r \cdot \delta$ curve for unstable ship		

ITTC

Version 2024

SI-

Definition or

	(ships basic quantities) Mo-	First order moment of a	
M	(snips, busic quantities) Wo-	force distribution	Nm
	(shing basic quantities) Mo-		
M	(snips, busic quantities) wo		Ns
	(fundamental statistical		
М	stochastic) Expectation pop-		
111	ulation mean		
	(shing hydrostation stabil		
	(snips, hydrosialics, stabil-	Saa subscripts for qualifica	
Μ	nity) (seakeeping, targe am-	see subscripts for qualifica-	Nm
	pullude motions capsizing)	lion	
	Metacentre of a vessel		
	(solid body mechanics,		
М,	<i>loads</i>) Moment around body		
	axis y		
	(ships, manoeuvrability, sea-		
М	<i>keeping</i>) Pitch moment on		Nm
171	body, moment about body y-		1 111
	axis		
М	(hydrofoil boats) Vessel		Nm
11/1	pitching moment		19111
М	(hull geometry) Midships		
14	(fluid mechanics, flow pa-	V/ -	1
Ма	rameter) Mach number	V / C	1
лиB	(solid body mechanics,	551 551	NT
$M^{D}{}_{i}$	loads) Bending moment	F^{31}_{2}, F^{31}_{3}	Nm
	(ships, hull geometry) R.E.		
M ^C	Froude's length coefficient,	$L / \nabla^{1/3}$	1
	or length-displacement ratio		
	(seakeeping, large amplitude		
	motions capsizing) Maxi-		
Mc	mum offset load moment		Nm
	due to crew		
	(seakeeping large amplitude		
	(seaweeping, in ge amplitude motions cansizing) Mini-		
M.	mum capsizing moment as		Nm
	determined when account is		1 1111
	taken of rolling		
	(hudrofoil hogta) Lond factor		
$M_{ m F}$	(<i>nyarojou boais</i>) Load factor	$L_{\rm FF}$ / Δ	1
	(acaboaning lange annlitude		
	(seakeeping, large amplitude		
$M_{\rm FS}$	<i>motions capsizing)</i> Free sur-		Nm
	face moment at any inclina-		
	tion		
M_i	(ships, unsteady propeller	i = 1, 2, 3	Nm
ν 	<i>forces</i>) Vibratory moment	7 7 -	

Version 20	24			M, m
ITTC	Aaronym	Nomo	Definition or	SI-
Symbol	Actonym	Inallie	Explanation	Unit

ъл

ITTC	Acronym	Name	Definition or	SI-
Symbol			Explanation	Unit
$M_{ m L}$		(<i>ships, seakeeping</i>) Wave excited lateral bending mo- ment	Alias horizontal!	Nm
\overline{M}_{is}		(ships, hull resistance, water jets) Momentum flux at sta- tion s in i direction	$\iint_{A_{S}}\rho u_{i}(u_{j}n_{j})dA$	W
$M_{ m N}$		(<i>ships, seakeeping</i>) Wave excited normal bending mo- ment	Alias vertical!	Nm
M, MR		(<i>fundamental, statistical, stochastic</i>) Expectation, population mean		
M _R		(hydrofoil boats) Load factor of rear foil	$L_{ m FR}$ / \varDelta	1
$M_{ m R}$		<i>(seakeeping, large amplitude motions capsizing)</i> Heeling moment due to turning		Nm
$M_{ m S}$		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Mo- ment of ship stability in gen- eral	$\Delta \overline{GZ}$ Other moments such as those of capsizing, heeling, etc. will be represented by $M_{\rm S}$ with additional sub- scripts as appropriate	Nm
MS		(fundamental, statistical, stochastic) Average, sample mean		1
$M_{ m T}$		(ships, seakeeping) Wave excited torsional moment		Nm
M^{T}		(solid body mechanics, loads) Twisting or torsional moment	<i>F</i> ^{S1} 1	Nm
M_{TC}		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Mo- ment to change trim by one centimetre		Nm/cm
M_{TM}		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Moment to change trim by one meter	ΔC_{MTL}	Nm/m

Version 2024

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
			4	
M _{uv}		(ships, unsteady propeller forces, solid body mechan- ics, inertial and hydro prop- erties) Generalized mass, i. e. generalized inertia tensor of a (rigid) body referred to a body fixed coordinate sys-	$egin{aligned} M_{ij} &= M^0{}_{ij} \ M_{i,\ 3+j} &= M^{1 ext{T}}{}_{ij} \ M_{3+i,\ j} &= M^1{}_{ij} \ M_{3+i,\ 3+j} &= M^2{}_{ij} \end{aligned}$	kg
$M_{ m W}$		(seakeeping, large amplitude motions capsizing) Maxi- mum heeling moment due to wind		Nm
$M_{ m v}$		<i>(seakeeping, large amplitude motions capsizing)</i> Dynami- cally applied heeling mo- ment due to wind pressure		Nm
$M_{ m x}$,		(solid body mechanics, loads) Moment around body axis x		Nm
$M_{ m y}$,		(solid body mechanics, loads) Moment around body axis y		Nm
$M_{ m z}$,		(solid body mechanics, loads) Moment around body axis z		Nm
т		(ships, basic quantities, solid body mechanics, inertial and hydro properties) Mass		kg
т		(ships, hydrostatics, stabil- ity) Longitudinal centre of floatation of added buoyant layer	Longitudinal distance from reference point to the centre of the added buoyant layer, b	m
m		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Ship mass	W/g	kg
m		(ships, hull resistance) Blockage parameter	Maximum transverse area of model ship divided by tank cross section area	1
${m^0}_{ij}$, m_{ij}		(solid body mechanics, iner- tial and hydro properties) Zeroth moments of mass, i.e. inertia distribution, mass tensor	$m_{ij} = m \; \delta_{ij}$	kg

ITTC	Acronym	Name	Definition or	SI-
Symbol			Explanation	Unit
m^{1}_{ij}		(solid body mechanics, iner- tial and hydro properties) First moments of mass, i.e. inertia distribution	Alias static moments of mass	kg m
m^2_{22} , m_{55}		(solid body mechanics, iner- tial and hydro properties) Pitch moment of inertia around the principal axis y		kg m ²
m^2_{33} , m_{66}		(solid body mechanics, iner- tial and hydro properties) Yaw moment of inertia around the principal axis z		kg m ²
m^2_{ij} ,		<i>(solid body mechanics, iner- tial and hydro properties)</i> Second moments of mass, i.e. inertia distribution	Alias mass moments of iner- tia	kg m ²
<i>m</i> _{LCC}		<i>(seakeeping, large amplitude motions capsizing)</i> Mass in light craft condition		kg
$m_{\rm LDC}$		(seakeeping, large amplitude motions capsizing) Mass in loaded displacement condi- tion according to		kg
<i>m</i> _{MTL}		<i>(seakeeping, large amplitude motions capsizing)</i> Maxi- mum total load (mass)		kg
m_n		<i>(environmental mechanics, waves)</i> n-th moment of wave power spectral density	$\int f^n S(f) df$	m^2/s^n
m _{SSC}		(seakeeping, large amplitude motions capsizing) Mass in standard sailing conditions according to		kg
m _x		(<i>fundamental, statistical</i>) Average or sample mean of a random quantity	$\frac{1/n \Sigma x_i, i = 1n}{\text{unbiased random estimate of}}$ the expectation with $x^{\text{AE}} = x^{\text{E}}$ $x^{\text{VSE}} = x^{\text{V}} / n$	

Version 2024

N	(ships, basic quantities) Fre-	Alias RPS (RPM in some	Hz
N	<i>quency or rate of revolution</i> <i>(uncertainty)</i> Number of in- put quantities	propulsor applications) Number of input quantities X_i on which the measurand Y	1
N	<i>(ships, manoeuvrability, sea- keeping)</i> Yaw moment on body, moment about body z- axis	depends	Nm
Ν	(solid body mechanics, loads) Moment around body axis z		Nm
NA	(planing, semi-displacement vessels) Appendage lift force (normal to reference line)	Lift forces arising from ap- pendages inclined to flow, assumed to act normally to reference line	Ν
NB	<i>(planing, semi-displacement vessels)</i> Bottom normal force (normal to reference line)	Resultant of pressure and buoyant forces assumed act- ing normally to the reference line	N
NP	(<i>ships, propulsor geometry</i>) Number of propellers		1
N _{PP}	<i>(planing, semi-displacement vessels)</i> Propeller pressure force (normal to reference line)	Resultant of propeller pres- sure forces acting normally to the reference line	N
N _{PS}	<i>(planing, semi-displacement vessels)</i> Propeller suction force (normal to reference line)	Resultant of propeller suc- tion forces acting normally to the reference line	N
Nr	<i>(ships, manoeuvrability, sea- keeping)</i> Derivative of yaw moment with respect to yaw velocity	∂N/∂r	Nms
N _{RP}	(planing, semi-displacement vessels) Rudder pressure force (normal to reference line)	Resultant of rudder pressure forces acting normally to the reference line	N
N _r	<i>(ships, manoeuvrability, sea- keeping)</i> Derivative of yaw moment with respect to yaw acceleration	∂N/∂ř	Nms ²
NVR	(<i>ships, hull resistance, water</i> <i>jets</i>) Nozzle velocity ratio:	$\frac{\overline{u_{6\xi}}}{U_0}$	1

Version 2024

Acronym

Name

ITTC

Symbol

SI-

Unit

Definition or Explanation

ITTC	•	N	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit
$N_{ u}$		(ships, manoeuvrability, sea- keeping) Derivative of yaw moment with respect to sway velocity	$\partial N / \partial v$	Ns
N _v		(ships, manoeuvrability, sea- keeping) Derivative of yaw moment with respect to sway acceleration	$\partial N/\partial \dot{\mathbf{v}}$	Nms ²
N_{δ}		(ships, manoeuvrability, sea- keeping) Derivative of yaw moment with respect to rud- der angle	$\partial N / \partial \delta$	Nm
п		Number of repeated observa- tions		1
n		(ships, basic quantities, per- formance, propulsor perfor- mance) Frequency or rate of revolution	Alias RPS (RPM in some propulsor applications)	Hz
n		(ships, hull resistance, water jets) Impeller rotation rate		Hz
n _{AW}		(<i>ships, seakeeping</i>) Mean in- creased rate of revolution in waves		1/s ²
n _i		(ships, hull resistance, water jets) Unit normal vector in i direction		1
n _{IA}		<i>(ice going vessels)</i> Average rate of propeller revolution in ice		Hz
n _T		(ships, propulsor perfor- mance) Propeller rate of rev- olution, corrected using cor- relation factor	$n_{\mathrm{T}} = C_N \cdot n_{\mathrm{S}}$	1

Version 2024				O , o
ITTC	Aaronum	Nama	Definition or	SI-
Symbol	Actoliyili	Ivame	Explanation	Unit
OG		(seakeeping, large amplitude motions capsizing) Height of centre of gravity above wa- terline		m

ITTC	A	Name	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit
-				
D		(ships, basic quantities)		117
Ρ		Power		w
D		(fluid mechanics, boundary		D
Ρ		<i>lavers</i>) Total pressure		Pa
5		(ships, propulsor geometry)		
P		Propeller pitch in general		m
		(sailing vessels) Mainsail		
P		height		m
		(mechanics in general solid		
Р		hody mechanics) Linear mo-	P - m v	Kg m s ⁻¹
1		mentum	I = m v	ite in s
		(shins seakeening) Mean		
P_{AW}		nower increased in waves		W
		(alian a sufference as a Drate	Derron delivered by avine	
P_{B}		(snips, performance) Brake	Power delivered by prime	W
		power	mover	
		(ships, ship performance)		
$P_{\rm BW}$		Brake power in representa-		W
		tive sea condition		
		(fundamental, statistical,		
PD		stochastic) Probability den-		1
		sity		
D_		(ships, performance) Deliv-	0.0	W 7
ГD		ered power, propeller power	<i>V w</i>	••
		(ships, hull resistance, water		
P_D		<i>jets)</i> Delivered Power to		W
		pump impeller		
מ		(ice going vessels) Delivered	2 = 0	W 7
F DI		power at propeller in ice	$2 n Q_{\rm IA} n_{\rm IA}$	vv
		(ships, ship performance)		
$P_{\mathrm{D}T}$		Delivered Power, corrected	$P_{\rm DT} = C_P \cdot P_{\rm DS}$	W
		using correlation factor	01 -1 05	
D		(ships, performance) Effec-	DU	XX 7
$P_{\rm E}$		tive power, resistance power	R V	W
D		(ships, hull resistance, water		
P_E		<i>jets</i>) Effective power:	$R_{\rm TBH}U_0$	W
		(fundamental, statistical,		
$\mathbf{P}_{\mathbf{F}}$		<i>stochastic</i>) Probability func-		1
- 1		tion		_
		(ACV and SES) Power of lift		
$P_{\rm FCU}$		fan		W
		(ACV and SES) Power of		
$P_{\rm FSK}$		skirt fan		W
		(shing parformance) Indi	Determined from pressure	
P_{I}		(snips, performance) mul-	measured by indicator	W
		(shing propulsor perfor		
P_{J}		(snips, propulsor perjor-	$\eta_{ m TJ}~T~V_{ m A}$	W
		<i>mance</i>) Propener jet power		

P, p

0.1

ITTC Symbols

ITTC Symbol	Acronym	Name	Definition or	SI-
Symbol			Explanation	UIIIt
P _{JSE}		(ships, hull resistance, wa- ter jets) Effective Jet Sys- tem Power	$Q_J H_{1A7}$	W
P_m		<i>(propulsion, propulsor)</i> Propeller mean pitch		m
P_{MB}		(<i>propulsion, propulsor</i>) Blade mean pitch		m
P_n		(ships, manoeuvrability, seakeeping) P-number, heading change per unit rudder angle in one ship length		1
P _P		<i>(ships, performance)</i> Delivered power, propeller power	Qω	W
P _{PE}		(<i>ships, hull resistance, wa-</i> <i>ter jets</i>) Pump effective power:	$Q_J H_{35}$	W
P_R		<i>(ships, performance)</i> Effec- tive power, resistance power	R V	W
Ps		(ships, performance) Shaft power	Power measured on the shaft	W
P_T		(<i>ships, performance</i>) Thrust power	$T V_{\rm A}$	W
P_{TE}		(<i>ships, hull resistance, water jets</i>) Effective thrust power		W
$P_{ m V}$		(seakeeping, large amplitude motions capsizing) Wind pressure		Ра
р		(<i>uncertainty</i>) Probability; Level of confidence	Level of confidence: $0 \le p \le 1.0$	1
p		(solid body mechanics, rigid body motions) Rotational ve- locity around body axis x		rad/s
p		(fluid mechanics, flow fields) Pressure, density of static flow energy		Ра
р		(fluid mechanics, boundary layers) Static pressure		Pa
p		(ships, propulsor geometry) Pitch ratio ISO Symbol: P/D	P / D	1
р		(ships, unsteady propeller forces) Pressure		Ра
р		<i>(ships, manoeuvrability)</i> Roll velocity, rotational ve- locity about body <i>x</i> -axis		1/s

IIIC	Acronym	Name	Deminuon or	21-
Symbol	<i>i</i> teronym	Tume	Explanation	Unit
		(fluid mechanics, flow fields)		
p_0		Ambient pressure in undis-		Pa
-		turbed flow		
		(ships, hull resistance, water		
p_0		<i>jets)</i> Ambient pressure in un-		N/m²
		disturbed flow		
n.		(fluid mechanics, cavitation)		Do
ра		Ambient pressure		га
n. ~		(fluid mechanics, cavitation)	Absolute ambient pressure at	Do
рас		Collapse pressure	which cavities collapse	га
		(fluid machanics, capitation)	Absolute ambient pressure at	
$p_{ m AI}$		Critical pressure	which cavitation inception	Pa
		Critical pressure	takes place	
np		(ACV and SES) Mean bag		Da
рв		pressure		1 a
npc		(ACV and SES) Bow seal	Pressure in the bow seal bag	Pa
рвз		pressure	Thessure in the bow sear bag	1 a
<i>p</i> c		(fluid mechanics, cavitation)	Pressure within a steady or	Pa
		Cavity pressure quasi-steady ca	quasi-steady cavity	1 a
		(fluid mechanics cavitation)	Pressure, may be negative,	
$p_{\rm CI}$		Initial cavity pressure	i. e. tensile strength, neces-	Pa
			sary to create a cavity	
DCE		(ACV and SES) Mean effec-		Pa
PCE		tive skirt pressure		1 4
DCU		(ACV and SES) Cushion	Mean pressure in the cush-	Pa
ree		pressure	ion	
DFT		(ACV and SES) Fan total		Pa
F • •		pressure		
\mathcal{D}_{LR}		(ACV and SES) Cushion	$P_{\rm CU}/L_{\rm C}$	Pa/m
		pressure to length ratio		
		(ships, hull resistance, water		D
p_s		<i>jets)</i> Local static pressure at		Pa
		station s		
<i>p</i> sk		(ACV and SES) Skirt pres-		Pa
•		sure in general		
pss		(ACV and SES) Stern seal	Pressure in the stern seal bag	Pa
r 55				
$p_{\rm V}$		(fiula mechanics, cavitation)	At a given temperature!	Pa
-		v apour pressure of water		
		(solid body mechanics, rigid		
**		body motions) Rates of		no 1/-2
p		change of components of ro-		rad/s ²
		hading velocity relative to		
		body axes		

P, **p**

SI-

Definition or

ITTC Symbols

Version 2024

ITTC

61

Version 20	24			P, p
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
p		<i>(ships, manoeuvrability)</i> Roll acceleration, angular acceleration about body x- axis	dp / dt	1/s ²

Symbol	Actonym	Name	Explanation	Unit
Q		(ships, performance) Torque	$P_{\rm D}/\omega$	Nm
Q		(fundamental, balances and system related) Quantity un- der consideration		$Q^{\mathrm{U}/\mathrm{s}}$
Q		(fluid mechanics, flow fields) Rate of flow	Volume passing across a control surface in time unit	m ³ /s
Q		(fluid mechanics, boundary layers) Entrainment	b fU dy a	m ² /s
Q		(<i>ships, hull resistance, water</i> <i>jets</i>) Impeller torque		Nm
$Q_{ m AW}$		<i>(ships, seakeeping)</i> Mean torque increased in waves		Nm
$Q_{ m BS}$		(ACV and SES) Bow seal air flow rate	Air flow rate to the bow seal	m ³ /s
$Q_{ m bl}$		(ships, hull resistance, water jets) Volume flow rate inside boundary layer		m³/s
Q^{C}		(fundamental, balances and system related) Convective flux		$Q^{\mathrm{U}/\mathrm{s}}$
$Q_{ m CU}$		(ACV and SES) Cushion air flow rate	Air flow rate to cushion	m ³ /s
Q^{D}		<i>(fundamental, balances and system related)</i> Diffusive flux		$Q^{\mathrm{U}/\mathrm{s}}$
$Q^{ m F}$		<i>(fundamental, balances and system related)</i> Total flux across the surface of the control volume	Inward positive!	$Q^{\mathrm{U}/\mathrm{s}}$
$Q_{ m FB}$		(ships, manoeuvrability, sea- keeping) Torque of bow fin		Nm
$Q_{ m FS}$		(ships, manoeuvrability, sea- keeping) Torque of stern fin		Nm
Q_{IA}		<i>(ice going vessels)</i> Average torque in ice		Nm
Q _J		(ships, hull resistance, water jets) Volume flow rate through water jet system		m³/s
Q^{M}		(fundamental, balances and system related) Molecular diffusion		$Q^{ m U/s}$
Q^{P}		(fundamental, balances and system related) Production of sources in the control vol- ume		$Q^{\mathrm{U}/\mathrm{s}}$

Version 2024

Acronym

Name

ITTC

Definition or

	× 1 • 1 • 1 • .	1	
	(ships, manoeuvrability, sea-		N .T
$Q_{\rm R}$	<i>keeping)</i> Torque about rud-		Nm
	der stock		
		About spindle axis of con-	
Os	(ships, propulsor perfor-	trollable pitch propeller	Nm
	<i>mance</i>) Spindle torque	$Q_{\rm S} = Q_{\rm SC} + Q_{\rm SH}$	
		positive if it increases pitch	
	(fundamental, balances and		
O^{S}	system related) Storage in	da / dt	O ^U /s
2	the control volume, rate of	uq / ui	2 /3
	change of the quantity stored		
	(ships, propulsor perfor-		
$Q_{ m SC}$	mance) Centrifugal spindle		Nm
	torque		
	(ships, propulsor perfor-		
$Q_{ m SH}$	mance) Hydrodynamic spin-		Nm
	dle torque		
0	(ACV and SES) Stern seal air		37
Qss	flow rate	Air now rate to the stern seal	m ^o /s
	(ACV and SES) Total air vol-		37
\mathcal{Q}_{T}	ume flow		m ^o /s
	(fundamental, balances and		
Q^{T}	system related) Turbulent		$Q^{\rm U}/{\rm s}$
~	diffusion		~
0	(ACV and SES) Total air vol-		37
$Q_{\rm TS}$	ume flow of skirt		m ³ /s
	(uncertainty) Random quan-		1
q	tity		1
		Of <i>n</i> independent repeated	
	(<i>uncertainty</i>) Arithmetic	observations q_k of randomly	1
ā	mean or average	varying quantity q	
	<i>(uncertainty)</i> Estimate of the	Or mean μ_0 of the probabil-	
	expectation	ity distribution of q	1
	(fundamental, balances and		
	system related) Quantity of		
a	the quality under considera-		O^{U}
7	tion stored in a control vol-		£
	ume		
	(solid body mechanics.		/
q	<i>loads</i>) Load per unit length		N/m
	(solid body mechanics, rigid		
a	hody motions) Rotational ve-		rad/s
2	locity around body axis v		
	(fluid mechanics flow fields)		
a	Dynamic pressure density	$0 V^2/2$	Pa
7	of kinetic flow energy	μ, , <u>μ</u>	1 U
	or kinetic now energy,		I

Version 2024

Acronym

Name

ITTC

Symbol

Q, q Definition or SI-

Unit

Explanation

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
q		(<i>ships, hull resistance</i>) Dy- namic pressure, density of kinetic flow energy	$\rho V^2 / 2$ see 3.3.2	Ра
q		(<i>ships, manoeuvrability</i>) Pitch velocity, rotational ve- locity about body y-axis		1/s
ġ		Rates of change of compo- nents of rotational velocity relative to body axes		rad/s ²
ġ		 (solid body mechanics, rigid body motions) Rates of change of components of ro- tational velocity relative to body axes 		rad/s ²
ġ		<i>(ships, manoeuvrability)</i> Pitch acceleration, angular acceleration about body <i>y</i> - axis	dq / dt	1/s ²
$q_{ m A}$		(ships, propulsor perfor- mance) Dynamic pressure based on advance speed	$ ho V_{A}^{2}/2$	Ра
q_k		(<i>uncertainty</i>) kth observation of q	k^{th} independent repeated observation of randomly vary- ing quantity q	1
qR		(<i>ships, hull resistance</i>) Dy- namic pressure based on ap- parent wind	$\rho V_{\rm WR}^2/2$ see 3.4.2	Ра
qs		(ships, propulsor perfor- mance) Dynamic pressure based on section advance speed	$\rho V_{\rm S}^2/2$	Ра

	Acronym	Name	Definition of	51-
Symbol	5		Explanation	Unit
-				•
		(fundamental, time and fre-		
R		quency domain quantity)	$exp(s T_S)$ Laurent transform	
		Complex variable	_	
D		(ships, basic quantities) Re-	Force opposing translatory	Ъ Т
R		sistance (force)	velocity	N
		(ships basic quantities) Ra-		
R		dius		m
		(shing propulsor geometry)		
R		Propeller radius		m
		(abing abin nonformanae)		
ת		(<i>smps, smp performance</i>)		N
K_0		Full scale resistance without		IN
		overload	T	
		(ships, hull resistance)	Incremental resistance to be	
R_{A}		Model-ship correlation al-	added to the smooth ship re-	Ν
		lowance	sistance to complete the	_ `
			model-ship prediction	
$R_{\Lambda\Lambda}$		(ships, hull resistance) Air or	•	Ν
MAA		wind resistance		1
R i pp		(ships, hull resistance) Ap-		N
ЛАРР		pendage resistance		1
D		(ships, hull resistance)		NT
κ _{AR}		Roughness resistance		IN
D		(ACV and SES) Intake mo-		NT
$R_{\rm ASK}$		mentum resistance of skirt	$ ho_{\rm A} Q_{\rm TS} V_{\rm A}$	N
		(ships, seakeeping, sailing		
RAW		<i>vessels</i>) Mean added re-		Ν
		sistance in waves		- '
		(ACV and SES) Total aero-		
$R_{ m AT}$		dynamic resistance	$R_M + R_0$	Ν
		(shing hull resistance) Re-	$R_{\rm Therefore k} \left[(1+k) C_{\rm Therefore k} + C_{\rm Therefore k} \right] /$	
		(ships, hui resistance) KC-	$\begin{bmatrix} (1 + k) C_{\text{FMC}} + C_{\text{R}} \end{bmatrix}^{T}$	
D		sistance confected for differ-	$[(1 + k) C_{FM} + C_{R}]$	N
лс		ence in temperature between	where CFMC is the incuoud	1
		resistance and sen-propul-	of the solf memulaion test	
			or the sen-propulsion test	
D		(snips, manoeuvrability,		
ĸc		<i>turning circles)</i> Steady turn-		m
		ing radius		
Re		(fluid mechanics, flow pa-	VL/v	1
		<i>rameter</i>) Reynolds number	, .	-
		(fluid mechanics, flow pa-	Re _{0.7}	
$Re_{0.7}$		rameter) Propeller Reynolds	$c_{0.7}\sqrt{V_A^2 + (0.7\pi nD)^2}$	1
		number at 0.7 R	$=$ $\frac{1}{1}$	
		(fluid mechanics, boundary	k k	
		<i>layers</i>) Reynolds number		
Re_{δ^*}		based on displacement thick-	$U_{\infty} \delta^* / v$ or $U_{\rm e} \delta^* / v$	1
		ness		
L				L

Version 2024

ITTC

SI-

Definition or

ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit
$Re_{ heta}$		<i>(fluid mechanics, boundary layers)</i> Reynolds number based on momentum thickness	$U_{\infty} \Theta / v$ or $U_{e} \Theta / v$	1
R _F		<i>(ships, hull resistance)</i> Frictional resistance of a body	Due to fluid friction on the surface of the body	N
$R_{ m F0}$		<i>(ships, hull resistance)</i> Fric- tional resistance of a flat plate		N
R _{FINT}		<i>(multi-hull vessels)</i> Fric- tional resistance interference correction	$R_{\rm FMH}$ - $\Sigma R_{\rm F}$	N
R _{FMH}		(<i>multi-hull vessels</i>) Fric- tional resistance of multi- hull vessel		N
<i>R</i> _{FU}		(<i>sailing vessels</i>) Friction re- sistance (upright)		N
R _H		(ACV and SES) Hydrody- namic resistance	$R_{\rm W} + R_{ m WET}$	N
R _H		(fluid mechanics, flow pa- rameter) Hydraulic radius	Area of section divided by wetted perimeter	m
$R_{ m H}$		(<i>sailing vessels</i>) Resistance increase due to heel (with zero side force)		N
RI		<i>(sailing vessels)</i> Resistance increase due to side (induced resistance)		N
RI		<i>(ice going vessels)</i> Net ice resistance	R _{IT} - R _{IW}	N
R _{IT}		<i>(ice going vessels)</i> Total resistance in ice	Ship towing resistance in ice	N
$R_{\rm IW}$		<i>(ice going vessels)</i> Hydrody- namic resistance in presence of ice	Total water resistance of ship in ice	N
R _k		(ships, propulsor geometry) Rake	The displacement from the propeller plane to the gener- ator line in the direction of the shaft axis. Aft displace- ment is positive rake.	m
R _K		(planing, semi-displacement vessels) Keel drag		N
R_M		(ACV and SES) Intake mo- mentum resistance in general	$\rho_{\rm A} Q_{\rm T} V_{\rm A}$	N
R_{MCU}		(ACV and SES) Intake mo- mentum resistance of cush- ion	$ ho_{ m A}Q_{ m CU}V_{ m A}$	N

	(ships, hull resistance) Pres-	Due to the normal stresses	N
R_P	sure resistance	over the surface of a body	Ν
R _{PAR}	(planing, semi-displacement	Drag due to inlet and outlet	N
	vessels) Parasitic drag	openings	
D	(planing, semi-displacement		NT
K _{PS}	<i>vessels)</i> Pressure component		N
	of spray drag		
R_{PV}	(snips, null resistance) VIS-	Due to normal stress related	Ν
		to viscosity and turbulence	
סס	(<i>fundamental</i> , statistical,		
KK	stochastic) Population corre-		
	(shing, hull register co) Do		
R _R	(ships, huit resistance) Re-	$R_{\rm T}$ - $R_{\rm F}$ or $R_{\rm T}$ - $R_{\rm F0}$	Ν
	(shing hull registance) P o		
D	(<i>ships, null resistance</i>) Re-		N
N RBH	siduary resistance of the bare		IN
	(multi hull yassals) Posidu		
Par	(multi-null vessels) Residu-	$P_{\rm DM} = \sum P_{\rm D}$	N
N _{RI}	correction	$\Lambda_{\rm RMH} - \Delta_{\rm RR}$	IN
	(multi-hull vassals) Residu-		
R _{DMU}	ary resistance correction of		N
I KMH	multi-hull		1
	(sailing vessels) Residuary		
$R_{ m RU}$	resistance (upright)		Ν
	(ships_hull_resistance) Spray		
$R_{\rm S}$	resistance	Due to generation of spray	Ν
2.2	(fundamental. statistical. sto-		
RS	<i>chastic</i>) Sample correlation		
	(ships, hydrostatics, stability,		
D	seakeeping, large amplitude		1
$R_{\rm SI}$	<i>motions capsizing</i>) Required		1
	subdivision index		
	(ships, resistance and pro-		
D	pulsion; planing, semi-dis-	Total toward register as	NI
κ _T	placement vessels) Total re-	Total towed resistance	IN
	sistance		
	(ships, hull resistance, water		
R _{TBH}	<i>jets)</i> Total resistance of bare		Ν
	hull		
	(multi-hull vessels) Total re-		
R _{TI}	sistance interference correc-	R_{TMH} - ΣR_{T}	Ν
	tion		
RTMI	(multi-hull vessels) Total re-		N
I NH	sistance of multi-hull vessel		1

Version 2024			к, г	
ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Actonym	Inallie	Explanation	Unit

D -

Symbol	Actonym	Ivanie	Explanation	Unit
R _{TU}		(sailing vessels) Total re- sistance (upright)		N
R _{Tw}		(ships, ship performance) Total resistance in wind and waves		N
$R_{\mathrm{T}arphi}$		(sailing vessels) Total re- sistance when heeled	$R_{ m TU}+R_{arphi}$	Ν
$R_{ m U}$		(ships, propulsor perfor- mance) Pod unit resistance	Resistance of a podded drive unit	N
R _u		(ships, unsteady propeller forces) Generalized vibra- tory bearing reaction	u = 1,, 6 u = 1, 2, 3: force u = 4, 5, 6: moment	N N Nm
Rv		<i>(ships, hull resistance)</i> Total viscous resistance	$R_{\rm F} + R_{PV}$	N
R _{VS}		<i>(planing, semi-displacement vessels)</i> Viscous component of spray drag	$C_{\rm F} S_{\rm WS} q_{\rm S}$	N
R _W		(ships, hull resistance) Wave making resistance	Due to formation of surface waves	N
R _{WB}		<i>(ships, hull resistance)</i> Wave breaking resistance	Associated with the break down of the bow wave	N
R _{WET}		(ACV and SES) Resistance due to wetting		N
R _{WP}		<i>(ships, hull resistance)</i> Wave pattern resistance		N
R _{xx}		(fundamental, statistical, stochastic) Auto-correlation of a stationary stochastic process	$\begin{aligned} x(t)x(t+\tau)^{\rm E} &= R_{xx}(\tau) \\ R_{xx}(\tau) &= R_{xx}(-\tau) \\ \text{if } x \text{ is ergodic:} \\ R_{xx}(\tau) &= x(t)x(t+\tau)^{\rm MR} \\ R_{xx}(\tau) &= \int S_{xx}(\omega)\cos(\omega\tau)d\tau \\ \tau &= 0 \dots \infty \end{aligned}$	xx^R, xx^{RR}, R_{xx}
R_{xx}		(<i>fundamental, statistical</i>) Auto-correlation of a ran- dom quantity	$x x^{E}$	
R_{xy}		(<i>fundamental, statistical,</i> <i>stochastic</i>) Cross-correlation of two stationary stochastic processes	$x(t)y(t + \tau)^{E} = R_{xy}(\tau)$ $R_{yx}(\tau) = R_{xy}(-\tau)$ if x, y are ergodic: $R_{xy}(\tau) = x(t)y(t + \tau)^{MR}$	xy^R , R_{xy}
R_{xy}		(<i>fundamental, statistical</i>) Cross-correlation of two ran- dom quantities	$x y^E$	
R_{π}		(planing, semi-displacement vessels) Induced drag	gρVtgτ	N
R_{arphi}		<i>(sailing vessels)</i> Resistance increase due to heel (with zero side force)		N

Version 2024

Acronym

Name

ITTC

R, r SI-

Definition or

ITTC	Acronym	Name	Definition or	SI-
Symbol	j		Explanation	Unit
		(solid body mechanics rigid		
r		body motions) Rotational ve-		rad/s
		locity around body axis z		
r		(ships, basic quantities) Ra- dius		m
r		(ships, propulsor geometry) Blade section radius		m
r		(<i>ships, manoeuvrability</i>) Yaw velocity, rotational ve- locity about body <i>z</i> -axis		1/s
r		(ships, unsteady propeller forces) Cylindrical coordi- nates	Cylindrical system with origin O and longitudinal <i>x</i> - axis as defined before; angu- lar a-(attitude)-coordinate, zero at 12 o'clock position, positive clockwise looking forward, <i>r</i> distance measured from the <i>x</i> -axis	m
r		(seakeeping, large amplitude motions capsizing) Effective wave slope coefficient		1
ŕ		<i>(solid body mechanics, rigid body motions)</i> Rates of change of components of rotational velocity relative to body axes		rad/s ²
ŕ		(<i>ships, manoeuvrability</i>) Yaw acceleration, angular acceleration about body <i>z</i> - axis	dr / dt	1/s ²
$r(x_i,x_j)$		<i>(uncertainty)</i> Estimated cor- relation coefficient associ- ated with input estimates	Associated with input esti- mates x_i and x_j that estimate input quantities X_i and X_j : $r(x_i, x_j) = u(x_i, x_j)/(u(x_i) u(x_j))$	1
$r(\overline{X}_{\iota},\overline{X}_{j})$		(<i>uncertainty</i>) estimated correlation coefficient of input means \overline{X}_i and \overline{X}_j	Determined from <i>n</i> independent pairs of repeated simultaneous observations $X_{i,k} X_{j,k}$ of $X_i X_j$ $r(\overline{X}_i, \overline{X}_j)$ $= s(\overline{X}_i, \overline{X}_j)/[s(\overline{X}_i)s(\overline{X}_j)]$	1
r (y _i ,y _j)		<i>(uncertainty)</i> Estimated cor- relation coefficient associ- ated with output estimates	With output estimates y_i and y_j when two or more measur- ands or output quantities are determined in the same measurement	1
Version 2024	ł			R, r
----------------	------------	---	--	------
ITTC	Aaronum	Namo	Definition or	SI-
Symbol	Actoliyili	Inallie	Explanation	Unit
r _C		(ships, manoeuvrability, turning circles) Steady turn- ing rate		1/s
rc′		(ships, manoeuvrability, turning circles) Non-dimen- sional steady turning rate	$r_{\rm C} L_{\rm PP} / U_{\rm C}$ or $2 L_{\rm PP} / D_{\rm C}$	m
r _h		(ships, propulsor geometry) Hub radius		m

IIIC	Acronym	Name	Definition or	51-
Symbol			Explanation	Unit
			1	
S		(ships, hull geometry) Area		m^2
5		of wetted surface		111
5		(ships, hull resistance) Wet-	$S_{\rm DH} + S_{\rm ADD}$	m^2
5		ted surface area, underway	SBH SAPP	111
S o		(ships, hull resistance) Wet-	Spue + Suppe	m^2
50		ted surface area, at rest	SBH0 + SAPP0	111
S ⁰		Zero th order moment of a	$\int \delta d\mathbf{r} = \delta d\mathbf{r}$	
S _{ij}		scalar quantity		
		(fundamental. coordinate		
		and space related) First or-		
S^{I}_{ij}		der moment of a scalar quan-	$\int \varepsilon_{ikj} x_k ds$	
		tity, formerly static moments		
		of a scalar distribution		
		(fundamental. coordinate		
		and space related) Second		
S^{2}_{ij}		moment of a scalar quantity,	$\int \varepsilon_{kli} x_l \varepsilon_{ikm} x_m ds$	
		formerly moments of inertia		
		of a scalar distribution		
G		(ships, propulsor perfor-		1
$S_{\rm A}$		mance) Apparent slip ratio	I - V / (n P)	1
a		(sailing vessels) Sail area in		2
S_A		general	(P E + I J) / 2	m²
		(ships, hull resistance) Ap-		
S_{APP}		pendage wetted surface area,		m^2
		underway		
		(ships, hull resistance) Ap-		
S_{APP0}		pendage wetted surface area,		m^2
		at rest		
		(ships, hull resistance) Bare		
$S_{\rm BH}$		Hull wetted surface area, un-		m^2
		derway		
		(ships, hull resistance) Bare		
S _{BH0}		Hull wetted surface area, at		m^2
		rest		
		(ships, hull geometry, hull		
~C		<i>resistance</i>) R.E. Froude's	S	
SC		wetted surface area coeffi-	$\frac{2}{\sqrt{3}}$	1
		cient		
		(sailing vessels) Wetted sur-		2
$S_{\rm C}$		face area of canoe body		m²
		(fluid mechanics flow fields)		
$S_{ m H}$		Total head loss		m
		(ACV and SES) Wetted area		+
SHO		of side hulls at rest off cush-	Total wetted area of side	m^2
		ion	walls under way on cushion	111
i	I	1011		

Version 2024

ITTC

SI-

Definition or

Symbol	Acronym	Name	Explanation	Unit
SI		(environmental mechanics, ice) Salinity of ice	Weight of salt per unit weight of ice	1
$S_i(f), S_i(\omega)$		(environmental mechanics, waves) Incident wave power spectral density		m²/Hz
$S_{ m K}$		(<i>sailing vessels</i>) Wetted sur- face area of keel		m ²
$S_{\eta}(f), S_{\eta\eta}(f), S_{n(\omega)}, S_{n(\omega)}$)	(<i>ships</i> , <i>seakeeping</i>) Wave el- evation auto spectral density		m ² s
$ \frac{S_{\eta}(f)}{S_{\eta}(\omega)} $		<i>(environmental mechanics, waves)</i> Wave power spectral density		m²/Hz
S _R		(ships, propulsor perfor- mance) Real slip ratio	$1 - V_A / (n P)$	1
S _R		(<i>sailing vessels</i>) Wetted sur- face area of rudder		m²
$S_r(f), S_r(\omega)$		(environmental mechanics, waves) Reflected wave power spectral density		m²/Hz
Ss		(planing, semi-displacement vessels) Area wetted by spray	Wetted area between design line or stagnation line and spray edge	m ²
S _{SHC}		(ACV and SES) Wetted area of side hulls under way on cushion	Total wetted area of side walls under way on cushion	m ²
S _{SH}		(ACV and SES) Wetted area of side hulls under way off cushion	Total wetted area of side walls under way off cushion	m ²
St		(fluid mechanics, flow pa- rameter) Strouhal number	f L / V	1
STIX		(seakeeping, large amplitude motions capsizing) Actual stability index value accord- ing to		1
<u>STIX</u>		(seakeeping, large amplitude motions capsizing) Required stability index value, see		1
Suv		(<i>fundamental. coordinate</i> <i>and space related</i>) General- ized moment of a scalar quantity distributed in space	$S_{ij} = S^{0}_{ij}$ $S_{i, 3+j} = S^{I}_{ij}^{T}$ $S_{3+i, j} = S^{I}_{ij}$ $S_{3+i, 3+j} = S^{2}_{ij}$	
$S_{ m W}$		(environmental mechanics, ice) Salinity of water	Weight of dissolved salt per unit weight of saline water	1
$S_{ m WB}$		(planing, semi-displacement vessels) Wetted bottom area, underway	Area bounded by stagnation line, chines or water surface underway and transom	m ²

Definition or

ITTC Symbols

ITTC

Version 2024

Name

Acronym

SI-

<u>г</u>			1
Swrk	Wetted surface area of bilge		m ²
~ \\ DK	keels		
	(planing, semi-displacement	Principal wetted area	2
$S_{\rm WHP}$	vessels) Wetted area under-	bounded by trailing edge,	m^2
	way of planing hull	chines and spray root line	
	(nlaning semi-displacement	Total wetted surface of hull	
Switte	(planing, semi displacement	underway, including spray	m^2
5 W HE	underway	area and wetted side area,	111
		w/o wetted transom area	
	(nlawing somi displacement W	Wetted area of the hull side	
$S_{ m WHS}$	(planing, semi-displacement	above the chine or the design	m^2
	vessels) Area of wetted sides	water line	
	(planing, semi-displacement	Wetted area between design	
Sws	vessels) Area wetted by	line or stagnation line and	m^2
	spray	spray edge	
	(fundamental, statistical,		
C	stochastic) Power spectrum	RRSR	
\mathcal{S}_{XX}	or autospectral power den-		
	sity of a stochastic process		
	(fundamental, statistical,		
G	<i>stochastic</i>) Cross-power	RRSR	
\mathbf{S}_{xy}	spectrum of two stationary	xyittoit	
	stochastic processes		
<i>S</i> ζ (ω,μ)	(environmental mechanics,		
$S_{\theta}(\omega,\mu)$	waves) Two dimensional		1
etc.	spectral density		
\mathbf{G} (CO)	(environmental mechanics,		
$S_{\rho}(f,\theta)$	waves) Directional spectral		m ⁻ /HZ/
$S_{\zeta}(\omega,\mu)$	density		rad
	(fundamental. coordinate		
	and space related) Any sca-	(,	
S	lar quantity distributed,	Jas	
	maybe singularly, in space		
	(fundamental, time and fre-		
S	quency domain quantity)	$a + 2\pi i f$	1/s
	Complex variable	Laplace transform	
	(ships, basic quantities) Dis-		
S	tance along path		m
	(seakeeping, large amplitude		
S	motions capsizing) Wave		1
	steepness		
	(ships. manoeuvrability.		1
SE	stopping man.) Distance		m
~ 1	along track, track reach		
L I	arong truck, truck reach		1

Version 2024

Name

Acronym

ITTC

Symbol

SI-

Unit

Definition or Explanation

(fluid mechanics, flow fields) Total stress tensor	Density of total diffusive momentum flux due to mo- lecular and turbulent ex- change	Ра
<i>(fluid mechanics, flow fields)</i> Viscous stress	-	Ра
<i>(uncertainty)</i> Pooled experimental standard deviation	Positive square root of s_p^2	
<i>(uncertainty)</i> Expected value E[] of the variance of mean		1
<i>(uncertainty)</i> Standard deviation of the mean	Positive square root of s_m^2	1
<i>(uncertainty)</i> Combined or Pooled estimate of variance		1
(<i>uncertainty</i>) Experimental variance of the mean \bar{q}		1
(<i>uncertainty</i>) Estimate of the variance σ^2/n of \bar{q}	$s^2(\bar{q}) = s^2(q_k)/n$	1
<i>(uncertainty)</i> Estimated variance obtained from a Type A evaluation		1
<i>(uncertainty)</i> Experimental standard deviation of the mean	Positive square root of $s^2(\bar{q})$	1
(uncertainty) Biased estimator of $\sigma(\bar{q})$	NOTE The sample standard deviation is a biased estima- tor of the population stand- ard deviation.	1
<i>(uncertainty)</i> Standard un- certainty	Obtained from a Type A evaluation	1
<i>(uncertainty)</i> Experimental variance	Determined from <i>n</i> independent repeated observations q_k of q	1
<i>(uncertainty)</i> Estimate of the variance	Estimate of the variance σ^2 of the probability distribu- tion of <i>q</i>	1
<i>(uncertainty)</i> Experimental standard deviation of repeated observations	Positive square root of $s^2(q_k)$	1
<i>(uncertainty)</i> Biased estimator of the standard deviation	Biased estimator of the standard deviation σ of the probability distribution of <i>q</i>	1
<i>(uncertainty)</i> Experimental variance of input mean	From mean \overline{X}_i , determined from <i>n</i> independent repeated observations $X_{i,k}$, of X_i	1
	(fluid mechanics, flow fields) Total stress tensor(fluid mechanics, flow fields) Viscous stress(uncertainty) Pooled experimental standard deviation (uncertainty) Expected value E[] of the variance of mean (uncertainty) Standard deviation of the mean (uncertainty) Combined or Pooled estimate of variance (uncertainty) Experimental variance of the mean \overline{q} (uncertainty) Estimate of the variance of the mean \overline{q} (uncertainty) Estimated variance obtained from a Type A evaluation (uncertainty) Experimental standard deviation of the mean(uncertainty) Biased estima- tor of $\sigma(\overline{q})$ (uncertainty) Experimental variance(uncertainty) Experimental standard deviation of the mean(uncertainty) Biased estima- tor of $\sigma(\overline{q})$ (uncertainty) Experimental variance(uncertainty) Experimental variance of input mean	(fluid mechanics, flow fields) Total stress tensorDensity of total diffusive momentum flux due to mo- lecular and turbulent ex- change(fluid mechanics, flow fields) Viscous stressPositive square root of s_p^2 (<i>uncertainty</i>) Expected value E[] of the variance of mean (<i>uncertainty</i>) Standard devi- ation of the meanPositive square root of s_m^2 (<i>uncertainty</i>) Standard devi- ation of the meanPositive square root of s_m^2 (<i>uncertainty</i>) Standard devi- ation of the meanPositive square root of s_m^2 (<i>uncertainty</i>) Experimental variance of 2/n of \bar{q} $s^2(\bar{q}) = s^2(q_k)/n$ (<i>uncertainty</i>) Estimate of the variance σ^2/n of \bar{q} Positive square root of $s^2(\bar{q})$ (<i>uncertainty</i>) Estimated vari- ance obtained from a Type A evaluationPositive square root of $s^2(\bar{q})$ (<i>uncertainty</i>) Biased estima- tor of $\sigma(\bar{q})$ NOTE The sample standard deviation is a biased estima- tor of the population stand- ard deviation.(<i>uncertainty</i>) Standard un- certainty) Experimental varianceDetermined from n inde- pendent repeated observa- tions q_k of q (<i>uncertainty</i>) Experimental varianceEstimate of the variance σ^2 of the probability distribu- tion of q (<i>uncertainty</i>) Experimental standard deviation of re- peated observationsBiased estimator of the standard deviation(<i>uncertainty</i>) Experimental varianceFrom mean \overline{X}_i , determined from n independent repeated observations X_{ik} , of X_i

Definition or Explanation

ITTC Symbols

Version 2024

Acronym

Name

ITTC

Symbol

SI-

Unit

		•	
	<i>(uncertainty)</i> Estimated variance	Obtained from a Type A evaluation	1
	<i>(uncertainty)</i> Standard deviation of input mean	Positive square root of $s^2(\overline{X}_1)$	1
$S(X_i)$	(uncertainty) Standard un- certainty	Obtained from a Type A evaluation	1
$s(\bar{q},\bar{r})$	(<i>uncertainty</i>) Estimate of co- variance of means \bar{q} and \bar{r} that estimate the expecta- tions μ_q and μ_r of two ran- domly varying quantities q and r	Determined from <i>n</i> independent pairs of repeated simultaneous observations q_k and r_k of <i>q</i> and <i>r</i>	1
	(uncertainty) Estimated co- variance	Obtained from a Type A evaluation	1
$s(\overline{X}_i, \overline{X_j})$	(<i>uncertainty</i>) Estimate of the covariance of input means \overline{X}_i and \overline{X}_j	Determined from <i>n</i> independent pairs of repeated simultaneous observations $X_{i,k}$ and $X_{j,k}$ of X_i and X_j	1
	<i>(uncertainty)</i> Estimated co- variance	Obtained from a Type A evaluation	1
SV	(ships, performance) Sink- age, dynamic	Change of draft, fore and aft, divided by length	1
S _X	(<i>fundamental, statistical</i>) Sample deviation of a ran- dom quantity	$x^{VS \ 1/2}$, unbiased random estimate of the standard deviation	1
s ^R _{ij}	(Flow Fields) Turbulent or Reynolds stress	$\rho v_i v_j^{CR}$	Ра

Version 20	24			S , s	
ITTC	Aanonym	Nomo	Definition or	SI-	
Symbol	Acronym	Iname	Explanation	Unit	

Symbol	Acronym	Name	Explanation	Unit
Т		(ships, hull geometry, sea- keeping, large amplitude motions capsizing) Draught, moulded, of ship hull		m
Т		(ships, basic quantities, ships, seakeeping) Period, Wave period	Duration of a cycle of a re- peating or periodic, not nec- essarily harmonic process	s
Т		(<i>ships, manoeuvrability, sea-</i> <i>keeping</i>) Time constant of the 1st order manoeuvring equation		s
Т		(ships, propulsor perfor- mance) Propeller thrust		N
Т		<i>(seakeeping, large amplitude motions capsizing)</i> Equivalent transverse heeling arm	Heeling moment∕⊿	m
T_{01}		<i>(environmental mechanics, waves)</i> Average period from zeroth and first moment	m_0/m_1	s
T_{02}		<i>(environmental mechanics, waves)</i> Average period from zeroth and second moment	$(m_0/m_2)^{1/2}$	s
T_1		(<i>ships, manoeuvrability, sea-</i> <i>keeping</i>) First time constant of manoeuvring equation		S
T _{1/3d}		Significant wave period	By downcrossing analysis	S
<i>T</i> _{1/3u}		Significant wave period	By upcrossing analysis	S
T_2		(<i>ships, manoeuvrability, sea-</i> <i>keeping</i>) Second time con- stant of manoeuvring equa- tion		s
<i>T</i> ₃		(<i>ships, manoeuvrability, sea-</i> <i>keeping</i>) Third time constant of manoeuvring equation		S
T _A		(ships, hull geometry) Draught at aft perpendicular		m
T _{AD}		(<i>ships, hull geometry</i>) De- sign draught at aft perpen- dicular		m
T _{AW}		(<i>ships, seakeeping</i>) Mean thrust increase in waves		N
T ^C		(ships, hull geometry) R.E. Froude's draught coefficient	$T/\nabla^{1/3}$	1
T _C		(fundamental, time and fre- quency domain quantity) Pe- riod of cycle	$1 / f_{\rm C}$ duration of cycles in peri- odic, repeating processes	S

Definition or

ITTC Symbols

Version 2024

Name

Acronym

ITTC

SI-

ITTC	A	N	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit
T		(ACV and SES) Cushion		N
IC		thrust		IN
T_{\sim}		(sailing vessels) Draught of		m
IC		canoe body		111
		(ships, propulsor perfor-		
$T_{\rm D}$		<i>mance</i>) Duct thrust of a		Ν
		ducted propeller unit		
		(ships, propulsor perfor-		
$T_{\rm P}$		<i>mance</i>) Propeller thrust of a		Ν
		ducted propeller unit		
		(ships, propulsor perfor-		
T_{T}		<i>mance</i>) Total thrust of a		Ν
		ducted propeller unit		
		(environmental mechanics,	Time elapsing between two	
T _d		waves) Wave periods by	successive downward cross-	S
		zero down-crossing	ings of zero in a record	
T_{Γ}		(ships, seakeeping)		c
ТЕ		Wave encounter period		3
$T_{\rm EEE}$		(sailing vessels) Effective	$F_{\rm H}/(\rho V_{\rm P}^2 R)^5$	m
I EFF		draught		111
		(ships, hull geometry)		
$T_{ m F}$		Draught at forward perpen-		m
		dicular		
$T_{\rm E}$		(hydrofoil boats) Foil im-	Distance between foil chord	m
τ Γ		mersion	and mean water surface	
		(ships, hull geometry) De-		
$T_{ m FD}$		sign draught at forward per-		m
		pendicular		
		(hydrofoil boats) Depth of	Distance between foil apex	
$T_{\rm FD}$		submergence of apex of a di-	and mean water surface	m
		hedral foil		
$T_{\rm FM}$		(hydrofoil boats) Mean		m
- 1 WI		depth of foil submergence		
$T_{\rm H}$		(ships, hull geometry)	Maximum draught of the	m
- 11		Draught of the hull	hull without keel or skeg	
		(fluid mechanics, cavitation,		
Th		fluid mechanics, flow pa-	$(H_{\rm U} - p_{\rm V} / w) / H_{\rm N}$	1
		<i>rameter</i>) Thoma number	$(p_{\rm A}-p_{ m V})/q$	-
		Cavitation number		
T_{IA}		(ice going vessels) Average		Ν
- 11 1		total thrust in ice		

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actoliyili	Ivanie	Explanation	Unit
		(fundamental. coordinate		
		and space related) Tensor in		
		space referred to an orthogo-		
T_{ij}		nal system of Cartesian co-	$T_{ij}^{s} + T_{ij}^{a}$	
		ordinates		
		fixed in the body		
TA		(funaamental. coorainate		
I ij		and space related) Anti-	$(I_{ij} - I_{ji}) / 2$	
		symmetric part of a tensor		
		(fundamental. coordinate		
T_{ii}^{S}		and space related) Symmet-	$(T_{ii} + T_{ii}) / 2$	
- <i>ij</i>		ric part of a tensor		
		(fundamental. coordinate		
T_{ii}^{T}		and space related) Trans-	T_{ii}	
- 15		posed tensor	-);	
		(fundamental coordinate		
$T_{ii} v_i$		and space related) Tensor	$\Sigma T_{ii} v_i$	
- 17 • 7		product		
		Iet thrust (can be measured		
Tim		directly in bollard pull con-		Ν
I JX		dition)		1
		(seakeening large amplitude		
TI		(seakeeping, targe amplitude motions cansizing) Turning		1
IL.		lever		1
		(shing hull acomatry)	$(T_{+} + T_{-})/2$ for rigid bodies	
$T_{\rm M}$		(snips, nui geometry) Draught at midship	with straight keel	m
		(shing hull geometry) Do	$(T_{1}, p_{1}, f_{2}, f_{2},$	
$T_{\rm MD}$		(snips, nuil geometry) De-	$(I_{AD} + I_{FD}) / 2$ for fight bod-	m
		(shing, hull nosistance, water		
T		(snips, null resistance, water		N
¹ net		the jet system on the hull		IN
		(anyironmental machanica		
T		(environmental mechanics,	2-6	
1 P		waves) Fellod with maxi-	ZNJP	
T		Dettem Thickness of Struct		
1 PBS		Bottom I mickness of Strut		111
$T_{\rm R}$		(environmental mechanics,	$1/f_{\rm R}$	s
		waves) Duration of record		
T		(environmental mechanics.	The average interval in years	
$T_{\rm rt}$		waves) Return period	between times that a given	
			design wave is exceeded	
		(fundamental, time and fre-	$1/f_{\rm S}$.	
		quency domain quantity, en-	time between two successive	
$T_{\rm S}$		vironmental mechanics,	samples Duration between	S
		waves) Sample interval, Pe-	samples, Duration between	
		riod of sampling	Sumples	

Version 2024

79

	(shing hull acometry) Im	Vertical depth of trailing	
T_{T}	(<i>snips, nui geometry</i>) III-	edge of boat at keel below	m
	mersion of transom	water surface level	
		Pod unit resistance sub-	
T_{11}	(ships, propulsor perfor-	tracted from the propeller	Ν
	<i>mance</i>) Pod unit thrust, ,	thrust	
	(environmental mechanics	Time elapsing between two	
$T_{\rm m}$	wayes) Waye periods by	successive upward crossings	s
- u	zero un-crossing	of zero in a record	5
		Time between the passage of	
$T_{\rm W}$	(environmental mechanics,	two successive wave crests	s
1 W	waves) Basic wave period	past a fixed point $1/f_{\rm W}$	5
	(environmental mechanics		
	(<i>curroundental mechanics</i> , wayes) Waye period esti-		
$T_{\rm WV}$	mated from visual observa-		S
	tion		
	(shing propulsor perfor		
T	(snips, propulsor perjor-		NI
I_{XP}	mance) Propener Thrust		IN
	(ships, propulsor perfor-		
$T_{\rm vP}$	<i>mance</i>) Propeller normal		Ν
<i>y</i> ²	force in y direction in pro-		
	peller axis		
T_{z}	(ships, seakeeping) Natural		s
- 4	period of heave		5
	(ships, propulsor perfor-		
T _{-D}	<i>mance</i>) Propeller normal		Ν
1 ZP	force in <i>z</i> direction in propel-		11
	ler axis		
T_{\circ}	(ships, seakeeping) Natural		C
10	period of pitch		3
T	(ships, seakeeping) Natural		0
Ιφ	period of roll		8
	(fundamental, time and fre-		
t	quency domain quantity,	-∞ +∞	S
	ships, basic quantities) Time		
	(ships, basic quantities)		17
t	Temperature		K
	^	The intercept of the tangent	
	(ships, hull geometry) Taylor	to the sectional area curve at	1
t	tangent of the area curve	the bow on the midship ordi-	1
	···· 6· ··· ··· ··· ··· ··· ···	nate	
	(ships, propulsor geometry)		
t	Blade section thickness		m
	(shing annendage geometry)		
t	Maximum thickness of an	Measured normal to mean	m
ľ	aerofoil or a hydrofoil	line	111

Version 2024T, tITTC
SymbolAcronymNameDefinition or
ExplanationUnitNameDefinition or
Explanation

ITTC	A	N	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit
		(ships, hydrostatics, stabil-		
t		<i>ity)</i> Equivalent transverse	Heeling moment /⊿	m
		heeling arm		
t		(ships, performance) Thrust	$(T - R_{\rm T}) / T$	1
ı		deduction fraction		1
		(ships, hull resistance, water		
t		<i>jets)</i> Thrust deduction frac-	$(1-t) = \frac{15\pi}{T}$	1
		tion	r net	
			Student <i>t</i> -distribution for <i>v</i>	
$t_n(v)$		(uncertainty) Inverse Stu-	degrees of freedom corre-	1
PXY		dent t	sponding to a given proba-	
			bility p	
		(Student <i>t</i> -distribution for $v_{\rm eff}$	
+ ()		(<i>uncertainty</i>) Inverse Stu-	degrees of freedom corre-	1
$I_p(V_{eff})$		dent <i>t</i> for effective degrees	sponding to a given proba-	1
		or freedom	pended uncertainty U	
		(ships manogunrability	panded uncertainty O_p	
		(snips, manoeuvrability, turning circles) Time to		
<i>t</i> ₁₈₀		reach 180 degree change of		S
		heading		
		(anvironmental mechanics		
t _A		<i>ice</i>) Temperature of air		°C
		(shins manoeuvrability zig-		
to		(snips, manocurraonity, zig		s
ra		time		5
		(ships. manoeuvrability. zig-		
t_{c1}		zag man) First time to		s
		check yaw (starboard)		
		(ships, manoeuvrability, zig-		
t_{c2}		zag man) Second time to		S
		check yaw (port)		
to		(ships, propulsor geometry)		m
ιD		Thickness of duct profile		111
td		(environmental mechanics,		s
<i>i</i> u		wind) Wind duration		5
		(ships, manoeuvrability,		
t _F		stopping man.) Stopping		S
		time		
<i>t</i> _{hc}		(ships, manoeuvrability, zig-		
		<i>zag man</i>) Period of changes		S
		in heading		
t _I		(environmental mechanics,		°C
-		<i>ice)</i> Local temperature of ice		-
		(fundamental, time and fre-	· 7	
tj		quency domain quantity)	J I's	
		Sample time instances		

ITTC	Aaronym	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit
t _{KL}		(seakeeping, large amplitude motions capsizing ships, hy- drostatics, stability) Static trim	$T_{ m A}$ - $T_{ m F}$ - $d_{ m KL}$	
t _r		(ships, manoeuvrability, zig- zag man) Reach time		S
ts		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Static trim	$T_{ m A}$ - $T_{ m F}$ - $d_{ m KL}$	m
ts		(<i>multi-hull vessels</i>) Maxi- mum thickness of strut		m
t_V		(ships, performance) Run- ning trim		m
tw		<i>(environmental mechanics, ice)</i> Temperature of water		°C

U	(ships, basic quantities) Undisturbed velocity of a fluid		m/s
U	Expanded uncertainty	Expanded uncertainty of out- put estimate <i>y</i> that defines an interval $Y = y \pm U$ having a high level of confidence, equal to coverage factor <i>k</i> times the combined standard uncertainty $u_c(y)$ of <i>y</i> : $U = k$ $u_c(y)$	
U ₀	(ships, hull resistance, water jets) Free stream velocity		m/s
U_{10}	<i>(environmental mechanics, wind)</i> Reference mean wind speed at elevation 10 meters above sea surface	$U_{10} = (10/z)^{1/7} U_z^A$	m/s
UA	(ships, propulsor perfor- mance) Axial velocity in- duced by propeller		m/s
U_{A}	(environmental mechanics, wind) Wind shear velocity	$C_{10}^{1/2} U_{10}$ or $0.71 U_{10}^{1.23}$	m/s
$U_{ m AD}$	(ships, propulsor perfor- mance) Axial velocity in- duced by duct of ducted pro- peller		m/s
UAP	(ships, propulsor perfor- mance) Axial velocity in- duced by propeller of ducted propeller		m/s
Uc	(ships, manoeuvrability, turning circles) Speed in steady turn		m/s
Ue	(fluid mechanics, boundary layers) Velocity at the edge of the boundary layer at $y=\delta_{995}$		m/s
UI	(fluid mechanics, cavitation) Critical velocity	Free stream velocity at which cavitation inception takes place	m/s
Ui	(fluid mechanics, boundary layers) Instantaneous veloc- ity		m/s
Um	(fluid mechanics, boundary layers) Time mean of veloc- ity in boundary layer		m/s

Version 2024U, uITTC
SymbolAcronymNameDefinition or
ExplanationSI-
Unit

ITTC	Aanonym	Nama	Definition or	SI-
Symbol	Acronym	Ivallie	Explanation	Unit
			•	
			Expanded uncertainty of out-	
			put estimate v that defines an	
			interval $Y = y + U_p$ having a	
		Expanded uncertainty asso-	high level of confidence n	
U_p		ciated to confidence level n	equal to coverage factor k	
		clated to confidence level p	times the combined standard	
			uncertainty $u(y)$ of y : $U =$	
			$u_{c(y)}$ of y. U_{p} –	
		(shing propulsor perfor	$\kappa_p u_c(y)$	
17-		(<i>snips, propulsor perjor-</i>		m/a
$O_{\rm R}$		<i>mance</i>) Radial velocity In-		III/S
		duced by propeller		
		(ships, propulsor perfor-		
$U_{\rm RP}$		mance) Radial velocity in-		m/s
		duced by propeller of ducted		
		propeller		
		(ships, propulsor perfor-		
$U_{\rm RD}$		mance) Radial velocity in-		m/s
		duced by duct of ducted pro-		
		peller		
		(ships, propulsor perfor-		
U_{T}		<i>mance)</i> Tangential velocity		m/s
		induced by propeller		
		(ships, propulsor perfor-		
		<i>mance)</i> Tangential velocity		m/s
CID		induced by duct of ducted		11/ 5
		propeller		
		(ships, propulsor perfor-		
		<i>mance)</i> Tangential velocity		m/s
O IP		induced by propeller of		11/ 5
		ducted propeller		
		(environmental mechanics,	$(II + u)^{A}$	
II A		wind) Average wind speed	$U^{A} = (7/10)^{1/7} U_{10} \text{ or}$	m/s
U_z		at elevation <i>z</i> above the sea	$U_z = (2/10)$ U_{10} U_1 U_2 U_2 U_2 U_3 U_4 U_3 U_4 U_3 U_4 U_3 U_4 U_4 U_3 U_4	111/ 5
		surface	$O_z = O_{10} + O_A m(z/10)$	
		(fluid mechanics, boundary		
U_{∞}		<i>layers</i>) Free-stream velocity		m/s
		far from the surface		
		(solid body mechanics, rigid		
		body motions) Translatory		m/a
и		velocity in the direction of		III/S
		body axis x		
		(fluid mechanics, flow fields)		
и		Velocity component in di-		m/s
		rection of x axis		
		(fluid mechanics, boundary		
и		<i>layers</i>) Velocity fluctuations		m/s
		in boundary layer		

ITTC	Aaronym	Nama	Definition or	SI-	
Symbol	Actoliyili	Name	Explanation	Unit	
		-			
		(ships, manoeuvrability)			
и		Surge velocity, linear veloc-		m/s	
		ity along body x axis			
		(solid body mechanics, rigid			
		body motions) Translatory		m/a	
u		velocity in the direction of		111/8	
		body axis <i>x</i>			
		(ships, hull resistance, water			
$u_{7\varphi}$		<i>jets)</i> Local tangential veloc-		m/s	
		ity at station 7			
$\alpha^2(\alpha)$		(uncertainty) Combined var-	Combined variance associ-	1	
$u_c(y)$		iance	ated with output estimate y	1	
			Combined standard uncer-		
		(uncertainty) Combined	tainty of output estimate y,	1	
$u_{\rm c}(y)$		standard uncertainty	equal to the positive square	1	
			root of $u_c^2(y)$		
		(uncertainty) Relative com-			
$u_c(y)/ y $		bined standard uncertainty of		1	
		output estimate <i>y</i>			
		(un containty) Combined	Determined from standard		
		(uncertainty) Combined	uncertainties and estimated	1	
$u_{cA}(y)$		standard uncertainty of out-	covariances obtained from	1	
		put estimate y	Type A evaluations alone		
			Combined standard uncer-		
		(uncertainty) Combined	tainty of output estimate y		
$u_{\mathbf{r}}(\mathbf{v})$		(<i>uncertainty</i>) Combined	determined from standard	1	
$u_{cB}(y)$		standard uncertainty of out-	uncertainties and estimated	1	
		put estimate y	covariances obtained from		
			Type B evaluations alone		
		(uncertainty) Combined	When two or more measur-		
$u_{i}(\mathbf{v}_{i})$		standard uncertainty of out-	ands or output quantities are	1	
$u_c(y_i)$		nut estimate v:	determined in the same	1	
		put estimate y _i	measurement		
Ui. Vi		(basic quantity) Any vector			
		quantities			
<i>U</i> : <i>V</i> :		(basic quantity) Scalar prod-			
		uct			
U; V;		(basic quantity) Diadic prod-	<i>U</i> ;V;		
		uct			
uxv		(basic quantity) Vector prod-	EiibUiVb		
		uct			
			Associated with output esti-		
		(uncertainty) Component of	mate y generated by esti-		
$u_i^2(y)$		combined variance $u^2(v)$	mated variance $u^2(x_i)$ asso-	1	
			ciated with input estimate x_i :		
			$u_i^2(y) \equiv [c_i u(x_i)]^2$		

Version 2024

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
		-		-
<i>u_i</i> (<i>y</i>)		(<i>uncertainty</i>) Component of combined standard un- certainty $u_c(y_i)$ of output estimate y	Generated by the standard uncertainty of input esti- mate $x_i: u_i(y) \equiv c_i u(x_i)$	1
<i>u^s</i>		<i>(fluid mechanics, boundary layers)</i> Root mean square value of velocity fluctua-tions		m/s
$u^2(x_i)$		(<i>uncertainty</i>) Estimated variance associated with input estimate x_i that esti- mates input quantity X_i	NOTE When x_i is deter- mined from the arithmetic mean or average of <i>n</i> inde- pendent repeated observa- tions, $u^2(x_i) = s^2(\bar{X}_i)$ is an estimated variance ob- tained from a Type A eval- uation.	1
<i>u</i> (<i>x</i> _{<i>i</i>})		(<i>uncertainty</i>) Standard uncertainty of input estimate x_i that estimates input quantity X_i	Positive square root of $u^2(x_i)$ NOTE When x_i is determined from the arithmetic mean or average of n independent repeated observations, $u(x_i) = s(\overline{X}_i)$ is a standard uncertainty obtained from a Type A evaluation.	1
$u(x_i,x_j)$		<i>(uncertainty)</i> Estimated covariance	Associated with two input estimates x_i and x_j that esti- mate input quantities X_i and X_j NOTE When x_i and x_j are determined from n inde- pendent pairs of repeated simultaneous observations, $u(x_i, x_j) = s(\overline{X}_i, \overline{X}_j)$ is an estimated covariance ob- tained from a Type A eval- uation	1
$u(x_i)/ x_i $		<i>(uncertainty)</i> Relative		1
$u(x_i, x_j)/ x_i $ $x_j $		<i>(uncertainty)</i> Estimated relative covariance	Estimated relative covari- ance associated with input estimates x_i and x_j	1

Version 2024

			-
$u(y_i, y_j)$	(uncertainty) Estimated covariance	Associated with output es- timates y_i and y_j deter- mined in the same meas- urement	1
u_z , u_{zi}	<i>(environmental mechanics, wind)</i> Turbulent wind fluc- tuations		m/s
uτ	(fluid mechanics, boundary layers) Shear (friction) ve- locity	$(\tau / ho)^{1/2}$	m/s
ü	(solid body mechanics, rigid body motions) Rates of change of components of lin- ear velocity relative to body axes		m/s ²
ü	<i>(ships, manoeuvrability)</i> Surge acceleration, linear ac- celeration along body <i>x</i> -axis	du / dt	m/s ²
<i>u</i> ⁺	(fluid mechanics, boundary layers)	U/u_{τ}	1
u×v	(<i>fundamental</i> , <i>coordinate</i> <i>and space related</i>) Vector product	EijkUjVk	
<i>U</i> *	(environmental mechanics, wind) Wind shear velocity	$C_{10}^{1/2} U_{10}$ or $0.71 U_{10}^{1.23}$	m/s
$[u(x_i)/ x_i]^2$	<i>(uncertainty)</i> Estimated relative variance	Estimated relative variance associated with input estimate x_i	
$[u_c(y)//y]^2$	<i>(uncertainty)</i> Relative combined variance	Relative combined vari- ance associated with out- put estimate y	

Version 20	024			U, u
ITTC	Aanonyim	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

ITTC	Acronvm	Name	Definition or	SI-
Symbol			Explanation	Unit
			1	1
		(fluid mechanics, flow fields,	1/2	
V		sailing vessels) Velocity of a	$V = v_i v_i^{1/2}$	m/s
		body		
V		(ships, basic quantities) Vol-		m ³
•		ume		111
V		(ships, hull geometry) Dis-	$A/(a q) = \nabla_{PH} + \nabla_{AP}$	m ³
•		placement volume	(p g) = v BH + v AP	
		(ships, hull resistance, ma-		
		noeuvrability, sailing ves-		
V		sels) Linear velocity of		m/s
		origin in body axis, Speed of		
		the model or the ship		
		(sailing vessels) Speed		
\boldsymbol{V}	STW	through water in heading di-		m/s
		rection		
		(seakeeping, large amplitude		
V		<i>motions capsizing</i>) Tank to-		m³
		tal capacity		
V^0		(ships, basic quantities)		1/
		Rotational velocity	$2\pi n$	rad/s
		(fundamental, coordinate		
		and space related) Zeroth		
		order moments of a vector		
V^{0}_{i}		quantity distributed in space.	$\int dv_i$	
		referred to an orthogonal	5007	
		system of Cartesian coordi-		
		nates fixed in the body		
		(shins manoeuvrability) An-		
V_0		proach speed		m/s
		(fluid mechanics flow fields)		
V_0		Velocity of undisturbed flow		m/s
		(seakeening large amplitude		
		(seakceping, targe amplitude motions cansizing) Speed of		
Vo		craft in the turn -		m/s
•0		IMO/HSC'2000		111/ 5
		Service speed - IMO/IS		
		(shing basic quantities) Lin		
V^1		(<i>snips, basic quantities</i>) Lin-	ds/dt	m/s
		a body		111/ 5
		(fundamental accordinate		
		gunaameniai. coordinate		
$V^1{}_i$		der momente ef e vector der	$\int \varepsilon_{ijk} x_j dv_k$	
		tribution	· · ·	
V_{A}		(snips, manoeuvrability) Ap-		m/s
		proach speed		

r		1	T
	(ships, performance, propul-	Equivalent propeller open	
$V_{\rm A}$	sor performance) Advance	water speed based on thrust	m/s
	speed of propeller	or torque identity	
	(planing, semi-displacement	Mean velocity over bottom	
$V_{\rm BM}$	vessels) Mean bottom veloc-	of the hull	m/s
	ity	of the fitth	
V-	(ships, manoeuvrability)		m/s
VF	Flow or current velocity		111/ 5
V	(fluid mechanics, lifting sur-		m/a
VI	faces) Induced velocity		111/8
	(ships, unsteady propeller		
V_i	forces) Velocity field of the	i = 1, 2, 3	m/s
	wake		
	(fundamental. coordinate		
	and space related) Zeroth		
	order moments of a vector		
V_i	quantity distributed in space,	$\int dv_i$	
	referred to an orthogonal		
	system of Cartesian coordi-		
	nates fixed in the body		
V.	(ships, hull resistance) Speed		
VK	in knots		
V.	(fluid mechanics, cavitation)	W/z / w	m ³
V L	Volume loss		111
V	(sailing vessels) Velocity		m/s
v mc	made good on course		111/ 5
	(sailing vessels) Velocity		
$V_{ m mg}$	made good to windward		m/s
	(contrary to wind direction)		
	(ships, propulsor perfor-		
Vp	mance) Mean axial velocity		m/s
VP	at propeller plane of ducted		111/ 5
	propeller		
	(ships, ship performance)		
	Design ship speed when the		
V _{ref}	ship is in operation in a calm		m/s
	sea condition (no wind and		
	waves)		
	(ships, propulsor perfor-		
$V_{\rm S}$	mance) Section advance	$(V_{\rm A}^2 + (0.7 R \omega)^2)^{1/2}$	m/s
	speed at 0.7 R		
	(nlaning somi displacement	Relative velocity between	
V_{SP}	(praning, semi-uispiacement	hull and spray in direction of	m/s
	vessers/ spray verocity	the spray	

Version 2024

Acronym

Name

ITTC

Symbol

SI-

Unit

Definition or Explanation

IIIC	Acronym	Name	Definition of	51-
Symbol	reconym	Traine	Explanation	Unit
-			•	
		(fluid mechanics lifting sur-		
V_{π}		(<i>fund meendines, fifting sur</i>	Taking vortex induced ve-	m/s
V I		flow approaching a hydrofoil	locities into account	111/ 5
		(c riling a nyuroron		
$V_{ m tw}$		(salling vessels) True wind		m/s
		velocity		
$V_{\rm u}$		(ships, manoeuvrability)		m/s
, n		Generalized velocity		111, 5
1Ż		(ships, manoeuvrability)		m/s^2
Vu		Generalized acceleration		111/ 5
		(fundamental. coordinate		
V_{u}		and space related)	$V_i \equiv V_i^{\circ}$	
		Generalized vector	$V_{3+i} \equiv V_{i}^{1}$	
		(ships, ship performance)		
		Design ship speed when the		
$V_{ m w}$		ship is in operation under the		m/s
		representative sea condition		
		(shing, hull resistance, mg		
		(snips, nuit resistance, ma-		
		noeuvrability, environmental		
$V_{ m WR}$	AWS	mechanics, wina, sailing		m/s
V WK		vessels)		
		Relative wind velocity, ap-		
		parent wind velocity		
		(ships, manoeuvrability, en-		
$V_{ m WT}$	TWS	vironmental mechanics,		m/s
		wind) True wind velocity		
		(ships, manoeuvrability)		
ν		Sway velocity, linear veloc-		m/s
		ity along body y-axis		
		(solid body mechanics, rigid		
		<i>body motions</i>) Translatory		
V		velocity in the direction of		m/s
		body axis v		
		(seakeening large amplitude		
17		(seakeeping, targe amplitude motions cansizing) Tank to-		m3
V		tol conscience		111
		(flatid and a flat flat fields)		
		(fiuta mechanics, flow fields)		1
V		Velocity component in di-		m/s
		rection of y axis		
0		(solid body mechanics, rigid		
v_{1}^{0}		body motions) Rotational ve-		rad/s
		locity around body axis x		
		(solid body mechanics, rigid		
v_{2}^{0}		body motions) Rotational ve-		rad/s
		locity around body axis v		
<u> </u>		,		1

Definition or

ITTC Symbols

ITTC

V, v

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
			1	
<i>v</i> ⁰ ₃		(solid body mechanics, rigid body motions) Rotational ve- locity around body axis z		rad/s
<i>v</i> ¹ ₁		(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis x		m/s
$v^1 2$		(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis y		m/s
<i>v</i> ¹ ₃		<i>(solid body mechanics, rigid body motions)</i> Translatory velocity in the direction of body axis z		m/s
<i>v</i> ₁		(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis x		m/s
<i>v</i> ₁		(<i>fluid mechanics, flow fields</i>) Velocity component in di- rection of <i>x</i> , <i>y</i> , <i>z</i> axes		m/s
<i>v</i> ₂		<i>(solid body mechanics, rigid body motions)</i> Translatory velocity in the direction of body axis y		m/s
<i>v</i> ₂		<i>(fluid mechanics, flow fields)</i> Velocity component in di- rection of <i>x</i> , <i>y</i> , <i>z</i> axes		m/s
<i>v</i> ₃		(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis z		m/s
<i>v</i> ₃		 (fluid mechanics, flow fields) (fluid mechanics, flow fields) Velocity component in direction of x, y, z axes 		m/s
<i>v</i> ₄		(solid body mechanics, rigid body motions) Rotational ve- locity around body axis x		rad/s
<i>v</i> ₅		<i>(solid body mechanics, rigid body motions)</i> Rotational velocity around body axis y		rad/s

Version 2024

 $\frac{\mathbf{V},\mathbf{v}}{\mathbf{S}^{\mathrm{I}}}$

ITTC Symbol	Acronym	Name	Definition or Explanation	SI-
Symbol			Explanation	Unit
		(solid body mechanics rigid		
Ve		body motions) Rotational ve-		rad/s
۲Ö		locity around body axis z		rad/ 5
		(environmental mechanics	Volume of gas pores per unit	
VA		<i>ice</i>) Relative volume of air	volume of ice	1
		(environmental mechanics	Volume of liquid phase per	
$v_{\rm B}$		<i>ice</i>) Relative volume of brine	unit volume of ice	1
		(environmental mechanics.		
v_0		<i>ice</i>) Total porosity of ice	$v_0 = v_A + v_B$	1
		(fluid mechanics, flow fields)		
v_i		Velocity		m/s
		(solid body mechanics, rigid		
		body motions) Components	$v_i = v_i^1$	m/s
Vu		of generalized velocity or	$v_{3+i} = v_i^0$	rad/s
		motion relative to body axes		
		(fluid mechanics, flow fields)		
v_y		Velocity component in di-		m/s
		rection of <i>x</i> , <i>y</i> , <i>z</i> axes		
		(seakeeping, large amplitude		
$v_{\rm W}$		motions capsizing) Wind		m/s
		speed used in calculation		
		(solid body mechanics, rigid		
v_x		body motions) Translatory		m/s
		velocity in the direction of		
		$\frac{1}{2}$		
		(solid body mechanics, rigid hady motions) Translatory		
v_y		velocity in the direction of		m/s
		body axis y		
		(solid body mechanics rigid		
		(source of the source of the s		
v_z		velocity in the direction of		m/s
		body axis z		
		(fundamental. coordinate		
u×v		and space related) Vector	$\mathcal{E}_{ijk} \mathcal{U}_i \mathcal{V}_k$	
		product		
		(solid body mechanics, rigid		
\dot{v}		body motions) Rates of		-
		change of components of lin-		m/s^2
		ear velocity relative to body		
		axes		
		(ships, manoeuvrability)		
<i></i> v		Sway acceleration, linear ac-	dv / dt	m/s^2
		celeration along body y-axis		

Version 2024

Samela al	Acronym	Name	Definition of	51-
Symbol			Explanation	Unit
		(shing basic quantities)		
W		(snips, basic quantities) Weight (force) gravity force		N
**		acting on a body		1
		(ships hydrostatics stabil-		
		ity seakeeping large ampli-		
W		tude motions capsizing) Ship	m g	Ν
		weight		
117		(fluid mechanics, flow pa-		1
We		<i>rameter</i>) Weber number	$V^{-}L/\kappa$	1
W/		(hydrofoil boats) Weight of		N
WF		foil		IN
		(fluid mechanics cavitation)	Weight of material eroded	
$W_{ m L}$		Weight loss	from a specimen during a	N/s
			specified time	
		(ships, basic quantities, fluid		
W		mechanics, flow parameter)	$dW/dV = \rho g$	N/m ³
		Weight density, formerly	, 0	
		(solid body machanias		
147		(solia body mechanics, loads) Weight per unit	dW/dr	N/m
W		length		1 1/ 111
		(solid body mechanics rigid		
		<i>body motions</i>) Translatory		,
W		velocity in the direction of		m/s
		body axis z		
W				m/s
w		(ships, performance) Taylor	$(V - V_{\Lambda}) / V$	1
**		wake fraction in general		1
		(ships, manoeuvrability)		,
W		Heave velocity, linear veloc-		m/s
		$\frac{1 \text{ty along body } z \text{-axis}}{(a + b)^2}$		
		(fluid mechanics, flow fields)		/a
W		rection of r y z aves		III/S
		(shing hull resistance water		
147.		<i>iets</i>) Geometric intake width		m
W1		at station 1		111
		(ships. hull resistance. water		
		<i>jets</i>) Width of capture area		
W _{1A}		measured over hull surface		m
		at station 1A		
1420		(ships, performance) Froude	$(V - V_{\star}) / V_{\star}$	1
WF		wake fraction	$(v - v_A) / v_A$	1
Wo		(ships, ship performance)	Propeller speed V _A deter-	1
·* 2		Torque wake fraction	mined from torque identity	*

ITTC

SI-

Definition or

Version 2024			W, w	
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
WR		(<i>ships, ship performance</i>) Effect of the rudder(s) on the wake fraction		1
WT		(<i>ships, performance</i>) Thrust wake fraction	Propeller speed, V_A , determined from thrust identity	1
ŵ		<i>(solid body mechanics, rigid body motions, ships, ma-noeuvrability)</i> Heave acceleration, linear acceleration along body <i>z</i> -axis	dw / dt	m/s ²

Symbol	Acronym	Name	Explanation or	SI- Unit
X		(fundamental, time and fre- quency domain quantity) Real "valued" function		
X		(solid body mechanics, loads) Force in direction of body axis x		N
X		(ships, unsteady propeller forces) Cylindrical coordi- nates	Cylindrical system with origin O and longitudinal <i>x</i> - axis as defined before; angu- lar a-(attitude)-coordinate, zero at 12 o'clock position, positive clockwise looking forward, <i>r</i> distance meas- ured from the <i>x</i> -axis	m
X		(ships, manoeuvrability, sea- keeping) Surge force on body, force along body x- axis		N
X		<i>(sailing vessels)</i> Components of resultant force along designated axis		N
X_1		(seakeeping, large amplitude motions capsizing) Roll damping coefficients		1
X_2		(seakeeping, large amplitude motions capsizing) Roll damping coefficients		1
$X_{ m CB}$		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of buoy- ancy (L _{CB})	Longitudinal distance from reference point to the centre of buoyancy, B such as X _{MCF} from Midships	m
$X_{ m CF}$		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of flota- tion (L _{CF})	Longitudinal distance from reference point to the centre of flotation, F such as X_{MCF} from Midships	m
X _{CG}		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of grav- ity (L _{CG})	Longitudinal distance from a reference point to the centre of gravity, G such as X_{MCG} from Midships	m
$X_{ m F}$		(environmental mechanics, wind) Dimensionless Fetch	gF/U_{19}^2	

X, x

SI-

Definition or

ITTC Symbols

Version 2024

ITTC

ITIC	Δ cronym	Name	Definition or	SI-
Symbol	Actoliyin	Name	Explanation	Unit
X _H		(ACV and SES) Horizontal spacing between inner and outer side skirt hinges or at- tachment points to structure	needs clarification	m
$X_{ m R}$		(ships, manoeuvrability, sea- keeping) Longitudinal rud- der force		N
Xs		(ACV and SES) Distance of leading skirt contact point out-board or outer hinge of attachment point to structure	needs clarification	m
Xi		i th input quantity	i^{th} input quantity on which measurand Y depends NOTE Xi may be the phys- ical quantity or the random variable	
$X_{i,k}$		k^{th} independent repeated observation of X_i		
Xu		(ships, manoeuvrability, sea- keeping) Derivative of surge force with respect to surge velocity	ðX / ðu	Ns/m
X _ù		(ships, manoeuvrability, sea- keeping) Derivative of surge force with respect to surge acceleration	∂X/∂ù	Ns²/m
$\overline{X_i}$		Estimate of the value of input quantity X_i	Estimate of the value of in- put quantity X_i equal to the arithmetic mean or average of <i>n</i> independent repeated observation $X_{i,k}$ of X_i	
x		(fundamental. coordinate and space related) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
x		(fundamental, statistical, stochastic) Stationary sto- chastic process	$x(\zeta,t), y(\zeta,t)$	
x		(fundamental, time and fre- quency domain quantity) Values of real quantities	<i>x</i> (<i>t</i>)	
x		(ships, performance) Load fraction in power prediction	$\eta_{\rm D} P_{\rm D} / P_{\rm E}$ - 1	1

Version 2024

ITTC

SI-

Definition or

ITTC	Aaronym	Nomo	Definition or	SI-
Symbol	Actonym	Ivaille	Explanation	Unit
			Cylindrical system with	
			origin O and longitudinal <i>x</i> -	
r			axis as defined before; angu-	
		(ships, unsteady propeller	lar a-(attitude)-coordinate,	
x		forces) Cylindrical coordi-	zero at 12 o'clock position,	m
		nates	positive clockwise looking	
			forward, r distance measured	
			from the <i>x</i> -axis	
			Origin O coinciding with the	
			centre of the propeller. The	
		(ships, unsteady propeller	longitudinal <i>x</i> -axis coincides	
x		forces) Cartesian coordi-	with the shaft axis, positive	m
		nates	forward; the trans-verse y-	
		axis, positive to port; the		
			third, z-axis, positive upward	
24		(fundamental, statistical)	x(D) x(D)	
х		Random quantities	$x(\zeta), y(\zeta)$	
		(fundamental. coordinate	Bight hand orthogonal ava	
ro		and space related) Space	tom of coordinates fixed in	m
л0		axes and corresponding Car-	111	
		tesian coordinates	relation to the space	
		(fundamental. coordinate	Right-hand orthogonal sys-	
Y 01		and space related) Space	tem of coordinates fixed in	m
701		axes and corresponding Car-		111
		tesian coordinates	Telation to the space	
		(fundamental. coordinate	Right-hand orthogonal sys-	
x02		and space related) Space	tem of coordinates fixed in	m
		axes and corresponding Car-	relation to the space	
		tesian coordinates		
		(fundamental. coordinate	Right-hand orthogonal sys-	
<i>x</i> 03		and space related) Space	tem of coordinates fixed in	m
		axes and corresponding Car-	relation to the space	
		tesian coordinates		
		(ships, manoeuvrability,		
<i>x</i> ₀₉₀		<i>turning circles)</i> Advance at		m
		90° change of heading		
<i>x</i> ₀₁₈₀		(ships, manoeuvrability,		
		<i>turning circles</i>) Advance at		m
		180° change of heading		
XOF		(ships, manoeuvrability,		m
		stopping man.) Head reach		
		(ships, manoeuvrability,		
$x_{0\max}$		<i>turning circles</i>) Maximum		m
		advance		

Version 2024

X, x SI-Unit

mit	Acronym	Name	Definition of	51-
Symbol	i ieronym		Explanation	Unit
x_1		(fundamental. coordinate and space related) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
<i>x</i> ₂		(<i>fundamental. coordinate</i> <i>and space related</i>) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
<i>x</i> ₃		(fundamental. coordinate and space related) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
x ^A		(fundamental, time and fre- quency domain quantity) Analytic function	$X^{\mathrm{A}}(t) = X(t) + iX^{\mathrm{H}}(t)$	
x ^A		(<i>fundamental, statistical</i>) Average or sample mean of a random quantity	$1/n \Sigma x_i$, $i = 1n$ unbiased random estimate of the expectation with $x^{AE} = x^E$ $x^{VSE} = x^V / n$	
ХB		(ships, propulsor geometry) Boss to diameter ratio	$d_{ m h}$ / D	
ХСВ		(ships, hydrostatics, sea- keeping, large amplitude motions capsizing) Longitudinal centre of float- ation of added buoyant layer	Longitudinal distance from reference point to the centre of the added buoyant layer, <i>b</i> such as x_{MCb} from Mid- ships	m
XCF		(ships, hydrostatics, sea- keeping, large amplitude motions capsizing) Longitudinal centre of flota- tion of added buoyant layer	Longitudinal distance from reference point to the centre of flotation of the added buoyant layer, f such as x_{MCf} from Midships	m
XCG		 (ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Longitudinal centre of grav- ity of added weight (mass) 	Longitudinal distance from reference to the centre of gravity, g , of an added or re- moved weight (mass) such as x_{MCg} from Midships	m
x ^D		(<i>fundamental, statistical</i>) Standard deviation of a ran- dom quantity	x ^{VR 1/2}	
XD		<i>(seakeeping, large amplitude motions capsizing)</i> Distance of down flooding opening from end of boat		m

Version 2024

ITTC

Definition or

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
x ^{DF}		(fundamental, time and fre- quency domain quantity) Fourier transform of ampled function	$X^{\text{DF}}(f) = \sum x_j \exp(-i2\pi f j T_{\text{S}})$ i.e. periodically repeating = $X(0)/2 + f_{\text{S}} \sum X^F (f + j f_{\text{S}})$ sample theorem: aliasing!	
x^{DL}		(fundamental, time and fre- quency domain quantity) Laurent transform Sampled function	$X^{\mathrm{DL}}(s) = \Sigma x_j \exp(-sjT_{\mathrm{S}})$	
x ^{DR}		(<i>fundamental, statistical</i>) Standard deviation of a ran- dom quantity	x ^{VR 1/2}	
x ^{DS}		(<i>fundamental, statistical</i>) Sample deviation of a ran- dom quantity	$x^{VS \frac{1}{2}}$, unbiased random estimate of the standard deviation	
x^E		(<i>fundamental, statistical</i>) Expectation or population mean of a random quantity	E(x)	
хғ		(fundamental. coordinate and space related) Flow axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
x ^F		(fundamental, time and fre- quency domain quantity) Fourier transform	$X^{F}(f) = \int X(t) \exp(-i2\pi ft) dt$ inverse form: $= \int X^{F}(f) \exp(-i2\pi ft) dt$ if $X(t) = 0$ and $a = 0$ then $X^{F}(f) = X^{L}(f)$	
x _{F1}		(fundamental. coordinate and space related) Flow axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
XF2		(<i>fundamental. coordinate</i> <i>and space related</i>) Flow axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
XF3		(fundamental. coordinate and space related) Flow axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
x^{F}_{j}		(fundamental, time and fre- quency domain quantity) Fourier transform of peri- odic function	$1/T_{C} \int X(t) \exp(-i2\pi j t/T_{C}) dt$ $t = 0 \dots T_{C}$ $X^{F} = \sum x^{F_{j}} \delta(f - j/T_{C})$ inverse form: $X(t) = \sum x^{F_{j}} \exp(-i2\pi f j T_{C})$	

ITTC	Acronym	Name	Definition or	SI-
Symbol	reconym	Tunie	Explanation	Unit
н		(fundamental, time and fre-		
<i>x</i> ¹¹		<i>quency domain quantity)</i>	$X^{\prime\prime}(t) = 1/\pi J X(\tau)/(t-\tau) d\tau$	
		(fundamental_time_and fre		
		(Junuamental, time and fre-	$X^{\text{HF}}(f) = X^{\text{F}}(f)(-i \operatorname{sgn} f)$	
$x^{\rm HF}$		Fourier transform of Hilbert	$(1/t)^F = -i \operatorname{sgn} f$	
		transform		
		(fundamental, statistical)	: 1	
x_i		Samples of random quanti-	$l = 1 \dots n$ n : sample size	
		ties		
		(ships, seakeeping) Absolute	i = 1, 2, 3 :surge, sway, and	
x_i		displacement of the ship at	heave respectively	m
		the reference point	Estimate of input quantity V	
			NOTE when r is deter-	
			Definition or ExplanationS Explanationtal, time and fre- main quantity) 	
χ_i		Estimate of input quantity X_i	mean or average of <i>n</i> inde-	
			pendent repeated observa-	
			tion $x_i = \frac{1}{X_i}$	
		(fundamental, time and fre-		
x_j		quency domain quantity)		
		Variables for samples values	$x(t_j) = \int x(t) \partial(t - t_j) dt$	
		of real quantities		
T		(fundamental, time and fre-	$X^{\rm L}(s) = \int X(t) \exp(-st) dt$	
x^{L}		quency domain quantity) La-	if $X(t<0) = 0$ then	
		place transform	$= (X(t)\exp(-at))^r$	
М		(fundamental, statistical)		
X		Expectation of population	E(X)	
		(fundamental statistical) m-		
$(x^m)^E$		th moment of a random	$(x^m)^E$	
()		quantity		
		(fundamental, statistical)		
x^{MR}		Expectation or population	E(x)	
		mean of a random quantity		
			$1/n \Sigma x_i$, $i = 1n$	
MS		(fundamental, statistical)	unbiased random estimate of	
x^{MS}		Average or sample mean of	the expectation with ΔF	
		a random quantity	$x^{AB} = x^{B}$ $x^{VSE} = x^{V} / x^{SE}$	
		(fundamental statistical)	$\lambda - \lambda / ll$	
x ^{PD}		Probability density of a ran-	$dF_{\rm r}/dx$	
		dom quantity		
		(fundamental, statistical)		
$x^{\rm PF}$		Probability function (distri-		1
		bution) of a random quantity		

Version 2024

X, x

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
Хр		(ships, propulsor geometry) Longitudinal propeller posi- tion	Distance of propeller centre forward of the after perpen- dicular	m
x ^R		(fundamental, time and fre- quency domain quantity) Laurent transform	$X^{\mathrm{R}}(r) = \Sigma x_j r^{-j} = X^{\mathrm{DL}}$	
X _R		<i>(ships, manoeuvrability)</i> Longitudinal position of rud- der axis		m
x ^S		(fundamental, time and fre- quency domain quantity) Single-sided complex spec- tra	$X^{S}(f) = X^{F}(f)(1 + \operatorname{sgn} f)$ = X^{AF} i.e. = 0 for $f < 0$	
x^{S}_{j}		(fundamental, time and fre- quency domain quantity) Single-sided complex Fou- rier series	$X^{\mathrm{F}_{j}}(1 + \mathrm{sgn} j)$ line spectra	
x _u		(<i>ships, seakeeping</i>) General- ized displacement of a ship at the reference point	u = 16 surge, sway, heave, roll, pitch, yaw	m rad
x^V		(<i>fundamental, statistical</i>) Variance of a random quan- tity	$x^{2E} - x^{E2}$	
x ^{VR}		(<i>fundamental, statistical</i>) Variance of a random quan- tity	$x^{2E} - x^{E2}$	
x^{VS}		(<i>fundamental, statistical</i>) Sample variance of a ran- dom quantity	$\frac{1}{(n-1)} \sum (x_i - x^A)^2$ i = 1n unbiased random estimate of the variance $x^{VSE} = x^V$	
xx ^C		(<i>fundamental, statistical, stochastic</i>) Auto-covariance of a stationary stochastic process	$(x(t) - x^E)(x(t + \tau) - x^E)^E$	
xx ^{CR}		(<i>fundamental, statistical, stochastic</i>) Auto-covariance of a stationary stochastic process	$(x(t) - x^{E})(x(t + \tau) - x^{E})^{E}$	
xx ^{MR}		(<i>fundamental, statistical</i>) Auto-correlation of a ran- dom quantity	$x x^E$	
xx ^R		(<i>fundamental, statistical</i>) Auto-correlation of a ran- dom quantity	$x x^E$	

ITTC	Acronym	Name	Definition or	SI-
Symbol	Actonym	Ivanie	Explanation	Unit
			$x(t)x(t+\tau)^E = R_{xx}(\tau)$	
		(fundamental, statistical,	$R_{xx}(\tau) = R_{xx}(-\tau)$	
PP		<i>stochastic</i>) Auto-correlation	if x is ergodic:	
xx		of a stationary stochastic	$R_{xx}(\tau) = x(t)x(t+\tau)^{MR}$	
		process	$R_{\rm xr}(\tau) = \int S_{\rm xr}(\omega) \cos(\omega \tau) d\tau$	
		L	$\tau = 0 \infty$	
		(fundamental, statistical,		
C.		<i>stochastic</i>) Power spectrum	DDCD	
xx ^S		or autospectral power den-	XX ^{KKSK}	
		sity of a stochastic process		
		(fundamental statistical)		
rr ^{VR}		Variance of a random quan-	$r^{2E} - r^{E2}$	
лл		tity	л л	
			$1/(n-1) \sum (r_i - r^A)^2$	
		(fundamental, statistical)	i = 1 n	
xx^{VS}		Sample variance of a ran-	r = 1n	
		dom quantity	the variance $x^{VSE} = x^V$	
		(fundamental_statistical		
C		stochastic) Cross-covariance		
xy ^C		of two stationary stochastic	$(x(t) - x^{E})(y(t + \tau) - y^{E})^{E}$	
		processes		
		(fundamental, statistical,		
CB		<i>stochastic</i>) Cross-covariance		
ху ^{ск}		of two stationary stochastic	$(x(t) - x^{E})(y(t + \tau) - y^{E})^{E}$	
		processes		
		(fundamental, statistical)		
xy^{MR}		Cross-correlation of two ran-	$x y^E$	
-		dom quantities		
		(fundamental, statistical)		
xy^{PD}		Joint probability density of	$\partial^2 F_{xy} / (\partial x \partial y)$	
		two random quantities		
		(fundamental, statistical)		
,,,PF		Joint probability function		1
ху		(distribution) function of		1
		two random quantities		
		(fundamental, statistical)		
xy^{R}		Cross-correlation of two ran-	$x y^E$	
		dom quantities		
		(fundamental, statistical,	$x(t)y(t+\tau)^E = R_{xy}(\tau)$	
ry,R		stochastic) Cross-correlation	$R_{yx}(\tau) = R_{xy}(-\tau)$	
лу		of two stationary stochastic	if x, y are ergodic:	
		processes	$R_{xy}(\tau) = x(t)y(t+\tau)^{\rm MR}$	
		(fundamental, statistical,		
ryS		stochastic) Cross-power	YVRRSR	
л у		spectrum of two stationary	s, y	
		stochastic processes		

Version 2024

Version 20	24			X, x
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
xy^V		(<i>fundamental, statistical</i>) Variance of two random quantities	$x y^E - x^E y^E$	
xy ^{VR}		(<i>fundamental, statistical</i>) Variance of two random quantities	$x y^E - x^E y^E$	

Version 2024 Y, y					
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit	
Y		(solid body mechanics, loads, ships, manoeuvrabil- ity, seakeeping) Sway force, force in direction of body axis y		N	
Y		<i>(sailing vessels)</i> Compo- nents of resultant force along designated axis		N	
Y		A measurand. Estimated rel- ative uncertainty of standard uncertainty $u(x_i)$ of inputs estimate x_i			
Y _{CG}		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Lat- eral displacement of centre of gravity (Y _{CG})	Lateral distance from a refer- ence point to the centre of gravity, G	m	
Y _r		(ships, manoeuvrability, sea- keeping) Derivative of sway force with respect to yaw ve- locity	$\partial Y / \partial r$	Ns	
Y _R		<i>(ships, manoeuvrability, sea- keeping)</i> Transverse rudder force		N	
Y _U		(ships, propulsor perfor- mance) Pod unit side force		N	
Y _r		<i>(ships, manoeuvrability, sea- keeping)</i> Derivative of sway force with respect to yaw ac- celeration	∂Y/∂r̈	Ns ²	
Y_{v}		(ships, manoeuvrability, sea- keeping) Derivative of sway force with respect to sway velocity	$\partial Y / \partial v$	Ns/m	
$Y_{\dot{v}}$		(ships, manoeuvrability, sea- keeping) Derivative of sway force with respect to sway acceleration	<i>∂Y/∂v</i>	Ns ² /m	
$Y_z(\omega)$		(<i>ships, seakeeping</i>) Ampli- tude of frequency response function for translatory mo- tions	$z_a(\omega) / \zeta_a(\omega)$ or $z_a(\omega) / \eta_a(\omega)$	1	
Y_{δ}		(ships, manoeuvrability, sea- keeping) Derivative of sway force with respect to rudder angle	<i>∂</i> Y / δ	N	

Y, y

ITTC Symbols

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
$Y_{ heta\zeta}(\omega)$		(<i>ships, seakeeping</i>) Ampli- tude of frequency response function for rotary motions	$egin{aligned} & \Theta_a(\omega) \ / \ \zeta_a(\omega) \ ext{or} \ \Theta_a(\omega) \ / \ (\omega^2 / \ (g \zeta_a(\omega))) \end{aligned}$	1
У		(fundamental, statistical, stochastic) Stationary sto- chastic process	$x(\zeta,t), y(\zeta,t)$	
у		(<i>fundamental</i> , <i>statistical</i>) Random quantities	x(ζ), y(ζ)	
у		(ships, unsteady propeller forces) Cartesian coordinates	Origin O coinciding with the centre of the propeller. The longitudinal <i>x</i> -axis coincides with the shaft axis, positive forward; the trans-verse <i>y</i> -axis, positive to port; the third, <i>z</i> -axis, positive upward	m
У		(fundamental. coordinate and space related) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
У		Estimated of measurand <i>Y</i> or Result of a measurement or Output estimate		
уо		(fundamental. coordinate and space related) Space axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the space	m
Y090		(ships, manoeuvrability, turning circles) Transfer at 90° change of heading		m
<i>Y</i> 0180		(ships, manoeuvrability, turning circles) Tactical di- ameter (transfer at 180° change of heading)		m
Y0F		(ships, manoeuvrability, stopping manoeuvre) Lateral deviation		m
Y0max		(ships, manoeuvrability, turning circles) Maximum transfer		m
Y0max		(ships, manoeuvrability, zig- zag manoeuvre) Maximum transverse deviation		m

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
усд		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Lat- eral displacement of centre of gravity (Y_{CG})	Lateral distance from a refer- ence point to the centre of gravity, G	m
уд		<i>(seakeeping, large amplitude motions capsizing)</i> Distance of down flooding opening from gunwale		m
ур'		(seakeeping, large amplitude motions capsizing) Distance of down flooding opening off centreline		m
УF		(fundamental. coordinate and space related) Flow axes and corresponding Cartesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
<i>Yi</i>		(<i>fundamental, statistical</i>) Samples of random quanti- ties	i = 1 n where n : sample size	
<i>y</i> i		Estimate of measurand Y_i	Estimate of measurand Y_i when two or more measur- ands are determined in the same measurement	
УР		(ships, propulsor geometry) Lateral propeller position	Transverse distance of wing propeller centre from middle line	m
<i>y</i> ⁺		<i>(fluid mechanics, boundary layers)</i> Non-dimensional distance from the wall	$y u_{\tau} / v$	1
ITTC Symbol	Acronym	Name	Definition or	SI-
----------------	---------	--	-------------------------------	-------
			Explanation	Ullit
		(solid body machanics		
7		(solid body mechanics, loads) Force in direction of		Nm
L		body axis 7		1 111
		(ships_propulsor_geometry)		
Ζ		Number of propeller blades		1
		(ships hydrostatics stabil-		
		<i>ity</i>) Intersection of righting		
Z		arm with line of action of		
		the centre of buoyancy		
		(ships, manoeuvrability, sea-		
_		<i>keeping</i>) Heave force on		
Z		body, force along body <i>z</i> -		Ν
		axis		
		(sailing vessels) Compo-		
Ζ		nents of resultant force		Ν
		along designated axis		
		(seakeeping, large amplitude		
		<i>motions capsizing</i>) Intersec-		
Z		tion of righting arm with line		
		of action of the centre of		
		buoyancy		
		(seakeeping, large amplitude		
		motions capsizing) Vertical		
		distance from the centre of		
Ζ		A to the centre of the under-		m
		water lateral area or approxi-		
		mately to a point at one half		
		the draught - IMO/IS		
		(seakeeping, large amplitude		
Z		motions capsizing) Vertical		m
2		distance from the centre of		111
		A to the waterline		
$Z_{\rm CB}$		(Ships, Hydrostatics and	Vertical distance from refer-	m
		Stability)	ence point to the centre of	
		Vertical centre of buoyancy	buoyancy, B	
		(sailing vessels) Height of		
ZCE		centre of effort of sails		m
		above waterline in vertical		
		centre plane		
		(ACV and SES) Vertical		
$Z_{\rm H}$		spacing between inner and	needs clarification	m
		outer side skirt hinges or at-		
		tachment points to structure		

ITTC Symbols

Version 2024

Symbol	Acronym	Name	Explanation	Unit
	Ι		I	1
z		(fundamental. coordinate and space related) Body axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
Z		(fundamental, time and fre- quency domain quantity) Complex variable		
Ζ.		<i>(environmental mechanics, wind)</i> Height above the sea surface in meters		m
Z.		(ships, propulsor geome- try)Number of propeller blades		1
Z		(ships, unsteady propeller forces) Cartesian coordi- nates	Origin O coinciding with the centre of the propeller. The longitudinal <i>x</i> -axis coincides with the shaft axis, positive forward; the trans-verse <i>y</i> - axis, positive to port; the third, <i>z</i> -axis, positive upward	m
Z0		(fundamental. coordinate and space related) Space axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the space,	m
<i>z</i> ₆		(ships, hull resistance, water jets) Vertical distance of nozzle centre relative to un- disturbed surface		m
z ^a		<i>(fundamental, time and fre- quency domain quantity)</i> Amplitude	$mod(z) = sqrt(z^{r2}+z^{i2})$	m
Z ^c		(fundamental, time and fre- quency domain quantity) Real or cosine component	$z^c = \operatorname{real}(z) = z^a \cos(z^p)$	
ZD		(seakeeping, large amplitude motions capsizing) Height above waterline of down flooding opening		m
ΖF		(fundamental. coordinate and space related) Flow axes and corresponding Car- tesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
z ⁱ		(fundamental, time and fre- quency domain quantity) Im- aginary or sine component	$\operatorname{imag}(z) = z^a \sin(z^p) = z^s$	

ITTC Symbols

Version 2024

ITTC

l.			Z, z
Aaronum	Nomo	Definition or	SI-
Actonym	Ivanie	Explanation	Unit

_

ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit
z ^j		(fundamental, time and fre- quency domain quantity) Conjugate	z^r - iz^i	
z^l		(fundamental, time and fre- quency domain quantity) (Phase) Lag	- <i>z</i> ^{<i>p</i>}	
z ^p		(fundamental, time and fre- quency domain quantity) Phase	$\operatorname{arc}(z) = \operatorname{arctg}(z^i / z^r)$	
ZP		(ships, propulsor geometry) Vertical propeller position	Height of propeller centre above base line	m
<i>z</i> ^r		(fundamental, time and fre- quency domain quantity) Real or cosine component	$\operatorname{real}(z) = z^a \cos(z^p) = z^c$	1
z ^s		(fundamental, time and fre- quency domain quantity) Im- aginary or sine component	$z^s = imag(z) = z^a \sin(z^p)$	1
2.5		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Mean static sinkage	$(z_{\rm SF}+z_{\rm SA})/2$	m
ZSA		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Static sinkage at AP	Caused by loading	m
Z.SF		(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Static sinkage at FP	Caused by loading	m
ZV		(<i>ships, performance</i>) Run- ning sinkage of model or ship		m
ZVA		(ships, hull resistance) Run- ning sinkage at AP		m
<i>ZV</i> F		(ships, hull resistance) Run- ning sinkage at FP		m
ZVM		(ships, hull resistance) Mean running sinkage	$(z_{\rm VF} + z_{\rm VA}) / 2$	m

ITTC Symbols

Version 2024

ITTC

ITTC Sym	bols			
Version 20	24			Α, α
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit

α	(solid body mechanics, rigid body motions) Angular ac- celeration	$d\omega/dt$	rad/s ²
α	(solid body mechanics, rigid body motions) Angle of at- tack	The angle of the longitudinal body axis from the projec- tion into the principal plane of symmetry of the velocity of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the y-axis	rad
α	(fluid mechanics, lifting sur- faces) Angle of attack or in- cidence	Angle between the direction of undisturbed relative flow and the chord line	rad
α	(fluid mechanics, cavitation) Gas content	Actual amount of solved and undissolved gas in a liquid	ppm
α	(ships, manoeuvrability) Pitch angle	Angle of attack in pitch on the hull	rad
α	(ships, propulsor geometry) Angle of inclination of the propeller shaft	Angle between propeller shaft and horizontal	deg
α ₀	<i>(fluid mechanics, lifting sur- faces)</i> Angle of zero lift	Angle of attack or incidence at zero lift	rad
$\alpha_{\rm B}$	(planing, semi-displacement vessels) Angle of stagnation line	Angle between projected keel and stagnation line in a plane normal to centre plane and parallel to reference line	rad
α _{BAR}	(planing, semi-displacement vessels) Barrel flow angle	Angle between barrel axis and assumed flow lines	rad
ac	(hydrofoil boats) Geometric angle of twist		rad
α _D	(ships, propulsor geometry) Duct profile-shaft axis angle	Angle between nose-tail line of duct profile and propeller shaft	rad
αeff	(fluid mechanics, lifting sur- faces) Effective angle of attack or incidence	The angle of attack relative to the chord line including the effect of induced veloci- ties	rad
α _{FB}	(ships, appendage geometry) Bow fin angle		rad
α _{FS}	(<i>ships, appendage geometry</i>) Stern fin angle		rad

Symbol	Acronym	Name	Explanation	Unit
α _G		(fluid mechanics, lifting sur- faces) Geometric angle of attack or incidence	The angle of attack relative to the chord line neglecting the effect of induced veloci- ties	rad
α _H		(fluid mechanics, lifting sur- faces) Hydrodynamic angle of attack	In relation to the position at zero lift	rad
αı		(fluid mechanics, lifting sur- faces) Ideal angle of attack	For thin airfoil or hydrofoil, angle of attack for which the streamlines are tangent to the mean line at the leading edge. This condition is usu- ally referred to as "shock- free" entry or "smooth"	rad
$\alpha_{\rm IND}$		<i>(hydrofoil boats)</i> Downwash or induced angle		rad
α _M		<i>(hydrofoil boats)</i> Angle of attack of mean lift coefficient for foils with twist		rad
$\alpha_{\rm S}$		(<i>fluid mechanics, cavitation</i>) Gas content of saturated liq- uid	Maximum amount of gas solved in a liquid at a given temperature	ppm
$a_{\rm s}$		<i>(fluid mechanics, cavitation)</i> Gas content ratio	α / α_S	1
$\alpha_{\rm s}$		<i>(hydrofoil boats)</i> Angle of attack for which flow separation (stall) occurs		rad
ατο		(hydrofoil boats) Incidence angle at take-off speed		rad

Name

Acronym

ITTC Symbols

Version 2024

ITTC

Definition or SI-

Explanation

<u>Α,α</u>

ITTC Symbols				
Version 20	24			Β,β
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit

β		(solid body mechanics, rigid body motions) Angle of drift or side-slip	The angle to the principal plane of symmetry from the velocity vector of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the <i>z</i> -axis	rad
β		<i>(fluid mechanics, boundary layers)</i> Equilibrium parameter	$\delta^* / (\tau_w dp / dx)$	1
β		(planing, semi-displacement vessels) Deadrise angle of planing bottom	Angle between a straight line approximating body section and the intersection between basis plane and section plane	rad
β		(ships, performance) Ap- pendage scale effect factor	Ship appendage resistance divided by model append- age resistance	1
β		(ships, manoeuvrability) Drift angle	Angle of attack in yaw on the hull	rad
β		(ships, propulsor perfor- mance) Advance angle of a propeller blade section	$\operatorname{arctg}\left(V_{\mathrm{A}}/R\omega\right)$	rad
$eta_{ m C}$		(ships, manoeuvrability, turning circles) Drift angle at steady turning		rad
$\beta_{ m D}$		(ships, propulsor geometry) Diffuser angle of duct	Angle between inner duct tail line and propeller shaft	rad
βι		(<i>ships, propulsor, perfor-</i> <i>mance</i>) Hydrodynamic flow angle of a propeller blade section	Flow angle taking into ac- count induced velocity	rad
$\beta_{ m L}$		(sailing vessels) leeway an- gle		rad
$\beta_{ m M}$		(planing, semi-displacement vessels) Deadrise angle at midship section		rad
βτ		(<i>planing</i> , <i>semi-displacement</i> <i>vessels</i>) Dead rise angle at transom		rad
$eta_{ m WA}$	AWA	<i>(environmental mechanics, wind, sailing vessels)</i> apparent wind angle (relative to boat course)		rad

ITTC Sym	bols			
Version 20	24			Β,β
ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Actollym	Name	Explanation	Unit

$\beta_{ m WR}$		(<i>ships, manoeuvrability</i>) Angle of attack of relative wind		rad
$eta_{ m WT}$	TWA	(environmental mechanics, wind, sailing vessels) True wind angle (relative to ves- sel course)		rad
eta^*		(ships, propulsor perfor- mance) Effective advance angle	arctg ($V_{\rm A}$ / (0.7 $R \omega$))	rad

ITTC Symbols				
Version 20	24			Γ, γ
ITTC	Aaronym	Nomo	Definition or	SI-
Symbol	Actoliyili	Inallie	Explanation	Unit

Г	<i>(fluid mechanics, flow fields)</i> Circulation	$\int V ds$ along a closed line	m ² /s
Г	<i>(fluid mechanics, flow fields)</i> Vortex density	Strength per length or per area of vortex distribution	m/s
I ⁿ	(fluid mechanics, flow fields) Normalized circulation	$\Gamma / (\pi D V)$ π is frequently omitted	1
γ	(ships, basic quantities) Rel- ative mass or weight, in English speaking called spe- cific gravity	Mass density of a substance divided by mass density of distilled water at 4°C	1
γ	(solid body mechanics, rigid body motions) Projected an- gle of roll or heel	The angular displacement about the x_0 axis of the prin- cipal plane of symmetry from the vertical, positive in the positive sense of rotation about the x_0 axis	rad
γ	(fluid mechanics, lifting sur- faces) Sweep angle		rad
71	(<i>ships, propulsor perfor-</i> <i>mance</i>) Resistance fraction for one propeller	The portion of the resistance (load fraction, γ_i) <i>that the</i> i th propeller is responsible for	1

ITTC Sym	bols			
Version 20	24			Δ, δ
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

			I
	(Ships, hydrostatics, stabil- ity seakeening large ampli-		
Δ	tude motions capsizing) Dis-	$g ho \nabla$	Ν
	placement (buoyant) force		
	(ships, hull geometry) Dis-		
\varDelta_{APP}	placement force (buoyancy)	$g \rho \nabla_{AP}$	Ν
	of appendages	0,	
	(ships, hull geometry) Dis-		
$\varDelta_{ m BH}$	placement force (buoyancy)	$g \rho V_{\rm BH}$	Ν
	of bare hull		
AC_{π}	(ships, hull resistance)		1
	Roughness allowance		1
	(sailing vessels) Displace-		
⊿c	ment force (weight) of ca-		Ν
	noe body		
Av	(sailing vessels) Displace-		Ν
21K	ment force (weight) of keel		1
ΔM	Change of momentum flux		N
$\Delta \overline{M}_{\chi}$	(ships, hull resistance, water		
	<i>jets)</i> Change in Momentum		Ν
	Flux in x direction		
	(ships, hull geometry, hydro-		
	statics, stability, seakeeping,		-
Δ_m	large amplitude motions	$ ho \nabla$	kg
	<i>capsizing</i>) Displacement		
	mass		
ΔR_{wanes}	(ships, ship performance)		Ν
Wures	Added waves resistance		
ΔR_{wind}	(ships, ship performance)		Ν
Wind	Added wind resistance		
$\Lambda_{11}(x_{\cdot})$		Estimated relative uncer-	
$\frac{\Delta u(x_i)}{\langle \cdot \rangle}$	(Uncertainty) Estimated rel-	tainty of standard uncer-	1
$u(x_i)$	alive uncertainty	tainty $u(x_i)$ of input estimate	
	(sailing wassals) Displace		
$\Delta_{\rm R}$	(satting vessels) Displace-		N
	der		11
	(fluid machanics, boundary)		
Δ_U	(Juna mechanics, boundary	(II ID / u)	1
	boundary layer	$(Ue^{-}U) / u_{\tau}$	1
	(shing performance) Shin		
1142	model correlation factor for	WTM = WTS	1
	wake fraction	W 1, M - W 1, S	1
	wake fraction		

ITTC Sym	bols			
Version 20	024			Δ, δ
ITTC	Aanonym	Nome	Definition or	SI-
Symbol	Acronym	Inallie	Explanation	Unit

Дwc	(<i>ships, performance</i>) Ship- model correlation factor with respect to <i>w</i> _{T,S} method formula of ITTC 1978 method		1
δ	(fluid mechanics, lifting sur- faces) Thickness ratio of foil section (general)	<i>t / c</i>	1
δ	<i>(ships, propulsor perfor- mance)</i> Taylor's advance coefficient	$n D / V_A$ with <i>n</i> in revs/min, <i>D</i> in feet, V_A in kn	1
δ	(ships, hydrostatics, stabil- ity) Finite increment in	Prefix to other symbol	1
δ	(seakeeping, large ampli- tude motions capsizing) Tank block coefficient		1
δ	<i>(ships, manoeuvrability)</i> Angle of a control surface, rudder angle, helm angle		rad
δ	(ships, manoeuvrability) Rudder angle, helm angle		rad
δ_0	(ships, manoeuvrability) Neutral rudder angle		rad
δ_1	(fluid mechanics, boundary layers) Displacement thick- ness of boundary layer	$\int (U_{\rm e}-U) / U_{\rm e} dy$	m
δ_{995}	(fluid mechanics, boundary layers) Thickness of a boundary layer at $U=0.995U_e$		m
$\delta B_{ m C}$	(ACV and SES) Increase in cushion breadth due to water contact		m
$\delta_{ m FB}$	(ships, manoeuvrability) Bow fin angle		rad
$\delta_{ m B}$	<i>(fluid mechanics, lifting sur- faces)</i> Thickness ratio of trailing edge of struts	$t_{\rm B}$ / $c_{\rm S}$	1
$\delta_{ m C}$	(fluid mechanics, cavitation) Cavity height or thickness	Maximum height of a fully- developed cavity, normal to the surface and the stream-wise direction of the cavity	m

ITTC Sym	bols			
Version 20	24			Δ, δ
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit

δ_{ij}	(fundamental. coordinate and space related) Delta operator	+1: ij = 11, 22, 33 0: if otherwise	
$\delta_{ m EFF}$	(ships, manoeuvrability) Effective rudder inflow angle		rad
$\delta_{ m F}$	<i>(fluid mechanics, lifting sur- faces)</i> Camber ratio of mean line (general)	f / c	1
$\delta_{ m F}$	(ships, appendage geometry) Flap angle (general)	Angle between the planing surface of a flap and the bot- tom before the leading edge	rad
$\delta_{ m FB}$	Bow fin angle		rad
$\delta_{ m FL}$	(fluid mechanics, lifting sur- faces) Angle of flap deflection		rad
$\delta_{ m FR}$	(ships, appendage geometry) Flanking rudder angle		rad
$\delta_{ ext{FRin}}$	<i>(ships, appendage geometry)</i> Assembly angle of flanking rudders	Initial angle set up during the assembly as zero angle of flanking rudders	rad
$\delta_{ m FS}$	(ships, manoeuvrability) Stern fin angle		rad
δ_{I}	<i>(environmental mechanics, ice)</i> Deflection of ice sheet	Vertical elevation of ice sur- face	m
$\delta_{ m L}$	<i>(fluid mechanics, lifting sur- faces)</i> Camber ratio of lower side of foil	f_L / c	1
δλ	<i>(special craft, geometry and levers)</i> Dimensionless in- crease in total friction area	Effective increase in friction area length-beam ratio due to spray contribution to drag	1
δ_{\max}	(ships, manoeuvrability, zig- zag manoeuvre) Maximum value of rudder angle		rad
$\delta_{ m R}$	<i>(ships, appendage geometry, manoeuvrability)</i> Rudder angle		rad
$\delta_{ m RO}$	<i>(ships, manoeuvrability)</i> Rudder angle, ordered		rad
$\delta_{ m RF}$	(ships, appendage geometry) Rudder-flap angle		rad
δs	(fluid mechanics, lifting sur- faces) Thickness ratio of strut	$t_{\rm S} / c_{\rm S}$	1

ITTC Sym	bols			
Version 202	24			Δ, δ
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

$\delta_{ m STH}$	(<i>fluid mechanics, lifting sur- faces</i>) Theoretical thickness ratio of section	$t_{\rm S} / c_{\rm STH}$	1
$\delta_{ m s}$	(fluid mechanics, lifting sur- faces) Slat deflection angle		rad
$\delta t_{\rm KL}$	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Change in static trim		m
$\delta_{ m U}$	(fluid mechanics, lifting sur- faces) Camber ratio of upper side	f_u / c	1
δ_u	(ships, unsteady propeller forces) Generalized vibra- tory displacement	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	M m rad
$\delta_{ m W}$	(ships, appendage geometry) Wedge angle	Angle between the planing surface of a wedge and the bottom before the leading edge	rad
δ_{λ}	(planing, semi-displacement vessels) Dimensionless in- crease in total friction area	Effective increase in friction area length-beam ratio due to spray contribution to drag	1
δ^{*}	(fluid mechanics, boundary layers) Displacement thick- ness of boundary layer	$\int (U_{\rm e}-U) / U_{\rm e} dy$	m
δ^{**}	(fluid mechanics, boundary layers) Energy thickness	$\int (U/U_{\rm e}) (1 - U^2/U_{\rm e}^2) dy$	m
$\dot{\delta}_u$	(ships, unsteady propeller forces) Generalized vibra- tory velocity	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m/s m/s rad/s
$\ddot{\delta}_u$	(ships, unsteady propeller forces) Generalized vibra- tory acceleration	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m/s^2 m/s^2 rad/s^2

ITTC Sym	bols			
Version 20	24			Ε, ε
ITTC	Acronym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

3	(fluid mechanics, lifting surfaces) Lift-Drag ratio	L/D	1
Е	<i>(ships, hull resistance)</i> Resistance-displacement ratio in general	R / A	1
Е	(ships, propulsor geometry) Propeller axis angle measured to body fixed coordinates	Angle between reference line and propeller shaft axis	rad
ЕF	<i>(hydrofoil boats)</i> Lift/ Drag ratio of foil	L/D	1
Ei	Phases of harmonic components of a periodic wave	η^{FSp}	rad
Eijk	(fundamental. coordinate and space related) Epsilon operator	+1 : <i>ijk</i> = 123, 231, 312 - 1 : <i>ijk</i> = 321, 213, 132 0 : if otherwise	
£I	(environmental mechanics, ice) Ice strain	Elongation per unit length	1
ε _R	<i>(ships, hull resistance)</i> Residuary resistance- displacement ratio	$R_{\rm R}$ / Δ	1
€SH	(planing, semi-displacement vessels) Shaft angle	Angle between shaft line and reference line (positive, shaft inclined downwards)	rad
$\varepsilon_{ m WL}$	(planing, semi-displacement vessels) Wetted length factor	$L_{ m M}$ / $L_{ m WL}$	1
EWS	(planing, semi-displacement vessels, ACV and SES) Wetted surface area factor, wetted surface factor	$S \neq S_{0}, S_{SHC} \neq S_{SH0}$	1
έι	(environmental mechanics, ice) Ice strain rate	$\partial \epsilon / \partial \tau$	1/s

ITTC Syn	nbols			
Version 20	024			Ζ, ζ
ITTC	Aanonym	Nama	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

ζ	(<i>fundamental, statistical, stochastic</i>) Outcome of a random "experiment"		
ζ	(environmental mechanics, waves) Instantaneous wave depression	<i>z</i> -axis positive vertical down, zero at mean water level	m
ζ_{13}	<i>(ships, hull resistance, water jets)</i> Inlet duct loss coefficient:	$\frac{E_3 - E_1}{\frac{1}{2}\rho U_0^2}$	1
ζ_{57}	(ships, hull resistance, water jets) Nozzle duct loss coefficient:	$\frac{E_7 - E_5}{\frac{1}{2}\rho \overline{u}_{e6}^2}$	1
ζA	(environmental mechanics, waves) Wave amplitude	Radius of orbital motion of a surface wave particle	m
ζc	(ACV and SES) Height of cushion generated wave above mean water plane at leading edge side of the skirt		m
ζ_{ij}	(ships, hull resistance, water jets) Energy loss coefficient between station i and j		1

ITTC Symbols				
Version 2024			Η, η	
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

η	(ships, hull resistance, envi- ronmental mechanics, waves) Instantaneous wave eleva- tion at a given location	<i>z</i> -axis positive vertical up, zero at mean water level;	m
η	(ships, basic quantities) Ef- ficiency	Ratio of powers	
η_0	(ships, hull resistance, water jets) Free stream efficiency:	$\eta_P \eta_{ m duct} \eta_I$	1
ηарр	(ships, performance) Ap- pendage efficiency	$P_{\rm Ew0APP} / P_{\rm EwAPP}$, $R_{\rm TBH} / R_{\rm T}$	1
$\eta^{a}{}_{i}$	<i>(environmental mechanics, waves)</i> Amplitudes of har- monic components of a peri- odic wave	η^{FSa}	m
ηв	(ships, performance) Propel- ler efficiency behind ship	$P_{\rm T}/P_{\rm D} = T V_{\rm A}/(Q \omega)$	1
ης	<i>(environmental mechanics, waves)</i> Maximum of elevations of wave crests in a record		m
η _D	(ships, performance, hull re- sistance, water jets) Propul- sive efficiency or quasi-pro- pulsive coefficient	$P_{\rm E}/P_{\rm D} = P_{\rm R}/P_{\rm P}$	1
$\eta_{ m Did}$	<i>(ships, performance)</i> Propul- sive efficiency in ideal con- dition, from model test		1
$\eta_{ m duct}$	(ships, hull resistance, water jets) Ducting efficiency:	$\frac{P_{\text{JSE}}}{P_{\text{PE}}}$	1
η _{eI}	(ships, hull resistance, water jets) Energy interaction effi- ciency:	$\frac{P_{JSE0}}{P_{JSE}}$	1
$\eta_{ m G}$	(ships, performance, basic quantities) Gearing effi- ciency		1
ηн	(ships, performance) Hull efficiency	$P_{\rm E} / P_{\rm T} = P_{\rm R} / P_{\rm T}$ = (1 - t) / (1 - w)	1
ηι	(ships, propulsor perfor- mance) Ideal propeller effi- ciency	Efficiency in non-viscous fluid	1

ITTC Symbols				
Version 2024			Η, η	
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Actonym	Iname	Explanation	Unit

			1
η_I	(ships, hull resistance, water jets) Ideal efficiency, equiv- alent to jet efficiency in free stream conditions	$\frac{P_{TEO}}{P_{JSEO}}$	1
ηιd	<i>(ice going vessels)</i> Propulsive efficiency in ice	$R_{\rm IT} V / (2 \pi n_{\rm IA} Q_{\rm IA})$	1
ηιςε	<i>(ice going vessels)</i> Relative propulsive efficiency in ice	ηю / ηο	1
η_{INT}	(<i>ships, hull resistance, wa-</i> <i>ter jets</i>) Total interaction ef- ficiency:	$\frac{\eta_{eI}}{\eta_{mI}}(1-t)$	1
η_{inst}	(ships, hull resistance, wa- ter jets) Installation effi- ciency to account for the distorted flow delivered by the jet intake to the pump		1
η_{jet}	(ships, hull resistance, water jets) Momentum or jet effi- ciency:	$\frac{P_{TE}}{P_{JSE}}$	1
ηјр	<i>(ships, propulsor perfor- mance)</i> Propeller pump or hydraulic efficiency	$P_{\rm J}/P_{\rm D}=P_{\rm J}/P_{\rm P}$	1
ήјро	<i>(ships, propulsor perfor- mance)</i> Propeller pump efficiency at zero advance speed, alias static thrust coefficient	$T/(\rho \pi/2)^{1/3}/(P_{\rm D}D)^{2/3}$	1
η_{JS}	(ships, hull resistance, water jets) Jet system efficiency:	$\frac{P_{JSE}}{P_D}$	1
ηм	Mechanical efficiency of transmission between engine and propeller	$P_{\rm D}$ / $P_{\rm B}$	1
η_{mI}	(ships, hull resistance, water jets) Momentum interaction efficiency:	$\frac{T_{net0}}{T_{net}}$	1
ηο	(ships, propulsor perfor- mance, performance) Pro- peller efficiency in open wa- ter	$P_{\rm T} / P_{\rm D} = T V_{\rm A} / (Q \omega)$ all quantities measured in open water tests	1
ηp	(ships, performance) Propulsive efficiency coefficient	$P_{\rm E} / P_{\rm B}$	1
η_P	(ships, hull resistance, water jets) Pump efficiency	$\frac{P_{PE}}{P_D}$	1

ITTC Symbols				
Version 2024			Η, η	
ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

η_{PO}	(<i>ships, hull resistance, water</i> <i>jets</i>) Pump efficiency from a pump loop test		1
$\eta^p{}_i$, $arepsilon_i$	<i>(environmental mechanics, waves)</i> Phases of harmonic components of a periodic wave	η^{FSp}	rad
η _R	(ships, performance) Rela- tive rotative efficiency	$\eta_{\rm B}$ / η_0	1
ηs	(ships, performance) Shafting efficiency	$P_{\rm D}/P_{\rm S} = P_{\rm P}/P_{\rm S}$	1
η_{T}	(environmental mechanics, waves) Wave trough depression	Negative values!	m
ητ	(environmental mechanics, waves) Elevations of wave troughs in a record	Negative values!	m
ηтј	(<i>ships, propulsor perfor- mance</i>) Propeller jet effi- ciency	$2/(1+(1+C_{Th})^{1/2})$	1
ητρο	(ships, propulsor perfor- mance) Propeller efficiency in open water	$P_{\rm T} / P_{\rm D} = T V_{\rm A} / (Q \omega)$ all quantities measured in open water tests	1

ITTC Symbols				
Version 20	024			Θ, θ
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	maine	Explanation	Unit

Θ	(fluid mechanics, boundary layers) Momentum thickness	$\int (U/U_e) (1 - U/U_e) dy$	m
θ	(solid body mechanics, rigid body motions) Angle of pitch or trim	Positive in the positive sense of rotation about the y-axis	rad
θ	<i>(environmental mechanics, waves)</i> Component wave direction		rad
θ	(ships, manoeuvrability) Pitch angle		rad
θ	(ships, propulsor geometry) Angle of rake		rad
θ_0	(planing, semi-displacement vessels) Static trim angle	Angle between ship design waterline and actual water line at rest (positive bow up) $\tan^{-1}((z_{SF} - z_{SA}) / L)$	rad
$\theta_{\rm B}$	(ACV and SES) Bag contact deformation angle		rad
θc	(seakeeping, large amplitude motions capsizing) Capsiz- ing angle under the action of a gust of wind IMO/IS		rad
$\theta_{\rm D}$	(ships, hull resistance, plan- ing, semi-displacement ves- sels) Running (dynamic) trim angle	Angle between actual water line at rest and running water line (positive bow up) $\tan^{-1}((z_{VF} - z_{VA}) / L)$	rad
$ heta_{ m DH}$	(hydrofoil boats) Dihedral angle		rad
$ heta_{ m DWL}$	(planing, semi-displacement vessels) Running trim angle based on design waterline	Angle between design water- line and running waterline (positive bow up)	rad
$ heta_{\mathrm{EXT}}$	(ships, propulsor geometry) Skew angle extent	The difference between maximum and minimum lo- cal skew angle	rad
$\theta_{\rm F}$	(ACV and SES) Finger outer face angle	¥	rad
$ heta_{ m f}$	(seakeeping, large amplitude motions capsizing) Heel an- gle at flooding		rad
θ_{m}	(environmental mechanics, waves) Mean or dominant wave direction		rad
θ_n	(ships, hull resistance, water jets) Jet angle relative to the		rad

Symbol	Acronym	Name	Explanation	Unit
		horizontal at the nozzle (sta- tion 6)		
$ heta_{ m S}$		(ships, hydrostatics, stabil- ity, planing, semi-displace- ment vessels, seakeeping, large amplitude motions capsizing) Static trim angle	Angle between ship design waterline and actual water line at rest (positive bow up) $\tan^{-1}((z_{SF} - z_{SA}) / L)$	rad
$ heta_{ m s}$		(ships, propulsor geometry) Skew angle	The angular displacement about the shaft axis of the reference point of any blade section relative to the gener- ator line measured in the plane of rotation. It is posi- tive when opposite to the di- rection of ahead rotation	rad
$ heta_V$		(ships, hull resistance, plan- ing, semi-displacement ves- sels) Running (dynamic) trim angle	Angle between actual water line at rest and running water line (positive bow up) $\tan^{-1}((z_{VF} - z_{VA}) / L)$	rad
$ heta_{ m W}$		(ACV and SES) Slope of mean water plane for surface level beneath cushion pe- riphery		rad
$ heta_{ m W}$		(environmental mechanics, wind) Wind direction		rad
$ heta^*$		<i>(fluid mechanics, boundary layers)</i> Energy thickness	$\int (U/Ue) (1 - U^2/U_e^2) dy$	m

ITTC Symbols

Version 2024

Acronym

Name

ITTC

Θ, θ

Definition or

125

SI-

ITTC Symbols				
Version 20	24			Ι, ι
ITTC Symbol	Acronym	Name	Definition or	SI-
Symbol			Explanation	Unit

ITTC Sym	ibols			
Version 20)24			К, к
ITTC	A	Nome	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

K	(fluid mechanics, boundary layers) von Karman constant	0.41	1
κ	<i>(fluid mechanics, flow pa- rameter)</i> Kinematic capillar- ity	σ/ρ	m^3/s^2
κ	(environmental mechanics, waves) Wave number	$2 \pi / L_{\rm W} = \omega^2 / g$	1/m
KS	(ships, propulsor perfor- mance) Roughness height of propeller blade surface		m

ITTC Sym	bols			
Version 20	24			Λ, λ
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

Λ	(fluid mechanics, lifting sur- faces) Aspect ratio	b^2 / A	1
Λ	<i>(fluid mechanics, boundary layers)</i> Pressure gradient parameter	δ995 / (v dU _e / dx)	1
Λ	Tuning factor	$ \begin{aligned} \Lambda_{z} &= \frac{\omega_{E}}{\omega_{Z}} \Lambda_{\theta} &= \frac{\omega_{E}}{\omega_{\theta}} \Lambda_{\varphi} &= \frac{\omega_{E}}{\omega_{\phi}} \\ \text{Or} \\ \Lambda_{Z} &= \frac{T_{Z}}{T_{E}} \Lambda_{\theta} &= \frac{T_{\theta}}{T_{E}} \Lambda_{\varphi} &= \frac{T_{\phi}}{T_{E}} \end{aligned} $	1
Λ _{FR}	(ships, appendage geometry) Flanking rudder aspect ratio		1
$\Lambda_{ m R}$	<i>(ships, appendage geometry, manoeuvrability)</i> Rudder aspect ratio	b^2/A , $b_{\mathrm{R}}^2/A_{\mathrm{R}}$, $b_{\mathrm{R}}^2/A_{\mathrm{RT}}$	1
λ	(fluid mechanics, lifting sur- faces) Taper ratio	$c_{\rm t}$ / $c_{\rm r}$	1
λ	(ships, basic quantities, ships, hull geometry) Scale ratio, Linear scale of ship model	Ship dimension divided by corresponding model dimen- sion $\lambda = L_S / L_M = B_S / B_M$ $= T_S / T_M$	1
λ	(ships, propulsor perfor- mance) Advance ratio of a propeller	$V_{\rm A}/(n D)/\pi = J/\pi$	1
λ_{d}	(environmental mechanics, waves) Wave length by zero down-crossing	The horizontal distance be- tween adjacent down cross- ing in the direction of ad- vance	m
λ _{FR}	(ships, appendage geometry) Flanking rudder taper		1
λ _R	(ships, appendage geometry) Rudder taper	<i>c</i> _R / <i>c</i> _T	1
λ_{u}	(environmental mechanics, waves) Wave length by zero up-crossing	The horizontal distance be- tween adjacent up crossing in the direction of advance	m
λw	(environmental mechanics, waves) Wave length	The horizontal distance be- tween adjacent wave crests in the direction of advance	m
λw	(<i>planing, semi-displacement</i> <i>vessels</i>) Mean wetted length- breadth ratio	$L_{\rm M}$ / ($B_{\rm LCG}$)	1

ITTC Sym	ıbols			
Version 20)24			Μ, μ
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

μ	(fluid mechanics, flow pa- rameter) Viscosity		kg/ms
μ	(environmental mechanics, waves) Component wave di- rection		rad
μ	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Vol- umetric permeability	The ratio of the volume of flooding water in a compart- ment to the total volume of the compartment	1
μ	(ships, seakeeping) Wave encounter angle	Angle between ship positive x axis and positive direction of waves (long crested) or dominant wave direction (short crested)	rad
μ_{I}	(environmental mechanics, ice) Poisson's ratio of ice		1
μ_p	Expectation or mean of the probability distribution	Expectation or mean of the probability distribution of random-varying quantity q	
μ_{x}	(<i>fundamental, statistical</i>) Expectation or population mean of a random quantity	E(x)	
μ	Wave direction	The angle between the direc- tion of a component wave and the x_0 axis	rad

ITTC Sym	bols			
Version 20	24			N, v
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

v	(fluid mechanics, flow pa- rameter) Kinematic viscos- ity	μ / ρ	m²/s
ν	<i>(general)</i> Degrees of free- dom		
Veff	<i>(uncertainty)</i> Effective degrees of freedom	Effective degrees of freedom of $u_c(y)$ used to obtain $t_p(v_{eff})$ for calculating expanded un- certainty U_p	
VeffA	Effective degrees of freedom	Effective degrees of freedom of a combined standard un- certainty determined from standard uncertainties ob- tained from Type A evalua- tions alone	
VeffB	Effective degrees of freedom	Effective degrees of freedom of a combined standard un- certainty determined from standard uncertainties ob- tained from Type B evalua- tions alone	
Vi	<i>(uncertainty))</i> Degrees of freedom	Degrees of freedom, or ef- fective degrees of freedom of standard uncertainty $u(x_i)$ of input estimate x_i	
v ⁰ ₁ , v ₄	(<i>rigid body motion</i>) Rota- tional velocity around body axis x		rad/s
v ⁰ ₂ , v ₅	(<i>rigid body motion</i>) Rota- tional velocity around body axis y		rad/s
v ⁰ 3 , v ₆	(<i>rigid body motion</i>) Rota- tional velocity around body axis z		rad/s
<i>v</i> ¹ ₁ , <i>v</i> ₁	(<i>rigid body motion</i>) Transla- tory velocity in the direction of body axis x		m/s
v, v_y, v_y, v_1^1, v_2	<i>(rigid body motion)</i> Transla- tory velocity in the direction of body axis y		m/s
v_z v_3^1 , v_3	(<i>rigid body motion</i>) Transla- tory velocity in the direction of body axis z		m/s
Vi	Any vector quantities		

ITTC Sym	bols			
Version 20	24			Ξ, ξ
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit

ξn	(ships, ship performance) Load variation coefficient of the shaft revolution speed	-
ξρ	(ships, ship performance) Load variation coefficient of the delivered power	-
ξν	(ships, ship performance) Load variation coefficient of the ship speed	-

	TTC Symbols						
	O , o						
Definition or Explanation	SI- Unit						
	Definition or Explanation						

		1
		1
		1

ITTC Symb	ools			
Version 2024				Π, π
ITTC	A	Nome	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

|--|

ITTC Sym	nbols			
Version 20)24			Ρ, ρ
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

ρ	(fluid mechanics, flow pa- rameter, ships, basic quanti- ties, seakeeping, large am- plitude motions capsizing, hull resistance, water jets) Mass density of fluid	dm / dV	kg/m ³
$ ho_0$	(ships, basic quantities, sail- ing vessels) water density for reference water temperature and salt content		kg/m3
$ ho_{ m A}$	(Ships, basic quantities, ACV and SES, seakeeping, large amplitude motions capsiz- ing) Mass density of air	Mass of air per unit volume	kg/m ³
$ ho_{\mathrm{I}}$	(environmental mechanics, ice) Mass density of ice	Mass of ice per unit volume	kg/m ³
$\rho_{\rm SN}$	(environmental mechanics, ice) Mass density of snow	Mass of snow per unit vol- ume	kg/m ³
$ ho_{ m W}$	(environmental mechanics, ice) Mass density of water		kg/m ³
ρ_{Δ}	<i>(environmental mechanics, ice)</i> Density difference	$ ho_{arDelta}= ho_{ m W}$ - $ ho_{ m I}$	kg/m ³

ITTC Sym	bols			
Version 202	24			Σ, σ
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit

	(fluid mechanics, flow	Surface tension per unit	2
σ	<i>parameter</i>) Capillarity	length	kg/s ²
σ	(fluid mechanics, cavitation) Cavitation number	$(p_{\rm A} - p_{\rm C}) / q$	1
σ	(ships, basic quantities) Normal stress		Pa
σ	(environmental mechanics, waves) Circular wave frequency	$2\pi f_{\rm W} = 2\pi / T_{\rm W}$	rad/s
σ^2	(Uncertainty) Variance of a probability	Variance of a probability distribution of (for example) a randomly varying quantity q , estimated by $s^2(q_k)$	
σ	<i>(Uncertainty)</i> Standard deviation of a probability distribution	Standard deviation of a probability distribution, equal to the positive square root of σ^2	
	(Uncertainty) $s(q_k)$ is a biased estimator of σ		
$\sigma_{ m CI}$	<i>(environmental mechanics, ice)</i> Compressive strength of ice		Ра
σ _{FI}	(environmental mechanics, ice) Flexural strength of ice		Pa
σι	<i>(fluid mechanics, cavitation)</i> Inception cavitation number		1
$\sigma_{ m TI}$	(environmental mechanics, <i>ice</i>) Tensile strength of ice		Ра
$\sigma_{ m V}$	<i>(fluid mechanics, cavitation)</i> Vapour cavitation number	$(p_{\mathrm{A}} - p_{\mathrm{V}}) / q$	1
σ_x	(<i>fundamental</i> , <i>statistical</i>) Standard deviation of a random quantity	x ^{VR 1/2}	
$\sigma_{ heta}$	(environmental mechanics, waves) Directional spreading function	$S(f,\theta) = S(f)D_X(f,\theta) \text{ where}$ $\int_0^{2\pi} D_X(f,\theta)d\theta = 1$	rad
$\sigma^2(\overline{q})$	Variance of \overline{q}	Variance of \overline{q} , equal to σ^2 / n , estimated by $s^2(\overline{q}) = \frac{s^2(q_k)}{n}$	
$\sigma(\overline{q})$	Standard deviation of \overline{q}	Standard deviation of \overline{q} , equal to the positive root of $\sigma^2(\overline{q})$	

ITTC Sym	bols			
Version 20	24			Σ, σ
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit

	$s(\bar{q})$ is a biased estimator of $\sigma(\bar{q})$	
$\sigma[s(\overline{q})]$	Standard deviation of experimental standard deviation $s(\overline{q})$ of \overline{q} , equal to the positive square root of $\sigma^2[s(\overline{q})]$	
$\sigma^2[s(\overline{q})]$	Variance of experimental standard deviation $s(\overline{q})$ of \overline{q}	

ITTC Sym	bols			
Version 2024			Τ, τ	
ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

τ	(<i>fundamental, statistical, stochastic</i>) Covariance or correlation time		s
τ	(ships, basic quantities) Tan- gential stress		Ра
τ	(ships, propulsor perfor- mance) Ratio between pro- peller thrust and total thrust of ducted propeller	$T_{ m P}$ / $T_{ m T}$	1
τ	(special craft, Planing and Semi-Displacement Vessels) Running trim angle based on design waterline	Angle between design water- line and running waterline (positive bow up)	deg
$ au_{ m B}$	(ships, propulsor geometry) Blade thickness ratio	t_0 / D	1
$ au_{ m DWL}$	(planing, semi-displacement vessels) Reference line angle	Angle between the reference line and the design waterline	rad
T _i	(ships, propulsor perfor- mance) Thrust deduction sensitivity for one propeller	$\tau_i = 1 + \left(\frac{\Delta F}{\Delta T}\right)_i$	1
τ _R	(planing, semi-displacement vessels) Angle of attack rela- tive to the reference line	Angle between the reference line and the running water- line	rad
$ au_{ m SI}$	<i>(environmental mechanics, ice)</i> Shear strength of ice		Ра
τ _w	(ships, hull resistance, fluid mechanics, flow fields) Local skin friction, Wall shear stress	$\mu \ (\partial U \ / \ \partial y)_{y=0}$	Ра

ITTC Sym	bols			
Version 2024				Υ, υ
ITTC	A	Nome	Definition or	SI-
Symbol	Acronym	Iname	Explanation	Unit

ITTC Symbols				
Version 20	24			Φ, φ
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

φ	(seakeeping, large amplitude motions capsizing) Heel an- gle		rad
φ	<i>(solid body mechanics, rigid body motions)</i> Angle of roll, heel or list	Positive in the positive sense of rotation about the x-axis	rad
φ	(ships, hydrostatics, stabil- ity) Heel angle		rad
φ	(ships, manoeuvrability) Roll angle		rad
<i>ф</i> 0	(seakeeping, large amplitude motions capsizing) Heel an- gle during offset load tests		rad
<i>ф</i> 0(РМТ)	(seakeeping, large amplitude motions capsizing) Maxi- mum permitted heel angle during		rad
Ø0(REQ)	(seakeeping, large amplitude motions capsizing) Maxi- mum permitted heel angle during		rad
φD	(seakeeping, large amplitude motions capsizing) Actual down flooding angle accord- ing to		rad
ØD(REQ)	(seakeeping, large amplitude motions capsizing) Required down flooding angle, see		rad
фос	(seakeeping, large amplitude motions capsizing) Down flooding angle to non-quick draining cockpits		rad
ф _{DH}	(seakeeping, large amplitude motions capsizing) Down flooding angle to any main access hatchway		rad
Ø _F	(ships, hydrostatics, stability seakeeping, large amplitude motions capsizing) Heel an- gle at flooding		rad
<i>¢</i> gzmax	<i>(seakeeping, large amplitude motions capsizing)</i> Angle of heel at which maximum righting moment occurs		rad

ITTC Symbols				
Version 20	24			Φ, φ
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

$\phi_{ m m}$	Heel angle corresponding to the maximum of the statical stability curve	rad
ØR	(seakeeping, large amplitude motions capsizing) Assumed roll angle in a seaway	rad
φvs	(ships, hydrostatics, stabil- ity) Heel angle for vanishing stability	rad
$\phi_{ m W}$	(seakeeping, large amplitude motions capsizing) Heel an- gle due to calculation wind	rad
φ	(ships, propulsor geometry) Pitch angle of screw propel- ler $\operatorname{arctg} (P / (2 \pi R))$	rad
φ	(fluid mechanics, flow fields) Potential function	m²/s
$arphi_{ m F}$	(ships, propulsor geometry) Pitch angle of screw propel- ler measured to the face line	rad
ØSP	(<i>planing, semi-displacement</i> <i>vessels</i>) Spray angle Angle between stagn line and keel (measur plane of bottom)	ation red in rad

ITTC Symbols					
Version 2024			Χ, χ		
ITTC Symbol	Acronym	Name	Definition or Explanation	SI- Unit	

χ	Yaw angle	rad

ITTC Symbols				
Version 2024			Ψ, ψ	
ITTC	Aanonym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

Ψ	(solid body mechanics, rigid body motions, ships, ma- noeuvrability) Angle of yaw, heading or course	Positive in the positive sense of rotation about the z-axis	rad	
ψ	(fluid mechanics, flow fields) Stream function	ψ = const is the equation of a stream surface	m ³ /s	
Ψ	(Sailing ships) Heading rela- tive earth		rad	
Ψο	(ships, manoeuvrability) Original course		rad	
Ψ01	(ships, manoeuvrability, zig- zag man) First overshoot angle		rad	
Ψ02	(ships, manoeuvrability, Zig- zag man) Second overshoot angle		rad	
ψ^{aP}	(ships, propulsor geometry) Propeller axis angle meas- ured to space fixed coordi- nates	Angle between horizontal plane and propeller shaft axis	rad	
ψ^{bP}	(ships, propulsor geometry) Propeller axis angle meas- ured to body fixed coordi- nates	Angle between reference line and propeller shaft axis	rad	
Ψc	(ships, manoeuvrability) Course of current velocity		rad	
Ψs	(ships, manoeuvrability, zig- zag man) Switching value of course angle		rad	
ΨWA	(ships, manoeuvrability) Ab- solute wind direction		rad	
Ψwr	(ships, manoeuvrability) Relative wind direction		rad	
ITTC Symbols				
--------------	---------	------	---------------	------
Version 20	24			Ω, ω
ITTC	Acronym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

ω	(ships, basic quantities) Cir-	$2\pi f$	1/s
ω	<i>(ships, basic quantities)</i> Ro- tational velocity	$2 \pi n$	rad/s
ω	(ships, propulsor perfor- mance) Propeller rotational velocity	2 π n	1/s
$\omega_{\rm E}$	<i>(environmental mechanics, waves)</i> Circular wave frequency of encounter	$2 \pi f_{\rm E} = 2 \pi / T_{\rm E}$	rad/s
$\omega_{ m W}$	(environmental mechanics, waves) Circular wave fre- quency	$2\pi f_{\rm W} = 2\pi / T_{\rm W}$	rad/s
ω _x	<i>(solid body mechanics, rigid body motions)</i> Rotational velocity around body axis x		rad/s
ω_y	(solid body mechanics, rigid body motions) Rotational velocity around body axis y		rad/s
ωz	(solid body mechanics, rigid body motions) Rotational ve- locity around body axis z		rad/s

ITTC Symbols				
Version 20	24			∇
ITTC	Acronym	Nomo	Definition or	SI-
Symbol	Acronym	Name	Explanation	Unit

∇	(<i>ships, hull geometry, hydro-</i> <i>statics, stability,</i>) Displace- ment volume	$\Delta / (\rho g) = \nabla_{\rm BH} + \nabla_{\rm AP}$	m ³
$V_{ m APP}$	(<i>ships, hull geometry</i>) Dis- placement volume of ap- pendages	$\Delta_{ m AP}$ / ($ ho$ g)	m ³
$V_{ m BH}$	(<i>ships, hull geometry</i>) Displacement volume of bare hull	⊿ _{вн} / (р g)	m ³
Vc	<i>(sailing vessels)</i> Displaced volume of canoe body		m ³
V _F	(hydrofoil boats) Foil dis- placement volume		m ³
$ abla_{ m fw}$	<i>(ships, hydrostatics, stabil- ity)</i> Displacement volume of flooded water	$\Delta f_w / (ho g)$	m ³
V _K	(sailing vessels) Displaced volume of keel		m ³
V _R	(sailing vessels) Displaced volume of rudder		m ³

ITTC Symbols					
Version 20)24			∂	
ITTC	Aanonyim	Nomo	Definition or	SI-	
Symbol	Acronym	Name	Explanation	Unit	

∂f/∂x _i	<i>(uncertainty)</i> Partial deriva- tive	Partial derivative with re- spect to input quantity X_i of functional relationship f be- tween measurand Y and in- put quantities X_i on which Y depends, evaluated with es- timates x_i for the X_i :	1

ITTC Symbols					
Version 2024		Identif	iers (Subscripts)		
ITTC	Acronym	Nama	Definition or	SI-	
Symbol	Actollylli	maille	Explanation	Unit	

0	(ships, hydrostatics, stabil- ity) Initial	
А	(ships, hydrostatics, stabil- ity) attained	
a	(ships, hydrostatics, stabil- ity) apparent	
AB	(ships, hull geometry) After body	
AP	(ships, hull geometry) After perpendicular	
APP	(ships, hull geometry) Ap- pendages	
att	(ships, hydrostatics, stabil- ity) attained	
ВН	(ships, hull geometry) Bare hull	
BK	(ships, appendage geometry) Bilge keel	
BS	(ships, appendage geometry) Bossing	
D	(ships, propulsor geometry) Duct	
d	(ships, hydrostatics, stabil- ity) dynamic	
DW	(ships, hull geometry) De- sign waterline	
dyn	(ships, hydrostatics, stabil- ity) dynamic	
e	(ships, hydrostatics, stabil- ity) effective	
eff	(ships, hydrostatics, stabil- ity) effective	
EN	(ships, hull geometry) Entry	
f	(ships, hydrostatics, stabil- ity) false	
FB	<i>(ships, hull geometry)</i> Fore body	
FB	<i>(ships, appendage geometry)</i> Bow foil	
FP	(ships, hull geometry) Fore perpendicular	
FR	(ships, appendage geometry) Flanking rudder	
FS	(ships, hull geometry) Frame spacing	

Symbol Actionym Name Explanation Unit FS (ships, appendage geometry) Stem foil Stem foil Stem foil FW (ships, hull resistance) Fresh water Image: Stem foil Stem foil Stem foil FW (ships, hull geometry) Hull Image: Stem foil Image: S	ITTC	A	Nome	Definition or	SI-
FS (ships, appendage geometry) FW (ships, hull resistance) Fresh water HE (ships, hull geometry) Hull KL (ships, appendage geometry) KL (ships, hydrostatics, stabil-ity) keel line L (ships, hydrostatics, stabil-ity) keel line L (ships, hydrostatics, stabil-ity) longitudinal LR (ships, hull geometry) Reference ence Line (ships, hull geometry) Based LP (ships, hull geometry) Based On Lev (ships, hull geometry) Based LW (ships, hull geometry) Based MAX (ships, hull geometry) Based MAX (ships, hull resistance) Faired model data (ships, hull resistance) MR (ships, hull resistance) MR (ships, hull resistance) Raw MR (ships, hull resistance) Raw MTL (ships, hull resistance) Open water P (ships, hull resistance) Open water PB (ships, hydrostatics, stabil-it	Symbol	Acronym	Name	Explanation	Unit
FS (ships, appendage geometry) Stern foil FW (ships, hull resistance) Fresh water HE (ships, hull geometry) Hull KL (ships, appendage geometry) KL (ships, hydrostatics, stabil- ity) keel line L (ships, hydrostatics, stabil- ity) keel line L (ships, hydrostatics, stabil- ity) longitudinal LR (ships, hull geometry) Refer- ence Line LP (ships, hull geometry) Based on Lep UW (ships, hull geometry) Based MAX (ships, hull geometry) Based MK (ships, hull resistance) Faired model data Faired model data MR (ships, hull resistance) Raw model data MRI (ships, hull resistance) Raw model data MTL (ships, hull resistance) Open water P (ships, hull resistance) Open water PB (ships, hydrostatics, stabil- ity) Propulser geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) Permited R (ships, hydrostatic	-				
FS Stern foil FW (ships, hull resistance) Fresh water HE (ships, hull geometry) Hull KL (ships, appendage geometry) KL (ships, hydrostatics, stabil- ity) keel line L (ships, hydrostatics, stabil- ity) longitudinal LR (ships, hydrostatics, stabil- ity) longitudinal LR (ships, hull geometry) Refer- ence Line LP (ships, hull geometry) Based on Lep LW (ships, hull geometry) Based on Lwu M (General) Model MAX (ships, hull resistance) MR (ships, hull resistance) MR (ships, hull resistance) Raw model data MS (ships, hull resistance) Raw model data MTL (ships, hull resistance) Open water P (ships, hull resistance) Open water PB (ships, hull resistance) Open water PB (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water PB (ships, hydrostatics, stabil- ity) required (to be clarified) PHT (ships, hydrostatics, stabil- ity) required (to be clarified) Freq (ships, hydrosta	EC		(ships, appendage geometry)		
FW (ships, hull resistance) Fresh water HE (ships, hull geometry) Hull KL (ships, hydrostatics, stabil- ity) keel line L (ships, hydrostatics, stabil- ity) longitudinal L (ships, hydrostatics, stabil- ity) longitudinal LR (ships, hydrostatics, stabil- ity) longitudinal LR (ships, hull geometry) Refer- ence Line LP (ships, hull geometry) Based On Lep on Lep LW (ships, hull geometry) Based MM (General) Model MAX (ships, hull resistance) Faired model data Faired model data MR (ships, hull resistance) Raw model data MR (ships, hull geometry) Mid- ship MTL (ships, hull resistance) Raw model data MR (ships, hull resistance) Raw model data MTL (ships, hull geometry) Mid- ship MTL (ships, hull geometry) Paral- lel body P (ships, hull resistance) Open water P (ships, hull resistance) Open water P (ships, hydrostatics, stabil- ity) roppieller shaft axis PB (ships, hydrostatics, stabil- ity) required (to be clarified) </td <td>гэ</td> <td></td> <td>Stern foil</td> <td></td> <td></td>	гэ		Stern foil		
FW water HE (ships, dull geometry) Hull KL (ships, appendage geometry) KL (ships, hydrostatics, stabil- iry) keel line L (ships, hydrostatics, stabil- iry) longitudinal L (ships, hull geometry) Refer- ence Line LP (ships, hull geometry) Based on Lep M (General) Model MAX (ships, hull geometry) Based on Lwr, M (General) Model MAX (ships, hull resistance) Faired model data Max MF Paired model data MR (ships, hull resistance) Raw model data MTL (ships, hull resistance) Open water P (ships, hull resistance) Open water P (ships, hull geometry) Paral- lel body PB (ships, hydrostatics, stabil- iry) reporter shaft axis PB (ships, hydrostatics, stabil- iry) required (to be clarified) req (ships, hydrostatics, stabil- iry) required (to be clarified) R (ships, hydrostatics, stabil- iry) required (to be clarified) R (ships, hydrostatics, stabil- iry) required (to be clarified) RH (ships, hydrostatics, stabil- iry) requir			(ships, hull resistance) Fresh		
HE (ships, hull geometry) Hull KL (ships, appendage geometry) Keel KL (ships, hydrostatics, stabil- ity) keel line L (ships, hydrostatics, stabil- ity) longitudinal LR (ships, hull geometry) Refer- ence Line MW (ships, hull geometry) Based on Lep LW (ships, hull geometry) Based on Lep MM (General) Model MAX (ships, hull resistance) Faired model data MR (ships, hull resistance) Faired model data MR (ships, hull geometry) Mid- ship MIL (ships, hull resistance) Faired model data MR (ships, hull resistance) Faired model data MR (ships, hull geometry) Mid- ship MIL (ships, hull resistance) Paired model data MR (ships, hull resistance) Paired model data MR (ships, hull geometry) Mid- ship MTL (ships, hull geometry) Pairel- baired model data MTL (ships, hull resistance) Open water P (ships, hull resistance) Open water P (ships, hull resistance) Open water PB (ships, hydrostatics, stabil- ity) required (to be clarified) R	Г ٧		water		
KL (ships, appendage geometry) Keel KL (ships, hydrostatics, stabil- ity) keel line L (ships, hydrostatics, stabil- ity) longitudinal LR (ships, hull geometry) Refer- ence Line LP (ships, hull geometry) Based on Lep LW (ships, hull geometry) Based on Leq MM (General) Model MAX (ships, hull resistance) Faired model data MR (ships, hull resistance) Faired model data MS (ships, hull resistance) Faired model data MTL (ships, hull resistance) Ships, hull resistance) MTL (ships, hull resistance) Ships, hull resistance) MTL (ships, hull resistance) Raw model data MTL (ships, hull resistance) Open water P (ships, hull resistance) Open water P (ships, hull resistance) Open water P (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) R (ships, hydrostatics, stabil- ity) required (to be clarified) RF Rudder flap RU (ships, hydrostatics, stabil- ity) re	HE		(ships, hull geometry) Hull		
KL Keel KL (ships, hydrostatics, stabil- ity) keel line	VI		(ships, appendage geometry)		
KL (ships, hydrostatics, stabil- ity) keel line L (ships, hydrostatics, stabil- ity) longitudinal LR (ships, hull geometry) Refer- ence Line LP (ships, hull geometry) Based on Lyp LW (ships, hull geometry) Based on Lyp M (General) Model MAX (ships, hydrostatics, stabil- ity) maximum MF (ships, hull resistance) Faired model data MR (ships, hull resistance) Raw model data MS (ships, hydrostatics, stabil- ity) longitudinal trimming model data MTL (ships, hull resistance) Raw model data MTL (ships, hull resistance) Open water OW (ships, hull resistance) Open water P (ships, hull resistance) Open water PB (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) R (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, ngenendage geometry) Ruder flap	ΝL		Keel		
KL ity) keel line L (ships, hydrostatics, stabil- ity) longitudinal LR (ships, hull geometry) Refer- ence Line LP (ships, hull geometry) Based on Lep LW (ships, hull geometry) Based on Lwt M (General) Model MAX (ships, hydrostatics, stabil- ity) maximum MF (ships, hydrostatics, stabil- ity) maximum MR (ships, hull resistance) Faired model data MS (ships, hull resistance) Raw model data MTL (ships, hydrostatics, stabil- ity) moment OW (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water PB (ships, null resistance) Open water PB (ships, hydrostatics, stabil- ity) required (to be clarified) R (ships, hydrostatics, stabil- ity) required (to be clarified) R (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, hydrostatics, stabil- ity) required (to b	KI		(ships, hydrostatics, stabil-		
L (ships, hydrostatics, stabil- ity) longitudinal LR (ships, hull geometry) Refer- ence Line LP (ships, hull geometry) Based on Lep LW (ships, hull geometry) Based on Len. M (General) Model MAX (ships, hull resistance) Faired model data MR (ships, hull resistance) Faired model data MS (ships, hull resistance) Reave model data MTL (ships, hull resistance) Nid- ship MTL (ships, hull resistance) Reave model data MS (ships, hull resistance) Open water P (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hydrostatics, stabil- ity) longitudinal trimming PB (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, hydrostatic	KL		<i>ity</i>) keel line		
L ity) longitudinal LR (ships, hull geometry) Refer- ence Line LP (ships, hull geometry) Based on Lre LW (ships, hull geometry) Based on Lwt M (General) Model MAX (ships, hydrostatics, stabil- ity) maximum MF (ships, hull resistance) Faired model data MR MS (ships, hydrostatics, stabil- ity) longitudinal trimming model data MTL (ships, hull resistance) Raw model data MS (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, hull resistance) Open water PB (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, hull geometry) Run </td <td>т</td> <td></td> <td>(ships, hydrostatics, stabil-</td> <td></td> <td></td>	т		(ships, hydrostatics, stabil-		
LR (ships, hull geometry) Reference Line LP (ships, hull geometry) Based LW (ships, hull geometry) Based MM (General) Model MAX (ships, hyll geometry) Based MAX (ships, hyll resistance) Faired model data MR MR (ships, hull resistance) Raw MS (ships, hull geometry) Midship MIL (ships, hull geometry) Midship MTL (ships, hydrostatics, stabil-ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, propulsor geometry) PB (ships, hull resistance) Open water PMT (ships, hydrostatics, stabil-ity) ity) Permitted [Ships, hydrostatics, stabil-ity) R (ships, hydrostatics, stabil-ity) req (ships, hydrostatics, stabil-ity) req (ships, hydrostatics, stabil-ity) RF (ships, hydrostatics, stabil-ity) RF (ships, appendage geometry)			<i>ity</i>) longitudinal		
Image: Second	IR		(ships, hull geometry) Refer-		
LP (ships, hull geometry) Based on Lpp LW (ships, hull geometry) Based on Lw. M (General) Model MAX (ships, hydrostatics, stabil- iry) maximum MF (ships, hull resistance) Faired model data (ships, hull resistance) Raw model data MR (ships, hull resistance) Raw model data MS (ships, hull geometry) Mid- ship MTL (ships, hydrostatics, stabil- iry) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis PB (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- iry) Permitted R (ships, hydrostatics, stabil- iry) required (to be clarified) req (ships, hydrostatics, stabil- iry) required (to be clarified) RF (ships, hydrostatics, stabil- iry) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, hull geometry) Run			ence Line		
La on Lpp LW (ships, hull geometry) Based on Lwt. M (General) Model MAX (ships, hydrostatics, stabil- ity) maximum MF (ships, hull resistance) Faired model data MR (ships, hull resistance) Raw model data MS (ships, hull geometry) Mid- ship MTL (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hydrostatics, stabil- ity) P PB (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, hpendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, hull geometry) Run	IP		(ships, hull geometry) Based		
LW (ships, hull geometry) Based on LwL M (General) Model MAX (ships, hydrostatics, stabil- ity) maximum MF (ships, hull resistance) Faired model data MR (ships, hull resistance) Raw model data MS (ships, hull geometry) Mid- ship MTL (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis PB (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, hull geometry) Run			on L _{PP}		
M (General) Model MAX (ships, hydrostatics, stabil- ity) maximum MF (ships, hydrostatics, stabil- faired model data MR (ships, hull resistance) Faired model data MR (ships, hull resistance) Raw model data MS (ships, hull geometry) Mid- ship MTL (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, hull resistance) Open water PB (ships, hydrostatics, stabil- lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, hydrostatics, stabil- ity) required (to be clarified) RE (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, hull geometry) Run RU (ships, appendage geometry)	LW		(ships, hull geometry) Based		
M (General) Model MAX (ships, hydrostatics, stabil- ity) maximum MF (ships, hull resistance) Faired model data MR MR (ships, hull resistance) Raw model data MS (ships, hull geometry) Mid- ship MTL (ships, hull geometry) Mid- ship MTL (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, hull resistance) Open water PB (ships, hull resistance) Open ilel body PMT (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, appendage geometry) Rudder flap RU (ships, appendage geometry) Rudder	2.0		on L _{WL}		
MAX (ships, hydrostatics, stabil- ity) maximum MF (ships, hull resistance) Faired model data (ships, hull resistance) Raw model data MR (ships, hull geometry) Mid- ship MTL (ships, hull geometry) Mid- ship MTL (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, hull geometry) propeller shaft axis PB (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) required (to be clarified) R (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, appendage geometry)	М		(General) Model		
MR ity) maximum MF (ships, hull resistance) Faired model data model data MR (ships, hull resistance) Raw model data model data MS (ships, hull geometry) Mid- ship ship MTL (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis propeller shaft axis PB (ships, hydrostatics, stabil- ity) Permitted (ships, hydrostatics, stabil- ity) Permitted (ships, hydrostatics, stabil- ity) required (to be clarified) (ships, hydrostatics, stabil- req (ships, hydrostatics, stabil- ity) required (to be clarified) moment RF (ships, appendage geometry) RU (ships, appendage geometry) RU (ships, appendage geometry) RU (ships, appendage geometry)	MAX		(ships, hydrostatics, stabil-		
MF (ships, hull resistance) Faired model data MR (ships, hull resistance) Raw model data MS (ships, hull geometry) Mid- ship MTL (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, hull resistance) Open water PB (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, hull geometry) Run			<i>ity</i>) maximum		
Faired model data MR (ships, hull resistance) Raw model data MS (ships, hull geometry) Mid- ship MTL (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis PB (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Ruder flap RU (ships, hull geometry) Run RU (ships, hull geometry) Run Ru (ships, appendage geometry) Ruder flap	MF		(ships, hull resistance)		
MR (ships, hull resistance) Raw model data MS (ships, hull geometry) Mid- ship MTL (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis PB (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, hull geometry) Paral- let body			Faired model data		
Impose the second state of the seco	MR		(ships, hull resistance) Raw		
MS (ships, hull geometry) Mid-ship MTL (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis PB (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, appendage geometry) Rudder flap RL (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, hull geometry) Paral- lel body			model data		
ship (ships, hydrostatics, stabil- ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis PB (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, hull geometry) Paral- lel body	MS		(ships, hull geometry) Mid-		
MTL ity) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis PB (ships, hull geometry) Paral-lel body PMT (ships, hydrostatics, stabil-ity) Permitted R (ships, hydrostatics, stabil-ity) required (to be clarified) req (ships, hydrostatics, stabil-ity) required (to be clarified) RF (ships, appendage geometry) Run RU (ships, hull geometry) Run RU (ships, hull geometry) Run			ship		
MTL try) longitudinal trimming moment OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis PB (ships, hull geometry) Paral-lel body PMT (ships, hydrostatics, stabil-ity) Permitted R (ships, hydrostatics, stabil-ity) required (to be clarified) req (ships, hydrostatics, stabil-ity) required (to be clarified) RF (ships, appendage geometry) Run RU (ships, appendage geometry) Run RU (ships, appendage geometry) Run	MTI		(ships, hydrostatics, stabil-		
OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis PB (ships, hull geometry) Paral-lel body PMT (ships, hydrostatics, stabil-ity) Permitted R (ships, hydrostatics, stabil-ity) required (to be clarified) req (ships, hydrostatics, stabil-ity) required (to be clarified) RF (ships, appendage geometry) Run RU (ships, hull geometry) Run RU (ships, appendage geometry)	MIL		<i>ity)</i> longitudinal trimming		
OW (ships, hull resistance) Open water P (ships, propulsor geometry) propeller shaft axis PB (ships, hull geometry) Paral-lel body PMT (ships, hydrostatics, stabil-ity) Permitted R (ships, hydrostatics, stabil-ity) required (to be clarified) req (ships, hydrostatics, stabil-ity) required (to be clarified) RF (ships, appendage geometry) Run RU (ships, hull geometry) Run RU (ships, hull geometry) Run					
P(ships, propulsor geometry) propeller shaft axisPB(ships, hull geometry) Paral- lel bodyPMT(ships, hydrostatics, stabil- ity) PermittedR(ships, hydrostatics, stabil- ity) required (to be clarified)req(ships, hydrostatics, stabil- ity) required (to be clarified)RF(ships, appendage geometry) Ruder flapRU(ships, hull geometry) RunRU(ships, hull geometry) Run	OW		(snips, null resistance) Open		
P (ships, propulsor geometry) propeller shaft axis (ships, hull geometry) Paral- PB (ships, hydrostatics, stabil- PMT (ships, hydrostatics, stabil- ity) Permitted (ships, hydrostatics, stabil- R (ships, hydrostatics, stabil- ity) required (to be clarified) (ships, hydrostatics, stabil- req (ships, hydrostatics, stabil- ity) required (to be clarified) (ships, appendage geometry) RF (ships, appendage geometry) RU (ships, appendage geometry) RU (ships, appendage geometry) RU (ships, appendage geometry) RU (ships, appendage geometry)			(shing propulsor geometry)		
PB (ships, hull geometry) Paral- lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, appendage geometry) Pudder	Р		(<i>snips, propulsor geometry</i>)		
PB (ships, hult geometry) ratal lel body PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, appendage geometry) Dudder			(shing hull geometry) Paral-		
PMT (ships, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, appendage geometry) Rudder	PB		(snips, nuit geometry) I alai-		
PMT issups, hydrostatics, stabil- ity) Permitted R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, appendage geometry) Pudder			(shing hydrostatics stabil-		
R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, appendage geometry) Rudder flap	PMT		(<i>snips, nyarostatics, stabil</i> <i>ity</i>) Permitted		
R (ships, hydrostatics, stabil- ity) required (to be clarified) req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, appendage geometry) Pudder			(ships hydrostatics stabil-		
req (ships, hydrostatics, stabil- ity) required (to be clarified) RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, appendage geometry) Pudder RU (ships, appendage geometry) Rudder	R		<i>ity</i>) required (to be clarified)		
req (ships, hydrostatics, shipt) ity) required (to be clarified) RF (ships, appendage geometry) RU (ships, hull geometry) Run RU (ships, appendage geometry) RU (ships, appendage geometry) RU Ships, appendage geometry) RU Ships, appendage geometry) RU Ships, appendage geometry)			(ships hydrostatics stabil-		
RF (ships, appendage geometry) Rudder flap RU (ships, hull geometry) Run RU (ships, appendage geometry) Pudder	req		<i>ity</i>) required (to be clarified)		
RF Rudder flap RU (ships, hull geometry) Run RU (ships, appendage geometry) RU Pudder			(ships, appendage geometry)		
RU (ships, hull geometry) Run RU (ships, appendage geometry) RU Budder	RF		Rudder flap		
RU (ships, appendage geometry) Buddor	RU		(ships, hull geometry) Run		
KU Duddar	DU		(ships, appendage geometry)		
Kuudel	κu		Rudder		

ITTC Symbols

Version 2024

C		
3	(General) Ship	
S	(snips, hydrostatics, stabil-	
	(ships_hydrostatics_stabil_	
S	<i>(sups, hydrosiancs, subi-</i> <i>ity</i>) Static	
	(ships, hydrostatics, stabil-	
sqt	<i>ity</i>) Sinkage, squat	
C A	(ships, appendage geometry)	
SA	Stabilizer	
SE	(ships, hull resistance)	
51	Faired full scale data	
SH	(ships, appendage geometry)	
	Shafting	
SK	(ships, appendage geometry)	
	Skeg	
SR	(ships, hull resistance) Raw	
	full scale data	
SS	(snips, null geometry) Sta-	
	(ships_appendage_geometry)	
ST	(snips, uppendage geometry) Strut	
	(ships, hull resistance) Salt	
SW	water	
т	(ships, hydrostatics, stabil-	
1	<i>ity</i>) transverse	
TC	(ships, hydrostatics, stabil-	
	<i>ity</i>) Trim in cm	
TM	(ships, hydrostatics, stabil-	
	<i>ity</i>) Trim in m	
TH	(ships, appendage geometry)	
	Infusier (shing, hydrostation, stabil	
V	(snips, hydrostatics, stabil-	
	(ships appendage geometry)	
WG	(sups, uppendage geometry) Wedge	
	(ships, hull geometry)Water	
WP	plane	
WC	(ships, hull geometry) Wet-	
w S	ted surface	
0	(ships, hydrostatics, stabil-	
Ψ	ity) at heel angle φ	
θ	(ships, hydrostatics, stabil-	
ř	$ ity\rangle$ at trim angle θ	

ITTC Symbols

Version 2024

Acronym

Name

ITTC

Symbol

Identifiers (Subscripts) Definition or

Explanation

SI-

Unit

ITTC Sym	bols			
Version 2024		Operators (Supe		
ITTC	Aaronum	Nomo	Definition or	SI-
Symbol	Actonym	Iname	Explanation	Unit

(fundamental, statistical,		
stochastic) Average, sample		
mean		
(fundamental, statistical,		
stochastic) Population co-		
variance		
(fundamental, statistical,		
stochastic) Sample covari-		
ance		
(fundamental, statistical,		
stochastic) Population devia-		
tion		
(fundamental, statistical,		
stochastic) Population devia-		
tion		
(fundamental, statistical,		
stochastic) Sample deviation		
(fundamental, statistical,		
stochastic) Expectation, pop-		
ulation mean		
(fundamental, statistical,		
stochastic) Expectation, pop-		
ulation mean		
(fundamental, statistical,		
stochastic) Expectation, pop-		
ulation mean		
(fundamental, statistical,		
<i>stochastic</i>) Average, sample		
mean		
(fundamental, statistical,		
stochastic) Probability den-		
sity		
(fundamental, statistical,		
stochastic) Probability func-		
tion		
(fundamental, statistical,		
stochastic) (Power) Spec-		
trum		
(fundamental, statistical,		
stochastic) Sample spectrum		
(fundamental, statistical,		
stochastic) Population corre-		
lation		
(fundamental_statistical		1
stochastic) Population corre-		
lation		
	(fundamental, statistical, stochastic) Average, sample mean(fundamental, statistical, stochastic) Population co- variance(fundamental, statistical, stochastic) Sample covari- ance(fundamental, statistical, stochastic) Population devia- tion(fundamental, statistical, stochastic) Population devia- tion(fundamental, statistical, stochastic) Population devia- tion(fundamental, statistical, stochastic) Population devia- tion(fundamental, statistical, stochastic) Sample deviation(fundamental, statistical, stochastic) Expectation, pop- ulation mean(fundamental, statistical, stochastic) Expectation, pop- ulation mean(fundamental, statistical, stochastic) Expectation, pop- ulation mean(fundamental, statistical, stochastic) Average, sample mean(fundamental, statistical, stochastic) Probability den- sity(fundamental, statistical, stochastic) Probability func- tion(fundamental, statistical, stochastic) Probability func- tion(fundamental, statistical, stochastic) Sample spectrum (fundamental, statistical, stochastic) Population corre- lation(fundamental, statistical, stochastic) Population corre- lation	(fundamental, statistical, stochastic) Average, sample mean (fundamental, statistical, stochastic) Population co- variance (fundamental, statistical, stochastic) Sample covari- ance (fundamental, statistical, stochastic) Population devia- tion (fundamental, statistical, stochastic) Population devia- tion (fundamental, statistical, stochastic) Population devia- tion (fundamental, statistical, stochastic) Sample deviation (fundamental, statistical, stochastic) Expectation, pop- ulation mean (fundamental, statistical, stochastic) Probability den- sity (fundamental, statistical, stochastic) Probability den- sity (fundamental, statistical, stochastic) Probability func- tion (fundamental, statistical, stochastic) Probability func- tion (fundamental, statistical, stochastic) Sample spectrum (fundamental, statistical, stochastic) Population corre- lation (fundamental, statistical, stochastic) Population corre- lation

ITTC Symbols

Version 2021

Operators (Superscripts)

ITTC Symbol	Computer Symbol	Name	Definition or	SI-
			Explanation	Unit
RS		(fundamental, statistical,		
		stochastic) Sample correla-		
		tion		
V		(fundamental, statistical,		
		stochastic) Population vari-		
		ance		
VR		(fundamental, statistical,		
		stochastic) Population vari-		
		ance		
VS		(fundamental, statistical,		
		<i>stochastic</i>) Sample variance		