

ITTC Symbols and Terminology List

Version 2008

July 2008

Supersedes all previous versions

Please go to next page for <u>hypertext table of contents</u> (Not all cross-links are active in the draught version)

Updated by the 25th ITTC Quality Systems Group

ITTC Symbols and Terminology List, Version 2008 Table of Contents:

all lines have_hypertext link to symbols pages

2.

ITTC Symbols and Terminology List, Version 2008	
Table of CONTENTS:	2
1. GENERAL	
1.1 Fundamental Concepts	4
1.1.1 Uncertainty	4
1.1.2 Coordinates and Space Relat Quantities	
1.1.2.1 Basic Quantities	
1.1.3 Time and Frequency Domain Quantities	1
1.1.3.1 Basic Quantities	
1.1.3.2 Complex Transforms	
1.1.3.3 Complex Quantities	
1.1.4 Random Quantities and Stoc	hastic
Processes	
1.1.4.1 Random Quantities	
1.1.4.2 Stochastic Processes	16
1.1.4.3 Probability Operators (Superscripts)	
1.1.5 Balances and System Related Concepts	
1.2 Solid Body Mechanics	19
1.2.1 Inertial and Hydrodynamic	
Properties	
1.2.1.1 Basic Quantities	19
1.2.2 Loads	21
1.2.2.1 External Loads	
1.2.2.2 Sectional Loads	
1.2.3 Rigid Body Motions	
1.2.3.1 Motions 1.2.3.2 Attitudes	
1.3 Fluid Mechanics	
1.3.1 Flow Parameters	
1.3.1.1 Fluid Properties	
1.3.1.2 Flow parameters 1.3.1.3 Boundary conditions	
1.3.2 Flow Fields	
1.3.2.1 Velocities etc	
1.3.2.2 Circulation etc.	

1.3.3 Lifting Surfaces	29
1.3.3.1 Geometry	
1.3.3.2 Flow angles etc	
1.3.3.3 Forces	
1.3.3.4 Sectional coefficients	
1.3.4 Boundary Layers	
1.3.4.1 Two-dimensional Boundary	
Layers	
1.3.5 Cavitation	
1.3.5.1 Flow parameters 1.3.5.2 Flow fields	
1.3.5.3 Pumps	
1.4 Environmental Mechanics	36
1.4 Environmental Mechanics 1.4.1 Waves	
1.4.1.1 Periodic waves	
1.4.1.2 Irregular waves	
1.4.1.3 Time Domain Analysis	
1.4.1.4 Frequency Domain Analysis	
1.4.1.5 Directional Waves	39
1.4.2 Wind	40
1.4.2.1 Basic Quantities	40
1.4.3 Ice Mechanics	41
1.4.3 Ice Mechanics 1.4.3.1 Basic Quantities	
	41
1.4.3.1 Basic Quantities	41 42
1.4.3.1 Basic Quantities SHIPS IN GENERAL	41 42 42
1.4.3.1 Basic QuantitiesSHIPS IN GENERAL2.1 Basic Quantities	41 42 42 44
 1.4.3.1 Basic Quantities SHIPS IN GENERAL 2.1 Basic Quantities 2.2 Geometry and Hydrostatics 2.2.1 Hull Geometry 2.2.1.1 Basic Quantities 	41 42 42 44 44 44
 1.4.3.1 Basic Quantities	41 42 42 44 44 44 44
 1.4.3.1 Basic Quantities	41 42 42 44 44 44 47
 1.4.3.1 Basic Quantities	41 42 42 44 44 44 47 48
 1.4.3.1 Basic Quantities	41 42 42 44 44 44 47 48 50
 1.4.3.1 Basic Quantities	41 42 42 44 44 44 47 48 50 50
 1.4.3.1 Basic Quantities	41 42 42 44 44 44 47 48 50 50 53
 1.4.3.1 Basic Quantities	41 42 42 44 44 44 47 48 50 50 53
 1.4.3.1 Basic Quantities	41 42 42 42 44 44 47 48 50 50 53 .3.5)
 1.4.3.1 Basic Quantities	41 42 42 44 44 44 47 48 50 53 53 54 55
 1.4.3.1 Basic Quantities	41 42 42 44 44 44 47 48 50 53 53 54 55
 1.4.3.1 Basic Quantities	41 42 42 42 44 44 44 47 48 50 50 53 .3.5) 54 55

2.2.4	Hydrostatics and Stability	57
2.2	2.4.1 Points and Centres (Still und	
	construction)	
	2.4.2 Static Stability levers	
2.2	2.4.3 Intact and Damage (Flooded)	
2.2	Stability	60
2.2	2.4.4 Symbols for Attributes and Subscripts (under constructio	n)61
1 2 E	1	<i>,</i>
	Resistance and Propulsion	
	Hull Resistance	
	3.1.1 Basic Quantities	
	3.1.3 Symbols for Attributes and	04
2.2	Subscripts	66
232	2 Ship Performance	
	3.2.1 Basic Quantities	
	3.2.2 Derived Quantities	
	3.2.3 Efficiencies etc.	
2.3.3	Propulsor Performance	70
	3.3.1 Basic Quantities	
	3.3.2 Derived Quantities	
2.3	3.3.3 Induced Velocities etc.	73
2.3.4	Unsteady Propeller Forces	74
2.3	3.4.1 Basic Quantities	74
2.3.5	Water Jets	76
2.4 N	Aanoeuvrability and Sea Keepin	g.80
2.4.1	Manoeuvrability	80
	4.1.1 Geometrical Quantities	
	4.1.2 Motions and Attitudes	
	4.1.3 Flow Angles etc	
	4.1.4 Forces and Derivatives	
	1.1.5 Linear Models	
	4.1.6 Turning Circles	
2.4	1 1 7 / 1g / log Monoouvrog	85
24	4.1.7 Zig-Zag Manoeuvres 4.1.8 Stopping Manoeuvres	
	4.1.8 Stopping Manoeuvres	86
2.4.2	4.1.8 Stopping Manoeuvres 2 Sea Keeping	86 87
2.4.2 2.4	4.1.8 Stopping Manoeuvres 2 Sea Keeping 4.2.1 Basic Quantities	86 87
2.4.2	4.1.8 Stopping Manoeuvres 2 Sea Keeping 4.2.1 Basic Quantities	86 87 87
2.4.2 2.4	 4.1.8 Stopping Manoeuvres Sea Keeping 4.2.1 Basic Quantities Large Amplitude Motions Capsizing 	86 87 87
2.4.2 2.4 2.4.3	 4.1.8 Stopping Manoeuvres Sea Keeping 4.2.1 Basic Quantities Large Amplitude Motions Capsizing 	86 87 87 89
2.4.2 2.4 2.4.3 2.4.4	 4.1.8 Stopping Manoeuvres	86 87 87 87 89
2.4.2 2.4 2.4.3 2.4.4 3. SPI 3.1 P	 4.1.8 Stopping Manoeuvres	86 87 87 89 98 98
2.4.2 2.4 2.4.3 2.4.4 3. SPI 3.1 P	 4.1.8 Stopping Manoeuvres	86 87 87 98 98 99

3.1.2 Geometry and Levers,	3
Underway	
3.1.2.1 Geometry, Underway	
3.1.2.2 Levers, Underway	102
3.1.3 Resistance and Propulsio	n105
3.2 Multi-Hull Vessels (Add tri	maran
symbols)	107
3.2.1 Geometry and Hydrostati	cs 107
3.2.2 Resistance and Propulsio 3.2.2.1 Resistance Component	
-	
3.3 Hydrofoil Boats 3.3.1 Geometry and Hydrostati	IIU
3.3.1.1 Geometry, Underway	
3.3.2 Resistance and Propulsio	
3.3.2.1 Basic Quantities	
3.3.2.2 Derived Quantities	
3.4 ACV and SES	
3.4.1 Geometry and Hydrostati	
3.4.2 Resistance and Propulsio	
3.5 Ice Going Vessels	
3.5.1 Resistance and Propulsio	
3.6 Sailing Vessels	121
3.6 Sailing Vessels3.6.1 Geometry and Hydrostati	
_	cs121
3.6.1 Geometry and Hydrostati	cs121
3.6.1 Geometry and Hydrostati3.6.2 Resistance and Propulsio	cs 121 n 123
3.6.1 Geometry and Hydrostati3.6.2 Resistance and Propulsio4. BACKGROUND AND	cs 121 n 123
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES 	cs 121 n 123 125 Group 125
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES 4.1 Symbols and Terminology 	cs 121 n 123 125 Group 125 ymbols125
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES 4.1 Symbols and Terminology 4.2 Description of the List of Symbols 	cs 121 n 123
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES	cs 121 n 123 Group 125 ymbols125 125 125
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES 4.1 Symbols and Terminology 4.2 Description of the List of Sy 4.2.1 Classification 4.2.2 Structure of the Lists 	cs 121 n 123 Group 125 ymbols125 125 125 x
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES 4.1 Symbols and Terminology 4.2 Description of the List of Sy 4.2.1 Classification 4.2.2 Structure of the Lists 4.2.3 Organization of the matri 	cs 121 n 123 Group 125 ymbols125 125 125 x 125
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES 4.1 Symbols and Terminology 4.2 Description of the List of Sy 4.2.1 Classification 4.2.2 Structure of the Lists 4.2.3 Organization of the matri structured list 	cs 121 n 123 Group 125 ymbols125 125 x 125 x 125 N 127
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES 4.1 Symbols and Terminology 4.2 Description of the List of Sy 4.2.1 Classification 4.2.2 Structure of the Lists 4.2.3 Organization of the matri structured list 5. PRINCIPLES OF NOTATIO 	cs 121 n 123 Group 125 ymbols125 125 125 x 125 N 127 128
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES 4.1 Symbols and Terminology 4.2 Description of the List of Sy 4.2.1 Classification 4.2.2 Structure of the Lists 4.2.3 Organization of the matri structured list 5. PRINCIPLES OF NOTATIO 5.1 Excerpts of ISO 31 	cs 121 n 123 Group 125 ymbols125 125 125 x 125 N 127 128 128
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES 4.1 Symbols and Terminology 4.2 Description of the List of Sy 4.2.1 Classification 4.2.2 Structure of the Lists 4.2.3 Organization of the matri structured list 5. PRINCIPLES OF NOTATIO 5.1 Excerpts of ISO 31 5.2 Computer Symbols 	cs 121 n 123 Group 125 ymbols125 125 125 x 125 x 125 N 127 128 140
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES 4.1 Symbols and Terminology 4.2 Description of the List of Sy 4.2.1 Classification 4.2.2 Structure of the Lists 4.2.3 Organization of the matri structured list 5. PRINCIPLES OF NOTATIO 5.1 Excerpts of ISO 31 5.2 Computer Symbols 5.3.1 ITTC Documents 	cs 121 n 123 Group 125 Group 125 ymbols125 125 x 125 x 125 NN 127 128 140 141
 3.6.1 Geometry and Hydrostati 3.6.2 Resistance and Propulsio 4. BACKGROUND AND REFERENCES	cs 121 n 123 Group 125 Group 125 ymbols125 125 125 x 125 N 125 N 127 128 128 141 141

ITTC	Symbols
------	---------

1General1.1Fundamental Concepts1.1.1Uncertainty

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

1. GENERAL

1.1 Fundamental Concepts

1.1.1 Uncertainty

C_i	Sensitivity coefficient	$c_i = \partial f / \partial x_i$.	1
f	Function	Functional relationship be- tween measurand <i>Y</i> and in- put quantities X_i on which <i>Y</i> depends, and between output estimate <i>y</i> and input esti- mates x_i on which <i>y</i> depends.	1
$\partial f/\partial x_i$	Partial derivative	Partial derivative of f with respect to input quantity x_i	1
k	Coverage factor	For calculation of expanded uncertainty $U = ku_c(y)$	1
k_p	Coverage factor for prob- ability <i>p</i>	For calculation of expanded uncertainty $U_p = k_p u_c(y)$	1
п	Number of repeated observa- tions		1
Ν	Number of input quantities	Number of input quantities X_i on which the measurand Y depends	1
р	Probability	Level of confidence: $0 \le p \le 1.0$	1
q	Random quantity		1
\overline{q}	Arithmetic mean or average		1
q_k	<i>k</i> th observation of <i>q</i>	k^{th} independent repeated observation of randomly varying quantity q	1
$r(x_i,x_j)$	Estimated correlation coeffi- cient	$r(x_i, x_j) = u(x_i, x_j)/(u(x_i) u(x_j))$	1
s _p ²	Pooled estimate of variance		1

ITTC Sy	mbols
---------	-------

1 1.1 General 1.1Fundamental Concepts1.1.1Uncertainty

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
<i>s</i> _p		Pooled experimental stan- dard deviation	Positive square root of s_p^2	1
$s^2(\overline{q})$		Experimental variance of the mean	$s^{2}(\overline{q}) = s^{2}(q_{k})/n$; estimated variance obtained from a Type A evaluation	1
$s(\overline{q})$		Experimental standard de- viation of the mean	Positive square root of $s^2(\overline{q})$	1
$s^2(q_k)$		Experimental variance from repeated observations		1
$s(q_k)$		Experimental standard de- viation of repeated observa- tions	Positive square root of $s^2(q_k)$	1
$s^2(\overline{X}_i)$		Experimental variance of input mean	From mean \overline{X}_i , determined from <i>n</i> independent repeated observations $X_{i,k}$, estimated variance obtained from a Type A evaluation.	1
$s(\overline{X}_i)$		Standard deviation of input mean	Positive square root of $s^2(\overline{X}_1)$	1
$s(\overline{q},\overline{r})$		Estimate of covariance of means		1
$s(\overline{X}_i, \overline{X}_j)$		Estimate of covariance of input means		1
$t_p(v)$		Inverse Student t	Student <i>t</i> -distribution for <i>v</i> degrees of freedom corresponding to a given probability <i>p</i>	1
$t_p(v_{\rm eff})$		Inverse Student <i>t</i> for effec- tive degrees of freedom	Student <i>t</i> -distribution for v_{eff} degrees of freedom corre- sponding to a given prob- ability <i>p</i> in calculation of expanded uncertainty U_p	1
$u^2(x_i)$		Estimated variance	Associated with input esti- mate x_i that estimates input quantity X_i	1
$u(x_i)$		Standard deviation	Positive square root of $u^2(x_i)$	1

Version 2008

.

1General1.1Fundamental Concepts1.1.1Uncertainty

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$u(x_i,x_j)$		Estimated covariance		1
$u_{\rm c}^2(y)$		Combined variance	Combined variance associ- ated with output estimate <i>y</i>	1
$u_{\rm c}(y)$		Combined standard uncer- tainty	Positive square root of $u_c^2(y)$	1
$u_{cA}(y)$		Combined standard uncer- tainty from Type A	From Type A evaluations alone	1
$u_{\rm cB}(y)$		Combined standard uncer- tainty from Type B	From Type B evaluations alone	1
$u_c(y_i)$		Combined standard uncer- tainty	Combined standard uncer- tainty of output estimate y_i when two or more meas- urands or output quantities are determined in the same measurement	1
$_{I}u_{i}^{2}(y)$		Component of combined variance	$u_i^2(y) \equiv [c_i u(x_i)]^2$	1
$_{I}u_{i}(y)$		Component of combined standard uncertainty	$u_i(y) \equiv c_i u(x_i)$	1
$u(x_i)/ x_i $		Relative standard uncer- tainty		1

Version 2008

1.1.2 Coordinates and Space Related Quantities

Orientation of coordinates

A problem of general interest, the orientation of the axes of coordinate systems, has been treated extensively in the Report of the 17th ITTC Information Committee. The present QS Group recommends that the orientations of the coordinate systems chosen for convenience should be stated explicitly in any case. The coordinate system orientation should not be inferred from the symbols and/or names of the concepts or from national or professional traditions. All sign conventions of related Quantities should be consistent with the orientation chosen.

For ready reference the recommendation of the 17th ITTC Information Committee is quoted in the following.

"In order to adapt ITTC nomenclature to common practice a proposal for a standard coordinate system was published in the newsletter No 7, March 1983, to generate discussion. The response was quite diverse. On the one hand it was suggested that instead of the two orthogonal right handed systems with the positive xaxis forward and the positive z-axis either upor downward as proposed only one system should be selected, in particular the one with the positive z-axis upwards. On the other hand the attention of the Information Committee was drawn to the fact that in ship flow calculations neither of the two systems proposed is customary. Normally the x-axis is directed in the main flow direction, i.e. backwards, the y-axis is taken positive to starboard and the z-axis is positive upwards. The origin of the coordinates in this case is usually in the undisturbed free surface half way between fore and aft perpendicular.

1 General

1.1 Fundamental Concepts

1.1.2 Coordinates and Space related Quantities 7

In view of this state of affairs the Information Committee (now SaT Group) may offer the following recommendation, if any:

Axes, coordinates

Preferably, orthogonal right handed systems of Cartesian co-ordinates should be used, orientation and origin in any particular case should be chosen for convenience.

Body axes (x,y,z)

Coordinate systems fixed in bodies, ocean platforms, or ships.

For the definition of hull forms and ocean wave properties and the analysis of structural deflections it is customary to take the *x*-axis positive forward and parallel to the reference or base line used to describe the body's shape, the *y*-axis positive to port, and the *z*-axis positive upwards.

For sea keeping and manoeuvrability problems usually the x-axis as before the y-axis positive to starboard, and the z-axis positive downwards, the origin customarily at the centre of mass of the vehicle or at a geometrically defined position.

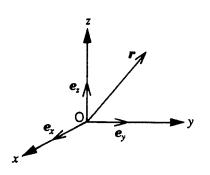
For ship flow calculations usually the *x*-axis positive in the main flow direction, i.e. backwards, the *y*-axis positive to starboard, and the *z*-axis positive upwards, the origin customarily at the intersection of the plane of the undisturbed free-surface, the centre plane, and the midship section.

Fixed or space axes $(x_{\theta}, y_{\theta}, z_{\theta})$

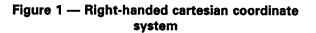
Coordinate systems fixed in relation to the earth or the water. For further references see ISO Standard 1151/1 ...6: Terms and symbols for flight dynamics.

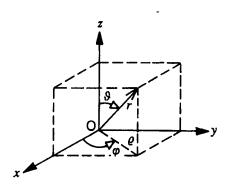
ITTC Symbols	1	General	
	1.1	Fundamental Concepts	
Version 2008	1.1.2	Coordinates and Space related Quantities	8

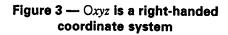
There may be other coordinate systems in use and there is no possibility for the adoption of a single system for all purposes. Any problem requires an adequate coordinate system and transformations between systems are simple, provided that orientations and origins are completely and correctly documented for any particular case." In sea keeping and manoeuvrability problems customarily the centre of mass of the vehicle is chosen as the origin of the coordinates. This is in most cases not necessarily advantageous, as all the hydrodynamic properties entering the problems are related rather to the geometries of the bodies under investigation. So any geometrically defined point may be more adequate for the purposes at hand.


Origins of coordinates

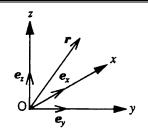
Item No.	Coordinates	Position vector and its differential	Name of coor- dinate system	Remarks
11-12.1 (-)	x, y, z	$\mathbf{r} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z$ $d\mathbf{r} = dx \ \mathbf{e}_x + dy \ \mathbf{e}_y + dz \ \mathbf{e}_z$	cartesian coordinates	e_x , e_y and e_z form an orthonormal right-handed system. See Figure 1.
11-12.2 (-)	ρ, φ, z	$\mathbf{r} = \rho \mathbf{e}_{\rho} + z \mathbf{e}_{z}$ d $\mathbf{r} = d\rho \ \mathbf{e}_{\rho} + d\varphi \ \mathbf{e}_{\varphi} + dz \ \mathbf{e}_{z}$	cylindrical coordinates	$e_{\rho}(\varphi)$, $e_{\varphi}(\varphi)$ and e_z form an orthonormal right-handed system. See Figures 3 and 4. If $z = 0$, then ρ and φ are the polar coordinates
11-12.3 (-)	r, 9, φ	$r = r \boldsymbol{e}_r;$ $d\boldsymbol{r} = dr \boldsymbol{e}_r + r d \boldsymbol{\mathcal{G}} \boldsymbol{e}_{\boldsymbol{\mathcal{G}}} + r dr \boldsymbol{\mathcal{G}} \boldsymbol$	spherical coordinates	$e_r(9, gyp), e_g(\mathcal{G}, \varphi)$ and $e_{\varphi}(\varphi)$ form an orthonormal right-handed system. See Figures 3 and 5.

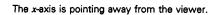

ISO Standard 31-11 makes the following suggestions


NOTE 1 If, exceptionally, a left-handed system (see figure 2) is used for certain purposes, this shall be clearly stated to avoid the risk of sign errors.


Version 2008

The *x*-axis is pointing towards the viewer.




1.

1

1.1 Fundamental Concepts

1.1.2 Coordinates and Space related Quantities 9

Figure 2 — Left-handed cartesian coordinate system

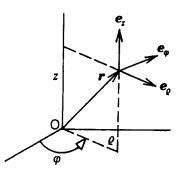


Figure 4 — Right-handed cylindrical coordinates

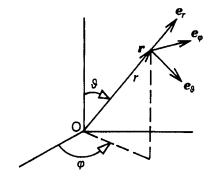


Figure 5 — Right-handed spherical coordinates

ITTC	Symbols
------	---------

1 General

1.1 Fundamental Concepts1.1.2 Coordinates and Space related Quantities 10

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

1.1.2.1 Basic Quantities

S	S	Any scalar quantity distrib- uted, maybe singularly, in space	ſds
S^{0}_{ij}	SM0(I,J)	Zero th order moment of a scalar quantity	$\int \delta_{ij} ds = \delta_{ij} S$
S^{1}_{ij}	SM1(I,J)	First order moment of a sca- lar quantity,	$\int \varepsilon_{ikj} x_k ds$
		formerly static moments of a scalar distribution	
S^2_{ij}	SM2(I,J)	Second moment of a scalar quantity, formerly moments of inertia of a scalar distribu- tion	$\int \varepsilon_{kli} x_l \varepsilon_{jkm} x_m ds$
S _{uv}	S(U,V)	Generalized moment of a scalar quantity distributed in space	$S_{ij} = S_{ij}^{0}$ $S_{i,3+j} = S_{ij}^{1}$ $S_{3+i,j} = S_{ij}^{1}$ $S_{3+i,3+j} = S_{ij}^{2}$
T_{ij}	T(I,J)	Tensor in space referred to an orthogonal system of Car- tesian coordinates	$T_{ij}^{s} + T_{ij}^{a}$
		fixed in the body	
T_{ij}^{A}	TAS(I,J)	Anti-symmetric part of a tensor	$(T_{ij} - T_{ji})/2$
T_{ij}^{S}	TSY(I,J)	Symmetric part of a tensor	$(T_{ij} + T_{ji}) / 2$
T_{ij}^{T}	TTR(I,J)	Transposed tensor	T_{ji}
$T_{ij} v_j$		Tensor product	$\Sigma T_{ij} v_j$
u_i, v_i	U(I), V(I)	Any vector quantities	
$u_i v_i$	UVPS	Scalar product	$u_i v_i$
$u_i v_j$	UVPD(I,J)	Diadic product	$u_i v_j$
<i>u×v</i>	UVPV(I)	Vector product	$\varepsilon_{ijk}u_jv_k$

General Fundamental Concepts Coordinates and Space related Quantities 11

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
V_{i}^{0}, V_{i}	V0(I),V(I)	Zeroth order moments of a vector quantity distributed in space, referred to an or- thogonal system of Cartesian coordinates fixed in the body	L	
V_{i}^{1}	V1(I)	First order moments of a vector distribution	$\int \varepsilon_{ijk} x_j dv_k$	
V _u	V(U)	Generalized vector	$V_i = V_i^0$ $V_{3+i} = V_i^1$	
x, x ₁ y, x ₂ z, x ₃	X, X(1) Y, X(2) Z, X(3)	Body axes and correspond- ing Cartesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in the body	m
x ₀ , x ₀₁ y ₀ , x ₀₂ z ₀ , x ₀₃	X0, X0(1) Y0, X0(2) Z0, X0(3)	Space axes and correspond- ing Cartesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the space	m
x _F , x _{F1} y _F , x _{F2} z _F , x _{F3}	XF, XF(1) YF, XF(2) ZF, XF(3)	Flow axes and correspond- ing Cartesian coordinates	Right-hand orthogonal sys- tem of coordinates fixed in relation to the flow	m
${\cal E}_{ijk}$	EPS(I,J,K)	Epsilon operator	+1 : $ijk = 123, 231, 312$ 1 : $ijk = 321, 213, 132$ 0 : if otherwise	
δ_{ij}	DEL(I,J)	Delta operator	+1: ij = 11, 22, 33 0: if otherwise	

Version 2008

ITTC	Symbols
------	---------

1 **Mechanics in General**

Fundamental Concepts Time and Frequency Domain Quantities 12

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
1.1.3 Time	e and Frequen	cy Domain Quantities		
1.1.3.1 Basi	ic Quantities			
а	ADMP	Damping	<i>s</i> ^{<i>r</i>} , in Laplace variable	1/s
f	FR	Frequency		Hz
<i>f</i> _C	FC	Basic frequency in repeating functions	1 / T _C	Hz
fs	FS	Frequency of sampling	$1 / T_s$ period in repeating spectra	Hz
i	Ι	Imaginary unit	sqrt(-1)	1
Ι	IM	Imaginary variable		1
j	J	Integer values	-∞+∞	1
R	R	Complex variable	$exp(s T_S)$ Laurent transform	
S	S	Complex variable	$a + 2\pi i f$ Laplace transform	1/s
t	TI	Time	-∞ +∞	S
t_j	TI(J)	Sample time instances	j T _S	
T _C	TC	Period of cycle	$1/f_{\rm C}$ duration of cycles in periodic, repeating processes	S
$T_{\rm S}$	TS	Period of sampling	Duration between samples	S
x	х	Values of real quantities	x(t)	
X		Real "valued" function		
X_j	X(J)	Variables for samples values of real quantities	$x(t_j) = \int x(t) \delta(t - t_j) dt$	
Ζ	Ζ	Complex variable		

Version 2008

1.1.3.2 Complex Transforms

1 Mechanics in General

1.1 Fundamental Concepts

1.1.3 Time and Frequency Domain Quantities 13

ITTC Cor	nputer Name	Definition or	SI-
Symbol Sym	nbol	Explanation	Unit

$X^{\rm A}(t) = X(t) + iX^{\rm H}(t)$ x^{A} XA Analytic function $x^{\rm DF}$ $X^{\rm DF}(f) = \Sigma x_i exp(-i2\pi f_i T_{\rm S})$ XDF Fourier transform of sampled function i.e. periodically repeating $=X(0)/2+f_S\Sigma X^F(f+if_S)$ sample theorem: aliasing! x^{DL} $X^{\rm DL}(s) = \Sigma x_i \exp(-s_j T_{\rm S})$ Laurent transform of XDL sampled function x^{F} $X^{\mathrm{F}}(f) = \int X(t) \exp(-i2\pi ft) dt$ XFT Fourier transform inverse form: $= \int X^{\mathrm{F}}(f) \exp(-i2\pi ft) dt$ if X(t) = 0 and a = 0 then $X^{\mathrm{F}}(f) = X^{\mathrm{L}}(f)$ x^{F}_{i} XFT(J) Fourier transform of $1/T_{\rm C}/X(t)\exp(-i2\pi jt/T_{\rm C})dt$ periodic function $t = 0 \dots T_{\rm C}$ $X^{\rm F} = \Sigma x^{\rm F}_{j} \delta(f - j/T_{\rm C})$ inverse form: $X(t) = \Sigma x^{F_{i}} \exp(-i2\pi f_{i}T_{C})$ x^{H} $X^{\rm H}(t) = 1/\pi \int X(\tau)/(t-\tau)d\tau$ XHT Hilbert transform $X^{\text{HF}}(f) = X^{\text{F}}(f)(-i \operatorname{sgn} f)$ $(1/t)^{\text{F}} = -i \operatorname{sgn} f$ $x^{\rm HF}$ XHF Fourier transform of Hilbert transform x^{L} $X^{L}(s) = \int X(t) \exp(-st) dt$ XLT Laplace transform if X(t < 0) = 0 then $= (X(t)\exp(-at))^F$ $X^{\mathrm{R}}(r) = \Sigma x_{i} r^{-j} = X^{\mathrm{DL}}$ x^{R} XRT Laurent transform x^{S} $X^{S}(f) = X^{F}(f)(1 + \operatorname{sgn} f)$ = X^{AF} Single-sided complex spec-XS tra i.e. = 0 for f < 0 x_{i}^{S} $X^{\mathrm{F}}_{i}(1 + \mathrm{sgn}\,i)$ Single-sided complex Fou-XS(J) rier series line spectra

1.1.3.3 **Complex Quantities**

z^a	ZAM	Amplitude	$mod(z) = sqrt(z^{r2}+z^{i2})$
z^{c}	ZRE	Real or cosine component	$z^{c} = real(z) = z^{a}cos(z^{p})$

1 **Mechanics in General**

1.1 Fundamental Concepts1.1.3 Time and Frequency Domain Quantities 14

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
z^{i}	ZIM	Imaginary or sine component	$\operatorname{imag}(z) = z^{\operatorname{a}} \sin(z^{p}) = z^{\operatorname{s}}$	
z^{j}	ZCJ	Conjugate	z^r - iz^i	
z^l	ZLG	(Phase) Lag		
z^p	ZPH	Phase	$\operatorname{arc}(z) = \operatorname{arctg}(z^i / z^r)$	
z^{r}	ZRE	Real or cosine component	$\operatorname{real}(z) = z^{\operatorname{a}} \cos(z^p) = z^{\operatorname{c}}$	
z^{s}	ZIM	Imaginary or sine component	$z^{\rm s} = \operatorname{imag}(z) = z^{\rm a} \sin(z^{\rm p})$	

ITTC Symbols

Version 2008

ITTC Symbols	1	Mechanics in General
	1.1	Fundamental Concepts
Version 2008	1.1.4	Stochastic Processes

15

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
1.1.4 Rando 1.1.4.1 Rando	-	and Stochastic Processes		
$g^{\rm E}$, $g^{\rm M}$, $g^{\rm MR}$	GMR	Expected value of a function of a random quantity	$E(g) = \int g(x) f_x(x) dx$ $x = -\infty \dots \infty$	
<i>x, y</i>	Х, Ү	Random quantities	$x(\zeta), y(\zeta)$	
x_i, y_i	<i>X</i> (I), <i>Y</i> (I)	Samples of random quanti- ties	i = 1 n n : sample size	
$(x^m)^E$	XmMR	m- th moment of a random quantity	$(x^m)^{\mathrm{E}}$	
$x^{\mathrm{D}}, x^{\mathrm{DR}}, \sigma_x$	XDR	Standard deviation of a ran- dom quantity	$x^{\mathrm{VR}^{1\!\!/_2}}$	
x^{DS} , s_x	XDS	Sample deviation of a ran- dom quantity	$x^{VS 1/2}$, unbiased random estimate of the standard deviation	
$xx^{\mathrm{R}}, xx^{\mathrm{MR}}, R_{xx}$	XXMR	Auto-correlation of a ran- dom quantity	$x x^{\mathrm{E}}$	
$xy^{\mathrm{R}}, xy^{\mathrm{MR}}, R_{xy}$	XYMR	Cross-correlation of two random quantities	$x y^{\mathrm{E}}$	
$x^{\mathrm{E}}, x^{\mathrm{M}}, x^{\mathrm{MR}}, \mu_x$	XMR	Expectation or population mean of a random quantity	E(x)	
$x^{\mathrm{A}}, x^{\mathrm{MS}}, m_x$	XMS	Average or sample mean of a random quantity	$1/n \sum x_i$, $i = 1n$ unbiased random estimate of the expectation with $x^{AE} = x^E$ $x^{VSE} = x^V / n$	
x^{PD}, f_x	XPD	Probability density of a ran- dom quantity	$d F_x / dx$	
xy^{PD}, f_{xy}	XYPD	Joint probability density of two random quantities	$\partial F_{xy}/(\partial x \partial y)$	
$x^{\rm PF}, F_x$	XPF	Probability function (distri- bution) of a random quantity		1
$xy^{\rm PF}, F_{xy}$	XYPF	Joint probability function (distribution) function of two random quantities		1

ITTC	Symbols	

Version	2008

1Mechanics in General1.1Fundamental Concepts1.1.4Stochastic Processes

16

ITTC Name Definition or SI-Computer Explanation Symbol Symbol Unit x^{V} , x^{VR} , xx^{VR} XVR, XXVR Variance of a random quan- x^{2E} - x^{E2} tity x^{VS} , xx^{VS} $1/(n-1) \Sigma (x_i - x^A)^2$ XVS, XXVS Sample variance of a rani = 1 n dom quantity unbiased random estimate of the variance $x^{VSE} = x^{V}$ $x v^E - x^E v^E$ xy^{V}, xy^{VR} **XYVR** Variance of two random quantities ζ Outcome of a random "experiment" 1.1.4.2 Stochastic Processes g^{MR} Mean of a function of a ran- $M(g(t)) = \lim(1/T \int g(t) dt)$ **GMR** $t = -T/2 \dots + T/2$ dom quantity $T = -\infty \dots +\infty$ g^{MS} Average or sample mean of $A(g(t)) = 1/T \int g(t) dt$ GMS a function of a random quan- $t = 0 \dots + T$ tity X, YStationary stochastic process $x(\zeta,t), y(\zeta,t)$ *x*, *y* xx^{C} , xx^{CR} , C_{xx} XXCR $(x(t) - x^{E})(x(t + \tau) - x^{E})^{E}$ Auto-covariance of a stationary stochastic process $xy^{\rm C}$, $xy^{\rm CR}$, C_{xy} XYCR $(x(t) - x^{E})(y(t + \tau) - y^{E})^{E}$ Cross-covariance of two stationary stochastic processes xx^{R} , xx^{RR} , R_{xx} XXRR $x(t)x(t+\tau)^{\rm E} = R_{xx}(\tau)$ Auto-correlation of a sta- $R_{xx}(\tau) = R_{xx}(-\tau)$ tionary stochastic process if x is ergodic: $R_{xx}(\tau)$ $= x(t)x(t+\tau)^{MR}$ $R_{xx}(\tau) = \int S_{xx}(\omega) \cos(\omega \tau) d\tau$ $\tau = 0 \dots \infty$ xy^{R}, R_{xy} $x(t)y(t+\tau)^{\rm E}=R_{xy}(\tau)$ Cross-correlation of two XYRR $R_{vx}(\tau) = R_{xv}(-\tau)$ stationary stochastic processes if x, y are ergodic:

If x, y are ergodic: $R_{xy}(\tau) = x(t)y(t + \tau)^{MR}$

Version 2008

1 1.1 **Mechanics in General** 1.1Fundamental Concepts1.1.4Stochastic Processes

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
xx^{S}, S_{xx}	XXSR	Power spectrum or autospec- tral power density of a sto- chastic process	xx ^{RRSR}	
xy^{S}, S_{xy}	XYSR	Cross-power spectrum of two stationary stochastic processes	<i>xy</i> ^{RRSR}	
τ	TICV	Covariance or correlation time		S
ζ		Outcome of a random "ex- periment"		
1.1.4.3 Pro	bability Operation	ators (Superscripts)		
A, MS	MS	Average, sample mean		
C, CR	CR	Population covariance		
CS	CS	Sample covariance		
D, DR	DR	Population deviation		
DS	DS	Sample deviation		
E, M, MR	MR	Expectation, population mean		
PD	PD	Probability density		
PF	PF	Probability function		
S	SR	(Power) Spectrum		
SS	SS	Sample spectrum		
R, RR	RR	Population correlation		
RS	RS	Sample correlation		
V, VR	VR	Population variance		
VS	VS	Sample variance		

ITTC Syr	nbols
----------	-------

1 **Mechanics in General**

1.1

Fundamental Concepts Balances and System Related Concepts 18 1.1.5

ITTC Symb	1	Name	Definition or Explanation	SI- Unit
1.1.5	Balances and Syste	em Related Concepts		
q	QQ	Quantity of the quality under consideration stored in a control volume	r	Q^U
Q		Quality under consideration		Q^U/s
Q^{C}	QCF	Convective flux		Q^U/s
$Q^{ m C} \ Q^{ m D}$	QDF	Diffusive flux		Q^U / s
$\mathcal{Q}^{ extsf{F}}$	QFL	Total flux across the surface of the control vol- ume	Inward positive!	Q ^U /s
Q^{M}		Molecular diffusion		Q^{U}/s
Q^{P}	QPN	Production of sources in the control volume		$\mathbf{Q}^{\mathrm{U}}/\mathbf{s}$
$Q^{\rm S}$	QRT	Storage in the control vol- ume, rate of change of the quantity stored	dq / dt	Q^U /s
$Q^{^{\mathrm{T}}}$	QDT	Turbulent diffusion		$Q^{U}\!/s$

Version 2008

1 **Mechanics in General**

1.2 Solid Body Mechanics1.2.1 Inertial and Hydrodynamic Properties 19

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

1.2 **Solid Body Mechanics**

1.2.1 Inertial and Hydrodynamic Properties

1.2.1.1 Basic Quantities

A_{ij}	AM(I,J)	Added mass coefficient in <i>i</i> th mode due to <i>j</i> th motion		
B _{ij}	DA(I,J)	Damping coefficient in <i>i</i> th mode due to <i>j</i> th motion		
C_{ij}	RF(I,J)	Restoring force coefficient in <i>i</i> th mode due to <i>j</i> th motion	1	
$D^{\rm h}_{\ uv}$	DH(U,V)	Generalized hydrodynamic damping	$\partial F^{h}_{u} / \partial V_{v}$	
$F^{h}_{\ u}$	FH(U)	Generalized hydrodynamic force		
<i>I^huv</i>	IH(U,V)	Generalized hydrodynamic inertia	$\partial F^{h}_{u} / \partial \dot{V}_{v}$	
$I_{ m L}$	IL	Longitudinal second mo- ment of water-plane area	About transverse axis through centre of floatation	m^4
I_{T}	IT	Transverse second moment of water-plane area	About longitudinal axis through centre of floatation	m^4
I_y , I_{yy} , m^2_{22} , m_{55}	IY, IYY, M2(2,2), MA(5,5)	Pitch moment of inertia around the principal axis <i>y</i>		kg m ²
I_z , I_{zz} , m^2_{33} , m_{66}	IZ, IZZ, M2(3,3), MA(6,6)	Yaw moment of inertia around the principal axis z		kg m ²
I _{xy} , I ₁₂ I _{yz} , I ₂₃ I _{zx} , I ₃₁	IXY, I2(1,2) IYZ, I2(2,3) IZX, I2(3,1)	Real products of inertia in case of non-principal axes		kg m ²
k _x , k _{xx} k	RDGX	Roll radius of gyration around the principal axis <i>x</i>	$(I_{xx}/m)^{1/2}$	m

1 **Mechanics in General**

1.2 Solid Body Mechanics1.2.1 Inertial and Hydrodynamic Properties 20

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
k_{y}, k_{yy}	RDGY	Pitch radius of gyration around the principal axis <i>y</i>	$(I_{yy}/m)^{1/2}$	m
kz, kzz	RDGZ	Yaw radius of gyration around the principal axis z	$(I_{zz}/m)^{1/2}$	m
т	MA	mass		kg
${m^0}_{ij}$, m_{ij}	M0(I,J), MA(I,J)	Zero- th moments of mass, i.e. inertia distribution, mass tensor	$m_{ij}=m\;\delta_{ij}$	kg
m^{1}_{ij}	M1(I,J)	First moments of mass, i.e. inertia distribution	Alias static moments of mass	kg m
${m^2}_{ij}$, I_{ij}	M2(I,J), IN(I,J)	Second moments of mass, i.e. inertia distribution	Alias mass moments of iner- tia	kg m ²
M_{uv}	MA(U,V)	Generalized mass, i. e. gen- eralized inertia tensor of a (rigid) body referred to a body fixed coordinate system	$M_{ij} = M^{0}_{ij}$ $M_{i, 3+j} = M^{1T}_{ij}$ $M_{3+i, j} = M^{1}_{ij}$ $M_{3+i, 3+j} = M^{2}_{ij}$	

Version 2008

ITTC Symbols

ITTC Symbo Version 2008		1 1.2 1.2.	Mechanics in General Solid Body Mechanics 2 Loads	21
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
1.2.2 Loads	5			
1.2.2.1 Exte	rnal Loads			
F _u	F(U)	Force, generalized, load, in body coordinates	$egin{aligned} M^{F}{}_{u}&=M^{M}{}_{u}\ F_{i}&=F^{0}{}_{i}\ F_{3+i}&=F^{1}{}_{i} \end{aligned}$	N
g_u	G(U)	Gravity field strength, ger eralized, in body coordinated	0 0	m/s^2
g_i	G1(I)	Gravity field strength, in body coordinates!		m/s^2
K, M_x , F_1^1 , F_4	K, M(1), F1(1), F(4)	Moment around body axis	5 x	Nm
M , M_y , F^1_2 , F_5	M, M(2), F1(2), F(5)	Moment around body axis	5 <i>y</i>	Nm
	N, M(3), F1(3), F(6)	Moment around body axis	S Z	Nm
X, F_x , F_0^0 , F_1	X, FX, F0(1), F(1)	Force in direction of body axis x	7	Nm
Y, F_y, F_y , F_2^0 , F_2	Y, FY, F0(2), F(2)	Force in direction of body axis y	7	Nm
		Force in direction of body axis z		Nm

generalized, in body co-

Gravity or weight force

in body coordinates!

Load per unit length

Weight per unit length

ordinates!

 G_u

 $G^0 i$, G_i

 G^{1}_{i}

q

w

G(U)

G0(I)

G1(I)

UNQ

WPUL

 $G_u = m_{uv} g_v$ Gravity or weight force, Ν

> $G_i = G^0_{\ i} = m^0_{\ ij} g_j$ $= mg_i$ Ν

 $G_{3+i} = G^1_{\ i} = \varepsilon_{ikj} x_k G^0_{\ j}$ $= m^1_{\ ij} g_j$ Gravity or weight moment Nm in body coordinates!

N/m

 dW/dx_1 N/m

ITTC Symbo	ols	1	Mechanics in General	
Version 2008	3	1.2 1.2.2	Solid Body Mechanics 2 Loads	22
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
1.2.2.2 Sect	ional Loads			
$F^{\mathbf{S}}_{u}$	FS(U)	Force or load acting at a given planar cross-section the body, generalized, in section coordinates!	$F_{i}^{S} = F_{i}^{S0}$ of $F_{3+i}^{S} = F_{i}^{S1} = M_{i}^{B}$	N Nm
$F^{\mathbf{S}}_{i}$	FS(I)	Shearing force	$F^{ m S0}{}_2$, $F^{ m S0}{}_3$	Ν
F^{T}	FT,	Tensioning or normal force	e F_{1}^{S0}	Ν

	FS(1)			
$M^{\mathrm{B}}{}_{i}$	MB(I)	Bending moment	$F^{\mathrm{S1}}{}_2$, $F^{\mathrm{S1}}{}_3$	Nm
M^{T}	MT, MB(1)	Twisting or torsional mo- ment	F^{S1}_{1}	Nm

ITTC Symbols	1	Mechanics in General
-	1.2	Solid Body Mechanics
Version 2008	1.2.3	Rigid Body Motions

Definition or

23

SI-

Symbol Symbol Explanation Unit **Rigid Body Motions** 1.2.3.1 **Motions** P, OMX, Rotational velocity around rad/s p , ω_x , v_{1}^{0}, v_{4} V0(1), V(4) body axis xQ, OMY, Rotational velocity around rad/s q, ω_y , v_{2}^{0}, v_{5} V0(2), V(5) body axis *y* Rotational velocity around r , ω_z , R, OMZ, rad/s v_{3}^{0} , v_{6} V0(3), V(6) body axis z U, VX, Translatory velocity in the u , v_x , m/s v^1 1, v_1 direction of body axis xV1(1), V(1) v , v_y , V, VY, Translatory velocity in the m/s v_{2}^{1}, v_{2} direction of body axis v V1(2), V(2) W, VZ, Translatory velocity in the W, V_z , m/s v^{1}_{3}, v_{3} V1(3), V(3) direction of body axis z Components of generalized $v_i = v_i^1$ v_u **V(U)** m/s velocity or motion relative to $v_{3+i} = v_i^0$ rad/s body axes rad/s² PR Rates of change of compop ġ nents of rotational velocity QR ŕ RR relative to body axes m/s^2 ù UR Rates of change of components of linear velocity rela*v* VR tive to body axes ŵ WR rad/s^2 AA Angular acceleration $d\omega/dt$ α

1.2.3

Computer

Name

ITTC

ITTC Symbols	1	Mechanics in General
	1.2	Solid Body Mechanics
Version 2008	1.2.3	Rigid Body Motions

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

24

1.2.3.2 Attitudes

α	AT ALFA	Angle of attack	The angle of the longitudinal body axis from the projec- tion into the principal plane of symmetry of the velocity of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the <i>y</i> -axis	rad
β	DR BET	Angle of drift or side-slip	The angle to the principal plane of symmetry from the velocity vector of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the <i>z</i> -axis	rad
γ	RO GAMR	Projected angle of roll or heel	The angular displacement about the x_0 axis of the prin- cipal plane of symmetry from the vertical, positive in the positive sense of rotation about the x_0 axis	rad
φ	X(4), RO, PHIR	Angle of roll, heel or list	Positive in the positive sense of rotation about the <i>x</i> -axis	rad
θ	X(5), TR, TETP	Angle of pitch or trim	Positive in the positive sense of rotation about the <i>y</i> -axis	rad
Ψ	X(6), YA, PSIY	Angle of yaw, heading or course	Positive in the positive sense of rotation about the <i>z</i> -axis	rad

ITTC Symbols Version 2008			1 1.3 1.3.1	Mechanics in General Fluid Mechanics Flow Parameters	25
ITTC Symbol	Computer Symbol	Name		Definition or Explanation	SI- Unit
	Mechanics v Parameters				
1.3.1.1 Fh	uid Properties				
С	CS	Velocity of sound		$(E / \rho)^{1/2}$	m/s
Ε	EL	Modulus of elasticity			Ра
w	WD	Weight density		<i>ρg</i> (See 1.1.1)	
κ	СК	Kinematic capillarity		σ / ho	m^3/s^2
μ	VI	Viscosity			kg/ms
v	VK	Kinematic viscosity		μ / ho	m^2/s
ρ	DN, RHO	Mass density			kg/m ³
σ	CA	Capillarity		Surface tension per unit length	kg/s ²

1.3.1.2 Flow parameters

Bu	BN	Boussinesq number	$V / (g R_{\rm H})^{1/2}$	1
Ca	CN	Cauchy number	$V/\left(E/ ho ight)^{1/2}$	1
Fr	FN	Froude number	$V/(gL)^{1/2}$	1
Fr_h	FH	Froude depth number	$V / (g h)^{1/2}$	1
Fr_{∇}	FV	Froude displacement number	$V/(g \nabla^{1/3})^{1/2}$	1
Ма	MN	Mach number	<i>V</i> / <i>c</i>	1
Re	RN	Reynolds number	VL/v	1
St	SN	Strouhal number	fL/V	1
Th	TN	Thoma number, Cavitation number	$(p_A - p_V)/q$	1
We	WN	Weber number	$V^2 L / \kappa$	1

ITTC Symbols	1	Mechanics in General
	1.3	Fluid Mechanics
Version 2008	1.3.1	Flow Parameters

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

26

1.3.1.3 Boundary conditions

k	HK	Roughness height or magni- tude	Roughness height, usually in terms of some average	m
k _s	SK	Sand roughness	Mean diameter of the equivalent sand grains covering a surface,	m
R _H	RH	Hydraulic radius	Area of section divided by wetted perimeter	m

bols	1	Mechanics in General
	1.3	Fluid Mechanics
08	1.3.2	Flow Fields

27

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
1.3.2 Flow	Fields			
1.3.2.1 Vel	locities etc.			
е	ED	Density of total flow energy	$ ho V^2/2+p+ ho g h$	Pa
f_i	FS(I)	Mass specific force	Strength of force fields, usually only gravity field g_i	m/s ²
h	HS	Static pressure head	Δz_0 , z_0 -axis positive vertical up!	m
Н	HT	Total head	e/w = h + p/w + q/w	m
р	PR, ES	Pressure, density of static flow energy		Pa
p_0	PO	Ambient pressure in undis- turbed flow		Pa
<i>q</i>	PD, EK	Dynamic pressure, density of kinetic flow energy,	$ ho V^2/2$	Pa
Q	QF, QFLOW	Rate of flow	Volume passing across a control surface in time unit	m ³ /s
$S_{ m H}$	THL	Total head loss		m
s ^R _{ij}	SR(I,J)	Turbulent or Reynolds stress	$\rho v_i v_j^{CR}$	Pa
S _{ij}	ST(I,J)	Total stress tensor	Density of total diffusive momentum flux due to mo- lecular and turbulent ex- change	Ра
s^{V}_{ij}	SV(I,J)	Viscous stress		Pa
<i>u</i> , <i>v</i> _x , <i>v</i> ₁ <i>v</i> , <i>v</i> _y , <i>v</i> ₂ <i>w</i> , <i>v</i> _z , <i>v</i> ₃	VX, V1 VY, V2 VZ, V3	Velocity component in di- rection of x, y, z axes		m/s
<i>v</i> _i	V(I)	Velocity		m/s
V	VA	Velocity	$V = v_i v_i^{1/2}$	m/s
V_0	V0	Velocity of undisturbed flow	,	m/s
$ au_{w}$	TAUW	Wall shear stress	$\mu \ (\partial U / \partial y)_{y=0}$	Pa

ITTC Sym Version 2008

1 Mechanics in General 1.3 Fluid Mechanics

28

1.3.2 Flow Fields

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

1.3.2.2 Circulation etc.

Γ^{n}	CN	Normalized circulation	$\Gamma / (\pi D V)$ π is frequently omitted	1
Ι	ID	Induction factor	Ratio between velocities induced by helicoidal and by straight line vortices	1
Г	VD	Vortex density	Strength per length or per area of vortex distribution	m/s
Г	CC	Circulation	$\int V ds$ along a closed line	m ² /s
Φ	РО	Potential function		m^2/s
Ψ	SF	Stream function	ψ = const is the equation of a stream surface	m ³ /s

ITTC Symbols	1	Mechanics in General
	1.3	Fluid Mechanics
Version 2008	1.3.3	Lifting Surfaces

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
1.3.3 Lifti	ing Surfaces			
1.3.3.1 Ge	ometry			
A	AP	Projected area	$b c_M$	m^2
b	SP	Wing or foil span		m
$b_{ m F}$	BSPF	Flap span		m
\mathcal{C}_{M}	CHME	Mean chord length	$A \mid b$	m
c_T	CHTP	Tip chord length		m
Cr	CHRT	Root chord length		m
$f_{ m L}$	FML	Camber of lower side (gen- eral)		m
$f_{ m U}$	FMU	Camber of upper side		m
γ	ANSW	Sweep angle		rad
$\delta_{ m s}$	ANSL	Slat deflection angle		rad
δ	DELTT	Thickness ratio of foil sec- tion (general)	<i>t c</i>	1
$\delta_{ m B}$	DELTB	Thickness ratio of trailing edge of struts	$t_{\rm B}$ / $c_{ m S}$	1
$\delta_{ m F}$	DELTF	Camber ratio of mean line (general)	<i>f</i> / <i>c</i>	1
$\delta_{ m FL}$	DLTFL	Angle of flap deflection		rad
$\delta_{ m L}$	DELTL	Camber ratio of lower side of foil	$f_{ m L}$ / c	1
$\delta_{ m S}$	DELTS	Thickness ratio of strut	$t_{\rm S} / c_{\rm S}$	1
$\delta_{ m STH}$	DELTT	Theoretical thickness ratio of section	of $t_{\rm S} / c_{\rm STH}$	1
$\delta_{ m U}$	DELTU	Camber ratio of upper side	$f_{ m U}$ / c	1
λ	ТА	Taper ratio	$c_{\rm t} / c_{\rm r}$	1
Λ	AS	Aspect ratio	b^2 / A	1

ITTC Symbols

Version	2008

ITTC

 $V_{\rm I}$

 V_{T}

Symbol

Mechanics in General 1 1.3 **Fluid Mechanics**

Lifting Surfaces 1.3.3

30

Computer Definition or SI-Name Symbol Explanation Unit 1.3.3.2 Flow angles etc Induced velocity VI m/s VT Resultant velocity of Taking vortex induced vem/s flow approaching a hydrofoil locities into account

		now approaching a nyuroron	i locities into account	
α	AA, ALFA	Angle of attack or incidence	Angle between the direction of undisturbed relative flow and the chord line	rad
$lpha_{ m EFF}$	AAEF, ALFE	Effective angle of attack or incidence	The angle of attack relative to the chord line including the effect of induced veloci- ties	rad
α _G	AAGE, ALFG	Geometric angle of attack or incidence	The angle of attack relative to the chord line neglecting the effect of induced veloci- ties	rad
$lpha_{ m H}$	AAHY, ALFI	Hydrodynamic angle of attack	In relation to the position at zero lift	rad
α _I	AAID, ALFS	Ideal angle of attack	For thin airfoil or hydrofoil, angle of attack for which the streamlines are tangent to the mean line at the leading edge. This condition is usu- ally referred to as "shock- free" entry or "smooth"	rad
$lpha_0$	AAZL, ALF0	Angle of zero lift	Angle of attack or incidence at zero lift	rad

ITTC Symbols

1 Mechanics in General 1.3 Fluid Mechanics

31

1.3.3 Lifting Surfaces

ITTC Computer Name Definition or SI-Symbol Symbol Explanation Unit 1.3.3.3 Forces D_{F} DRF Foil drag Force in the direction of mo-Ν tion of an immersed foil For finite span foil, the com- D_{I} DRIND Induced drag Ν ponent of lift in the direction of motion DRINT Interference drag Due to mutual interaction of Ν $D_{\rm INT}$ the boundary layers of intersecting foil DRSE Section or profile drag at Streamline drag $D_{\rm P}$ Ν zero lift $L_{\rm F}$ LF Lift force on foil $C_L A_{\rm FT} q$ Ν Lift force for angle of attack $C_{L0}A_{FT}q$ L_0 LF0 Ν of zero 1.3.3.4 Sectional coefficients CDSE Section drag coefficient C_D 1 Section induced drag coef- C_{DI} CDSI 1 ficient

C_L	CLSE	Section lift coefficient		1
C_M	CMSE	Section moment coefficient		1
З	EPSLD	Lift-Drag ratio	L/D	1

ITTC Symb Version 200		1 1.3 1.3.4	Mechanics in General Fluid Mechanics Poundary Loyers	32
version 200	0	1.3.4	Boundary Layers	52
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
1.3.4 Bour	ndary Layers			
1.3.4.1 Tw	o-dimensional	Boundary Layers		
$C_{ m f}$	CFL	Skin friction coefficient	$ au$ / ($ ho$ U_e^2 / 2)	1
F	CQF	Entrainment factor	$1 / (U_e dQ / dx)$	1
Н	HBL	Boundary layer shape pa- rameter	δ^{*} / Θ	1
$H_{ m E}$	HQF	Entrainment shape parame- ter	$\left(\delta$ - $\delta^{*} ight)$ / $artheta$	1
р	PR	Static pressure		Pa
Р	РТ	Total pressure		Pa
Q	QF	Entrainment	$\int_{a}^{b} U dy$	m ² /s
Re_{δ^*}	RDELS	Reynolds number based on displacement thickness	$U_{\infty}\delta^*/v$ or $U_e\delta^*/v$	1
$Re_{ heta}$	RTHETA	Reynolds number based on momentum thickness	$U_{\infty} \Theta / v$ or $U_e \Theta / v$	1
U	UFL	Velocity fluctuations in boundary layer		m/s
u ^s	UFLS	Root mean square value of velocity fluctuations		m/s
u^+	UPLUS	Non-dimensional distance from surface	U/u_{τ}	1
$u_{ au}$	UTAU	Shear (friction) velocity	$\left(au \left/ ho ight) ^{1/2}$	m/s
$U_{ m m}$	UMR	Time mean of velocity in boundary layer		m/s
$U_{ m i}$	UIN	Instantaneous velocity		m/s
U_∞	UFS	Free-stream velocity far from the surface		m/s
Ue	UE	Velocity at the edge of the boundary layer at $y=\delta_{995}$		m/s

	ITTC	Symbols
--	------	---------

1 **Mechanics in General** 1.3 Fluid Mechanics

1.3.4 Boundary Layers

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
ΔU	UDEF	Velocity defect in boundary layer	$(U_{e}-U)/u_{\tau}$	1
\mathcal{Y}^+	YPLUS	Non-dimensional distance from the wall	$y u_{\tau} / v$	1
β	BETE	Equilibrium parameter	$\delta^* / \left(\tau_w dp / dx \right)$	1
δ_{995}	DEL	Thickness of a boundary layer at <i>U</i> =0.995 <i>U</i> _e		m
δ^* , δ_1	DELS	Displacement thickness of boundary layer	$\int (U_{e} - U) / U_{e} dy$	m
Κ	Κ	von Karman constant	0.41	1
Λ	PRGR	Pressure gradient parameter	δ_{995} / (v $dU_{\rm e}$ / dx)	1
$ heta^{*}$, δ^{**}	ENTH	Energy thickness	$\int (U/U_{\rm e}) (1 - U^2/U_{\rm e}^2) dy$	m
Θ	THETA	Momentum thickness	$\int (U/U_{\rm e}) (1 - U/U_{\rm e}) dy$	m
$ au_{w}$	TAUW	Local skin friction	$\mu \left(\partial U / \partial y ight)_{y=0}$	Pa

ITTC Syml Version 200		1 1.3 1.3.5	Mechanics in General Fluid Mechanics Cavitation	34
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
1.3.5 Cav	itation			
1.3.5.1 Flo	w parameters			
$a_{\rm s}$	GR	Gas content ratio	$\alpha / \alpha_{\rm S}$	1
α	GC	Gas content	Actual amount of solved and undissolved gas in a liquid	ppm
α _S	GS	Gas content of saturated liquid	Maximum amount of gas solved in a liquid at a given temperature	ppm
σ	CNPC	Cavitation number	$(p_{\mathrm{A}}$ - $p_{C})$ / q	1
σ_{I}	CNPI	Inception cavitation number		1
$\sigma_{ m V}$	CNPV	Vapour cavitation number	$(p_{\mathrm{A}}$ - $p_{\mathrm{V}})$ / q	1
1.3.5.2 Flo	ow fields			
D_{C}	DC	Cavity drag		Ν
<i>l</i> _C	LC	Cavity length	Stream wise dimension of a fully-developed cavitating region	m
p_{A}	PA	Ambient pressure		Pa
$p_{\rm AC}$	РАСО	Collapse pressure	Absolute ambient pressure at which cavities collapse	Ра
p_{AI}	PAIC	Critical pressure	Absolute ambient pressure at which cavitation inception takes place	Ра
<i>р</i> с	РС	Cavity pressure	Pressure within a steady or quasi-steady cavity	Pa
<i>р</i> сі	PCIN	Initial cavity pressure	Pressure, may be negative, i.e. tensile strength, neces- sary to create a cavity	Ра
$p_{ m V}$	PV	Vapour pressure of water	At a given temperature!	Pa
U_{I}	UNIN	Critical velocity	Free stream velocity at which cavitation inception takes place	m/s

Version 2008

1Mechanics1.3Fluid Mech1.3.5Cavitation Mechanics in General **Fluid Mechanics**

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$V_{ m L}$	VOLS	Volume loss	$W_{ m L}$ / w	m ³
W _L	WTLS	Weight loss	Weight of material eroded from a specimen during a specified time	N/s
$\delta_{ m C}$	НС	Cavity height or thickness	Maximum height of a fully- developed cavity, normal to the surface and the stream- wise direction of the cavity	m
1.3.5.3 Pu	mps			
$H_{ m N}$	HTNT	Net useful head of turbo- engines		m
H_{U}	HTUS	Total head upstream of turbo-engines		m
Th, σ	TN	Thoma number	$(H_U - p_V / w) / H_N$	1

ITTC Symbols Version 2008			1 1.4 1.4.1	Mechanics in General Environmental Mechanics Waves	36
ITTC Symbol	Computer Symbol	Name		Definition or Explanation	SI- Unit

1.4 Environmental Mechanics

1.4.1 Waves

This section is related to Sections 3.1.2 Time and Frequency Domain Quantities and 3.1.3 Random Quantities and Stochastic Processes.

1.4.1.1 **Periodic waves**

\mathcal{C}_{W}	VP	Wave phase velocity or ce- lerity	$L_{\rm W}/T_{\rm W}$	m/s
$c_{\mathrm{W}i}$	VP(I)	Wave phase velocity of har- monic components of a peri- odic wave	$const = c_W$ for periodic waves	m/s
$c_{ m G}$	VG	Wave group velocity or ce- lerity		m/s
fw	FW	Basic wave frequency	$1 / T_{ m W}$	Hz
f _{Wi}	FW(I)	Frequencies of harmonic components of a periodic wave	$i f_{ m W}$	Hz
$H_{ m W}$	HW	Wave height	$\eta_{ m C}$ - $\eta_{ m T}$	m
k, к	WN	Wave number	$2 \pi / L_{\rm W} = \omega^2 / g$	1/m
$L_{ m W}$, $\lambda_{ m W}$	LW	Wave length	Measured in the direction of wave propagation	m
$T_{ m W}$	TW	Basic wave period	$1 / f_{ m W}$	S
α	WD	Wave direction		rad
η	EW	Instantaneous wave elevation at a given location	z-axis positive vertical up, zero at mean water level;	m
$\eta^{lpha}{}_i$	EWAM(I)	Amplitudes of harmonic components of a periodic wave	$\eta^{ ext{FSa}}$	m
$\eta^{\mathrm{p}}{}_{i}$, $arepsilon_{i}$	EWPH(I)	Phases of harmonic compo- nents of a periodic wave	$\eta^{ ext{FSp}}$	rad
$\eta_{ m C}$	EC	Wave crest elevation		m
$\eta_{ m T}$	ET	Wave trough depression	Negative values!	m

ITTC Syr	nbols
----------	-------

Version 2008

1 **Mechanics in General**

1.4 **Environmental Mechanics** 1.4.1 Waves

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
ζ	DW	Instantaneous wave depres- sion	<i>z</i> -axis positive vertical down, zero at mean water level	m
ζΑ	WAMP	Wave amplitude	Radius of orbital motion of a surface wave particle	m
$\omega_{ m W}$, σ	FC	Circular wave frequency	$2 \pi f_{\rm W} = 2 \pi / T_{\rm W}$	rad/s
1.4.1.2 Iri	regular waves			
$H_{\rm d}$	HD	Wave height by zero down- crossing		m
H_{u}	HU	Wave height by zero up- crossing		m
$H_{ m W1/3}$	H13D	Significant wave height	Average of the highest one third zero down-crossing wave heights	m
T _d	TD	Wave periods by zero down- crossing		S
T _u	TU	Wave periods by zero up- crossing		S
$\eta_{\rm C}$	EC	Maximum of elevations of wave crests in a record		m
η_T	ET	Elevations of wave troughs in a record	Negative values!	m
$\lambda_{ m d}$	LD	Wave length by zero down- crossing		m
$\lambda_{ m u}$	LU	Wave length by zero up- crossing		m
1.4.1.3 Ti	me Domain An	alysis		
$H_{ m WV}$	HWV	Wave height estimated from visual observation		m
Hun	H13D	Zero down crossing signifi	Average of the highest one	m

visual of	servation		
	vn-crossing signifi- e height	Average of the highest one third zero down-crossing wave heights	m

Version 2008

1 Mechanics in General

1.4 Environmental Mechanics1.4.1 Waves

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$H_{1/3\mathrm{u}}$	H13U	Zero up-crossing significant wave height	Average of the highest one third zero up-crossing wave heights	m
H_{σ}	HWDS	Estimate of significant wave height from sample devia- tion of wave elevation re- cord		m
$L_{ m WV}$	LWV	Wave length estimated by visual observation	Measured in the direction of wave propagation	m
T _{rt}	TRT	Return period	The average interval in years between times that a given design wave is exceeded	
$T_{\rm R}$	TR	Duration of record	$1/f_{\rm R}$	S
Ts	TS	Sample interval	$1 / f_{\rm S}$, time between two successive samples	S
$T_{ m WV}$	TWV	Wave period estimated from visual observation		S
1.4.1.4 Fr	equency Doma	in Analysis		
b	В	Bandwidth of spectral reso- lution	Sampling frequency divided by the number of transform points	Hz
Cr	CRA	Average reflection coefficient		1

		cient		
$C_{\rm r}(f)$	CRF	Reflection coefficient ampli tude function	-	1
$f_{ m P}$	FRPK	Spectral peak in frequency	Frequency at which the spectrum has its maximum	Hz
$f_{\rm R}$	FRRC	Frequency resolution	$1 / T_{\rm R}$	Hz
$f_{\rm S}$	FRSA	Sample frequency	1 / T _S	Hz
H_{mo}	НМО	Significant wave height based on zeroth moment for narrow banded spectrum	$4 (m_0)^{1/2}$	m

ITTC Symbols	
---------------------	--

Version	2008
v er ston	-000

1 Mechanics in General

1.4 Environmental Mechanics

1.4.1 Waves

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
H_{σ}	HWDS	Estimate of significant wave height from sample devia- tion of wave elevation re- cord		m
m_n	MN	n-th moment of wave power spectral density	$\int f^n S(f) df$	m^2/s^n
$S_i(f), S_i(\omega)$	EISF, EISC	Incident wave power spec- tral density		m ² /Hz
$S_r(f),$ $S_r(\omega)$	ERSF, ERSC	Reflected wave power spec- tral density		m ² /Hz
$S_{\eta}(f), S_{\eta}(\omega)$	EWSF, EWSC	Wave power spectral density		m ² /Hz
T_P	ТР	Period with maximum en- ergy	$2\pi f_{\rm P}$	S
T_{01}	T1	Average period from zeroth and first moment	m_0/m_1	S
T_{02}	T2	Average period from zeroth and second moment	$(m_0/m_2)^{1/2}$	S

1.4.1.5 **Directional Waves**

$D_{\mathrm{X}}(f, heta),\ D_{\mathrm{X}}(\omega,\mu),\ \sigma_{ heta}$	DIRSF SIGMAOX	Directional spreading func- tion	$S(f,\theta)=S(f)D_{X}(f,\theta) \text{ where}$ $\int_{0}^{2\pi} D_{X}(f,\theta)d\theta = 1$	rad
f	FR	Frequency	$2\pi\omega=1/T$	Hz
$S_{\zeta}(\omega,\mu)$ $S_{ heta}(\omega,\mu)$ etc.	S2ZET S2TET etc.	Two dimensional spectral density		1
$S_{ ho}(f, heta) \ S_{\zeta}(\omega,\mu)$	STHETA	Directional spectral density		m²/Hz/ rad
θ, μ	CWD	Component wave direction		rad
$ heta_{ m m}$	MWD THETAMOX	Mean or dominant wave direction		rad

ITTC Symbols

X 7 •	2000
Version	2008

1 Mechanics in General 1.4 Environmental Mechanics

1.4	Environmental Mechanics	
1.4.2	Wind	40

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
1.4.2 Wind				
1.4.2.1 Basi	c Quantities			
C_{10}	C10M	Surface drag coefficient	$(0.08 + 0.065 U_{10}) 10^{-3}$	
F	FETCH	Fetch length	Distance over water the wind blows	m
t _d	DURATN	Wind duration		S
T _{rt}	TRT	Return period	The average interval in years between times that a given wind speed is ex- ceeded	
u_z , u_{zi}	UFLUCT	Turbulent wind fluctua- tions		m/s
<i>U</i> _{<i>A</i>} , <i>u</i> *	USHEAR	Wind shear velocity	$C_{10}^{1/2} U_{10}$ or $0.71 U_{10}^{1.23}$	m/s
U_{10}	U10M	Reference mean wind speed at elevation 10 me- ters above sea surface	$U_{10} = (10/z)^{1/7} U_z^A$	m/s
$U_z^{ m A}$	UZA	Average wind speed at elevation <i>z</i> above the sea surface	$(U_z + u_{zi})^A$ $U_z^A = (z/10)^{1/7} U_{10} \text{ or}$ $U_z^A = U_{10} + U_A \ln(z/10)$	m/s
$V_{ m WR}$	VWREL	Apparent wind velocity	see section 1.4.1	m/s
$V_{ m WT}$	VWABS	True wind velocity	see section 1.4.1	m/s
$X_{ m F}$	FDIM	Dimensionless Fetch	gF/U_{10}^{2}	
Ζ	ZSURF	Height above the sea sur- face in meters		m
$eta_{ m WA}$	BETWA	Apparent wind angle (rela- tive to vessel course)	see section 2.6	rad
$eta_{ ext{WT}}$	BETWT	True wind angle (relative to vessel course)	see section 2.6	rad
$ heta_{ m W}$	TETWI	Wind direction		rad

ITTC Symbols

V	ersion	2008

1 **Mechanics in General** 1.4 **Environmental Mechanics** 1.4.3

Ice Mechanics

ITTC Name Definition or SI-Computer Symbol Symbol Explanation Unit **Ice Mechanics** 1.4.3 1.4.3.1 **Basic Quantities** MEI $E_{\rm I}$ Modulus of elasticity of ice Pa $S_{\rm I}$ SAIC Salinity of ice Weight of salt per unit 1 weight of ice Salinity of water Weight of dissolved salt per 1 $S_{\rm W}$ **SAWA** unit weight of saline water Temperature of air TEAI °C t_A TEIC Local temperature of ice °C tı Temperature of water TEWA °C $t_{\rm W}$ Deflection of ice sheet δ_{I} ELIC Vertical elevation of ice surm face STIC Ice strain Elongation per unit length 1 \mathcal{E}_{I} STRTIC Ice strain rate 1/s∂ε / ∂τ έı Poisson's ratio of ice POIIC 1 $\mu_{\rm I}$ POAI Relative volume of air Volume of gas pores per unit 1 $v_{\rm A}$ volume of ice POBR Relative volume of brine Volume of liquid phase per 1 $v_{\rm B}$ unit volume of ice POIC Total porosity of ice 1 v_0 $v_0 = v_A + v_B$ kg/m³ Mass density of ice Mass of ice per unit volume DNIC $\rho_{\rm I}$ Mass density of snow Mass of snow per unit volkg/m³ DNSN $\rho_{\rm SN}$ ume kg/m³ **DNWA** Mass density of water $\rho_{\rm W}$ kg/m³ DNWI Density difference $\rho_{\Delta} = \rho_W - \rho_I$ ρ_{Δ} SCIC Compressive strength of ice Pa $\sigma_{
m CI}$ **SFIC** Flexural strength of ice Pa $\sigma_{
m FI}$ SNIC Tensile strength of ice Pa $\sigma_{
m TI}$ Shear strength of ice STIC Pa $au_{
m SI}$

ITTC Symbols Version 2008		2	Ships in General		
		2.1	Basic Quantities	42	
ITTC Symbol	Computer Symbol	Name		Definition or Explanation	SI- Unit

2. SHIPS IN GENERAL

2.1 Basic Quantities

<i>a</i> , <i>a</i> ¹	AC, A1	Linear or translatory acceleration	dv / dt	m/s ²
A	A, AR, AREA	Area in general		m ²
В	B, BR	Breadth		m
C, F_2^F	FF(2)	Cross force	Force normal to lift and drag (forces)	Ν
Сс	CC	Cross force coefficient	$C_{\rm C} = \frac{C}{qA}$	1
D, F_1^F	FF(1)	Resistance, Drag (force)	Force opposing translatory ve- locity, generally for a com- pletely immersed body	Ν
d, D	D, DI	Diameter		m
Ε	E, EN	Energy		J
f	FR	Frequency	1 / <i>T</i>	Hz
F, F^0	F, F0	Force		Ν
g	G, GR	Acceleration of gravity	Weight force / mass, strength of the earth gravity field	m/s ²
h	DE	Depth		m
Н	H, HT	Height		m
Ι	I, IN	Moment of inertia	Second order moment of a mass distribution	kg m ²
L	L, LE	Length		m
L, F^F_3	FF(3)	Lift (force)	Force perpendicular to transla- tory velocity	Ν
т	M, MA, MASS	Mass		kg
M, F ¹	M1, F1	Moment of forces	First order moment of a force distribution	Nm

l
l

X 7	•	2000
v	ersion	2008
•		-000

2.1 Basic Quantities

n, N FR, NFrequency or rate of revolu tionAlias RPS (RPM in some propulsor applications)Hz P P, POPowerW r, R RDRadiusm R, F^{f_1} R, RE, FF(1)Resistance (force)Force opposing translatory velocity s SPDistance along pathforce opposing translatory velocityN t TITimest t TETemperatureK T TCPeriodDuration of a cycle of a repeating or periodic, not necessarily harmonic processm/s U U, UNUndisturbed velocity of a fluidm/sm/s V, V^1 Linear or translatory velocity of a of a bodyM/ $dV = \rho g$ N/ m^2 V VOVolumem² W WDWeight density, formerly acting on a bodyMass density of a substance divided by mass density of dis- called specific gravityMass density of a substance divided by mass density of dis- called specific gravityMass density of a substance divided by mass density of dis- called specific gravityMass density of dis- divided by mass density of dis- divided by cor reponding model dimensionPa μ EF, ETAEfficiencyRatio of powersPa μ SCScale ratioShip dimension divided by cor reponding model dimensionPa μ SuperityCircular frequency $2\pi f$ π	ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
P P, POPowerW r, R RDRadiusm R, F^r_1 R, RE, FF(1)Resistance (force)Force opposing translatory ve-locityN s SPDistance along pathm t TITimes t TETemperatureK T TCPeriodDuration of a cycle of a repeat-ing or periodic, not necessarily harmonic processs U U, UNUndisturbed velocity of a fluidm/s v, V^i V, V1Linear or translatory velocity ds / dt m/s V VOVolumem² W WDWeight density, formerly specific weight $dW/dV = \rho g$ N/m² γ MRRelative mass or weight, in English speaking countries called specific gravitydivide by mass density of dis- tilled water at 4°Cf γ ST, TAUTangential stress dm / dV kg/m² ϕ SN, SIGSNormal stressShip dimension divided by cor- responding model dimensionf ϕ FC, OMFCircular frequency $2 \pi f$ f	М	МО	Momentum		Ns
r, RRDRadiusmR, F^{r}_{1} R, RE, FF(1)Resistance (force)Force opposing translatory velocityNsSPDistance along pathmtTITimemtTETemperatureKTTCPeriodDuration of a cycle of a repeating or periodic, not necessarily harmonic processsUU, UNUndisturbed velocity of a fluidm/sv, V^{1} V, V1Linear or translatory velocity ds / dt m/swWDVolumem ³ wWDWeight density, formerly specific weight $dW/dV = \rho g$ N/m ³ γ MRRelative mass or weight, in earling on a bodyMass density of a substance fluid specific gravity force called specific gravityRatio of powers ρ DN, RHOMass density dm / dV kg/m^2 ρ SCScale ratioShip dimension divided by corres responding model dimensionT σ SN, SIGSNormal stress $pa fluid frequency2 \pi f1/s$	n, N	FR, N	1 5	· · ·	Hz
R, $F_1^{F_1}$ R, RE, FF(1)Resistance (force)Force opposing translatory velocityNsSPDistance along pathmtTITimestTETemperatureKTTCPeriodDuration of a cycle of a repeating or periodic, not necessarily harmonic processsUU, UNUndisturbed velocity of a fluidm/sv, V^1 V, V1Linear or translatory velocity ds / dt m/sVVOVolumem³wWDWeight density, formerly specific weight $dW/dV = \rho g$ N/m³ W WTWeight (force), gravity force acting on a bodyMass density of a substance divided by mass density of discaled specific gravitym/s ρ DN, RHOMass density dm / dV kg/m³ λ SCScale ratioShip dimension divided by corres or seponding model dimensionPa α FC, OMFCircular frequency $2 \pi f$ 1/s	Р	P, PO	Power		W
locitysSPDistance along pathmtTITimestTETemperatureKTTCPeriodDuration of a cycle of a repeating or periodic, not necessarily harmonic processm/sUU, UNUndisturbed velocity of a fluidm/sm/sVV, V1Linear or translatory velocity ds / dt m/sVVOVolumem/sWWDWeight density, formerly specific weight $dW/dV = \rho g$ N/m ³ VWTRelative mass or weight, in English speaking countries called specific gravityMass density of a substance divided by mass density of a substance fluided specific gravityMass density of a substance fluided specific gravity dm / dV kg/m ³ ρ DN, RHOMass density dm / dV kg/m ³ λ SCScale ratioShip dimension divided by correstorPa ω SN, SIGSNormal stressStrip dimension divided by correstorPa ω SN, SIGSNormal stressStrip dimension divided by correstorPa ω FC, OMFCircular frequency $2 \pi f$ $f = 0$	r, R	RD	Radius		m
tTITimesttTETemperatureKTTCPeriodDuration of a cycle of a repeating or periodic, not necessarily harmonic processstUU, UNUndisturbed velocity of a fluidm/stv, V^4 V, V1Linear or translatory velocity ds / dt m/stVVOVolumem/stWWDWeight density, formerly specific weight $dW/dV = \rho g$ N/m3WWTWeight (force), gravity force 	R, F^{F_1}	R, RE, FF(1)	Resistance (force)		Ν
tTETemperatureKTTCPeriodDuration of a cycle of a repeating or periodic, not necessarily harmonic processSUU, UNUndisturbed velocity of a fluidm/sv, V^1 V, V1Linear or translatory velocity ds / dt m/sVVOVolumem/sWWDWeight density, formerly specific weight $dW/dV = \rho g$ N/m²WWTWeight (force), gravity force acting on a bodyN/m²N <m²< td="">γMRRelative mass or weight, in English speaking countries called specific gravityMass density of a substance divided by mass density of dis- tilled water at 4°CNρDN, RHOMass densitydm / dVkg/m²λSCScale ratioShip dimension divided by cor- responding model dimensionNσSN, SIGSNormal stressPaωFC, OMFCircular frequency$2 \pi f$1/s</m²<>	S	SP	Distance along path		m
TTCPeriodDuration of a cycle of a repeating or periodic, not necessarily harmonic processstanding or periodic, not necessarily harmonic processUU, UNUndisturbed velocity of a fluidm/sv, V^4 V, V1Linear or translatory velocity ds / dt m/sv, V^4 V, V1Linear or translatory velocity ds / dt m/sVVOVolumem³wWDWeight density, formerly specific weight $dW/dV = \rho g$ N/m³WWTWeight (force), gravity force acting on a bodyMass density of a substance divided by mass density of discalled specific gravityMass density of a substance divided by mass density of discalled specific gravityMass density of a substance divided by mass density of discalled specific gravityMass density of a substance divided by mass density of discalled specific gravityMass density of a substance divided by mass density of discalled specific gravityMass density of a substance divided by mass density of discalled specific gravityMass density of a substance divided by mass density of discalled specific gravityMass density of a substance divided by mass density of discalled specific gravityMass density of a substance divided by mass density of discalled specific gravityMass density of a substance divided by mass density of discalled specific gravityMass density of a substance divided by core frequencyMass densityMass density of a substance divided by core frequencyMass densityMass density of a substance divided by core frequencyMass densityMass density of a substance divided by core frequencyMass densityMass densityMass densityMass densityMass	t	TI	Time		S
UU, UNUndisturbed velocity of a fluidm/s V, V^1 U, UNUndisturbed velocity of a fluidm/s v, V^1 V, V1Linear or translatory velocity ds / dt m/s V V0Volumem³ W WDWeight density, formerly specific weight $dW/dV = \rho g$ N/m³ W WTWeight (force), gravity force acting on a bodyNN γ MRRelative mass or weight, in English speaking countries called specific gravityMass density of a substance divided by mass density of dis- tilled water at 4°CN η EF, ETAEfficiencyRatio of powersP ρ DN, RHOMass density dm / dV kg/m³ x SCScale ratioShip dimension divided by cor- responding model dimensionPa ω FC, OMFCircular frequency $2 \pi f$ 1/s	t	TE	Temperature		Κ
fluid v, V^1 V, V1Linear or translatory velocity ds / dt m/s V VOVolumem3 w WDWeight density, formerly specific weight $dW / dV = \rho g$ N/m3 W WTWeight (force), gravity force acting on a bodyN γ MRRelative mass or weight, in English speaking countries called specific gravityMass density of a substance divided by mass density of dis- tilled water at 4°CN η EF, ETAEfficiencyRatio of powersPa ρ DN, RHOMass density dm / dV kg/m3 χ SCScale ratioShip dimension divided by cor- responding model dimensionPa< ω FC, OMFCircular frequency $2 \pi f$ 1/s	Т	TC	Period	ing or periodic, not necessarily	S
V VOVolume m^3 w WDWeight density, formerly specific weight $dW/dV = \rho g$ M/d^3 N/m^3 W WDWeight (force), gravity force acting on a body M M γ MRRelative mass or weight, in English speaking countries called specific gravityMass density of a substance divided by mass density of dis- tilled water at 4°C M η EF, ETAEfficiencyRatio of powers M ρ DN, RHOMass density dm/dV kg/m^3 τ ST, TAUTangential stressPa λ SCScale ratioShip dimension divided by cor- responding model dimensionPa ω FC, OMFCircular frequency $2 \pi f$ $1 d$	U	U, UN	-		m/s
wWDWeight density, formerly specific weight $dW/dV = \rho g$ N/m2WWTWeight (force), gravity force acting on a bodyN γ MRRelative mass or weight, in English speaking countries called specific gravityMass density of a substance divided by mass density of dis- tilled water at 4°C1 η EF, ETAEfficiencyRatio of powers ρ DN, RHOMass density dm/dV kg/m2 τ ST, TAUTangential stressPa λ SCScale ratioShip dimension divided by cor- responding model dimensionPa σ SN, SIGSNormal stressPa ω FC, OMFCircular frequency $2 \pi f$ 1/s	<i>v</i> , <i>V</i> ¹	V, V1		ds / dt	m/s
WWTWeight (force), gravity force acting on a bodyMass density of a substance divided by mass density of dis- tilled water at 4°CN γ MRRelative mass or weight, in English speaking countries called specific gravityMass density of a substance divided by mass density of dis- tilled water at 4°C1 η EF, ETAEfficiencyRatio of powers ρ DN, RHOMass density dm / dV kg/m ³ τ ST, TAUTangential stressPa λ SCScale ratioShip dimension divided by cor- responding model dimension1 σ SN, SIGSNormal stressPa ω FC, OMFCircular frequency $2 \pi f$ 1/s	V	VO	Volume		m^3
γ MRRelative mass or weight, in English speaking countries called specific gravityMass density of a substance divided by mass density of dis- tilled water at 4°C1 η EF, ETAEfficiencyRatio of powers ρ DN, RHOMass density dm / dV kg/m ³ τ ST, TAUTangential stressPa λ SCScale ratioShip dimension divided by cor- responding model dimensionPa σ SN, SIGSNormal stressPa ω FC, OMFCircular frequency $2 \pi f$ 1/s	W	WD		$dW/dV = \rho g$	N/m ³
English speaking countries called specific gravitydivided by mass density of dis- tilled water at 4°C η EF, ETAEfficiencyRatio of powers ρ DN, RHOMass density dm / dV kg/m ³ τ ST, TAUTangential stressPa λ SCScale ratioShip dimension divided by cor- responding model dimension1 σ SN, SIGSNormal stressPa ω FC, OMFCircular frequency $2 \pi f$ 1/s	W	WT			N
ρ DN, RHOMass density dm/dV kg/m ³ τ ST, TAUTangential stressPa λ SCScale ratioShip dimension divided by corresponding model dimensionPa σ SN, SIGSNormal stressPa ω FC, OMFCircular frequency $2 \pi f$ 1/s	γ	MR	English speaking countries	divided by mass density of dis-	1
τ ST, TAUTangential stressPa λ SCScale ratioShip dimension divided by corresponding model dimension1 σ SN, SIGSNormal stressPa ω FC, OMFCircular frequency $2 \pi f$ 1/s	η	EF, ETA	Efficiency	Ratio of powers	
λ SCScale ratioShip dimension divided by corresponding model dimension1 σ SN, SIGSNormal stressPa ω FC, OMFCircular frequency $2 \pi f$ 1/s	ρ	DN, RHO	Mass density	dm / dV	kg/m ³
σ SN, SIGSNormal stressPa ω FC, OMFCircular frequency $2 \pi f$ 1/s	τ	ST, TAU	Tangential stress		Pa
$ω$ FC, OMF Circular frequency $2 \pi f$ 1/s	λ	SC	Scale ratio		1
	σ	SN, SIGS	Normal stress		Pa
ω, V^0 V0, OMN Rotational velocity $2 \pi n$ rad/s	ω	FC, OMF	Circular frequency	$2 \pi f$	1/s
	ω, V ⁰	V0, OMN	Rotational velocity	$2 \pi n$	rad/s

ITTC Symbo	ols
------------	-----

Version 2008

Ships in General
 Geometry and Hydrostatics
 Hull Geometry

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

2.2 Geometry and Hydrostatics

2.2.1 Hull Geometry

2.2.1.1 Basic Quantities

$A_{ m BL}$	ABL	Area of bulbous bow in lon- gitudinal plane	The area of the ram pro- jected on the middle line plane forward of the fore perpendicular	m ²
$A_{\rm BT}$	ABT	Area of transverse cross- section of a bulbous bow (full area port and star- board)	The cross sectional area at the fore perpendicular. Where the water lines are rounded so as to terminate on the forward perpendicular A_{BT} is measured by continu- ing the area curve forward to the perpendicular, ignoring the final rounding.	m ²
A_{M}	AM	Area of midship section	Midway between fore and aft perpendiculars	m ²
A_{T}	ATR	Area of transom (full area port and starboard)	Cross-sectional area of tran- som stern below the load waterline	m ²
$A_{ m V}$	AV	Area exposed to wind	Area of portion of ship above waterline projected normally to the direction of relative wind	m ²
$A_{ m W}$	AW	Area of water-plane		m^2
$A_{ m WA}$	AWA	Area of water-plane aft of midship		m ²
$A_{ m WF}$	AWF	Area of water-plane forward of midship		m ²
A_{X}	AX	Area of maximum transverse section	;	m ²
В	В	Beam or breadth, moulded, of ships hull		m

Version 2008

Ships in General Geometry and Hydrostatics Hull Geometry

2 2.2 2.2.1

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
B _M	BM	Breadth, moulded of mid- ship section at design water line		m
B_{T}	BTR	Breadth, moulded of tran- som at design water line		m
$B_{ m WL}$	BWL	Maximum moulded breadth at design water line		m
$B_{\rm X}$	BX	Breadth, moulded of maxi- mum section area at design water line		m
<i>d</i> , <i>T</i>	Т	Draught, moulded, of ship hull		m
d_{KL}	KDROP	Design drop of the keel line	T_{AD} - T_{FD} alias "keel drag" or "slope of keel"	m
D	DEP	Depth, moulded, of a ship hull		m
f	FREB	Freeboard	From the freeboard markings to the freeboard deck, ac- cording to official rules	m
$i_{ m E}$	ANEN	Angle of entrance, half	Angle of waterline at the bow with reference to centre plane, neglecting local shape at stem	rad
i _R	ANRU	Angle of run, half	Angle of waterline at the stern with reference to the centre-plane, neglecting lo- cal shape of stern frame	rad
L	L	Length of ship	Reference length of ship (generally length between the perpendiculars)	m
$L_{ m E}$	LEN	Length of entrance	From the forward perpen- dicular to the forward end of parallel middle body, or maximum section	m
L _{OA}	LOA	Length, overall		m
$L_{\rm OS}$	LOS	Length, overall submerged		m

Version 2008

Ships in General Geometry and Hydrostatics Hull Geometry

2 2.2 2.2.1

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
L _P	LP	Length of parallel middle body	Length of constant trans- verse section	m
$L_{\rm PP}$	LPP	Length between perpendicu- lars		m
$L_{ m R}$	LRU	Length of run	From section of maximum area or after end of parallel middle body to waterline termination or other desig- nated point of the stern	m
$L_{ m WL}$	LWL	Length of waterline		m
$L_{ m FS}$	LFS	Frame spacing	used for structures	m
$L_{\rm SS}$	LSS	Station spacing		m
S	S, AWS	Area of wetted surface		m^2
t	TT	Taylor tangent of the area curve	The intercept of the tangent to the sectional area curve at the bow on the midship or- dinate	1
<i>T</i> , <i>d</i>	Т	Draught, moulded, of ship hull		m
$T_{\mathrm{A}}, d_{\mathrm{A}}$	TA, TAP	Draught at aft perpendicular		m
$T_{\rm AD}$	TAD, TAPD	Design draught at aft per- pendicular		m
$T_{ m F}$, $d_{ m F}$	TF, TFP	Draught at forward perpen- dicular		m
$T_{\rm FD}$	TFD, TFPD	Design draught at forward perpendicular		m
T_H	THUL	Draught of the hull	Maximum draught of the hull without keel or skeg	m
$T_{ m M}$, $d_{ m M}$	TM, TMS	Draught at midship	$(T_A + T_F) / 2$ for rigid bodies with straight keel	m
$T_{\rm MD}$	TMD, TMSD	Design draught at midship	$(T_{AD} + T_{FD}) / 2$ for rigid bodies	m
T_{T}	TTR	Immersion of transom	Vertical depth of trailing edge of boat at keel below water surface level	m
V , V	DISPVOL	Displacement volume	$\Delta / (\rho g) = V_{\rm BH} + V_{\rm AP}$	m ³

Version 2008

Ships in General
 Geometry and Hydrostatics
 Hull Geometry

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$V_{ m BH}$	DISPVBH	Displacement volume of bare hull	$\Delta_{ m BH}/\left(ho~g ight)$	m ³
$V_{ m APP}$	DISPVAP	Displacement volume of appendages	$\Delta_{\rm AP}$ / ($ ho$ g)	m ³
Δ	DISPF	Displacement force (buoy- ancy)	$g ho \nabla$	Ν
$\varDelta_{ m BH}$	DISPFBH	Displacement force (buoy- ancy) of bare hull	$g ho abla_{ m BH}$	Ν
\varDelta_{APP}	DISPFAP	Displacement force (buoy- ancy) of appendages	$g \rho \nabla_{AP}$	Ν
Δ_m	DISPM	Displacement mass	ho abla	kg
λ	SC	Linear scale of ship model	$\lambda = L_{\rm S} / L_{\rm M} = B_{\rm S} / B_{\rm M}$ $= T_{\rm S} / T_{\rm M}$	1

2.2.1.2 Derived Quantities

B _C	CIRCB	R.E. Froude's breadth coef- ficient	$B / V_{1/3}$	1
C_{B}	CB	Block coefficient	V/(L B T)	1
$C_{I\!L}$	CWIL	Coefficient of inertia of wa- ter plane, longitudinal	$12 I_{\rm L} / (B L^3)$	1
C_{IT}	CWIT	Coefficient of inertia of wa- ter plane, transverse	$12 I_{\rm T} / (B^3 L)$	1
C _M	CMS	Midship section coefficient (midway between forward and aft perpendiculars)	$A_{\rm M}/(B~T)$	1
C_{P}	CPL	Longitudinal prismatic coef- ficient	$\nabla / (A_{\rm X} L)$ or $\nabla / (A_{\rm M} L)$	1
C_{PA}	СРА	Prismatic coefficient, after body	$ abla_{\rm A}/(A_X L/2)$ or $ abla_{\rm A}/(A_{\rm M} L/2)$	1
C_{PE}	CPE	Prismatic coefficient, en- trance	$ abla_{ m E} / (A_{ m X} L_{ m E}) ext{ or } $ $ abla_{ m E} / (A_{ m M} L_{ m E}) $	1
C_{PF}	CPF	Prismatic coefficient fore body	$ \nabla_{\rm F} / (A_{\rm X} L / 2) \text{ or} $ $ \nabla_{\rm F} / (A_{\rm M} L / 2) $	1

Ships in General Geometry and Hydrostatics Hull Geometry

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
C_{PR}	CPR	Prismatic coefficient, run	$ \nabla_{ m R} / (A_{ m X} L_{ m R}) $ or $ \nabla_{ m R} / (A_{ m M} L_{ m R})$	1
C_S	CS	Wetted surface coefficient	$S / (VL)^{1/2}$	1
C_{VP}	CVP	Prismatic coefficient vertical	$\nabla / (A_{\rm W} T)$	1
$C_{ m WA}$	CWA	Water plane area coefficient, aft	<i>A</i> _{WA} / (<i>B L</i> / 2)	1
$C_{ m WF}$	CWF	Water plane area coefficient, forward	<i>A</i> _{WF} /(<i>B L</i> / 2)	1
$C_{ m WP}$	CW	Water plane area coefficient	$A_{\rm W}$ /(L B)	1
$C_{\rm X}$	СХ	Maximum transverse section coefficient	$A_X / (B T)$, where B and T are measured at the position of maximum area	1
C_{∇}	CVOL	Volumetric coefficient	∇/L^3	1
$f_{ m BL}$	CABL	Area coefficient for bulbous bow	$A_{\rm BL}/(LT)$	1
$f_{ m BT}$	CABL	Taylor sectional area coeffi- cient for bulbous bow	$A_{\rm BT}/A_{\rm X}$	1
f_{T}	ATR	Sectional area coefficient for transom stern	$A_{\rm T}$ / $A_{\rm X}$	1
M^{C}	CIRCM	R.E. Froude's length coeffi- cient, or length-displacement ratio		1
S^C	CIRCS	R.E. Froude's wetted surface area coefficient	$S / \nabla^{2/3}$	1
T^C	CIRCT	R.E. Froude's draught coef- ficient	$T \neq \nabla^{1/3}$	1

2.2.1.3 Symbols for Attributes and Subscripts

А	AB	After body
AP	AP	After perpendicular
APP	APP	Appendages
В	BH	Bare hull
	DW	Design waterline

ITTC Symbols

Version 2008

Version 2008

Ships in General
 Geometry and Hydrostatics
 Hull Geometry

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
E	EN	Entry		
F	FB	Fore body		
FP	FP	Fore perpendicular		
	FS	Frame spacing		
Н	HE	Hull		
	LR	Reference Line		
LP	LP	Based on LPP		
LW	LW	Based on LWL		
М	MS	Midships		
	PB	Parallel body		
R	RU	Run		
	SS	Station spacing		
W	WP	Water plane		
S	WS	Wetted surface		

ITTC Sy	mbols
---------	-------

Version 2008

2 Ships in General

2.2 Geometry and Hydrostatics

2.2.2 Propulsor Geometry

ITTC Computer Name Definition or SI-Symbol Explanation Unit Symbol 2.2.2 **Propulsor Geometry** 2.2.2.1 **Screw Propellers** m^2 $A_{\rm D}$ AD Developed blade area Developed blade area of a screw propeller outside the boss or hub m^2 Expanded blade area Expanded blade area of a $A_{\rm E}$ AE screw propeller outside the boss or hub $\pi D^2 / 4$ m^2 Disc Area A_0 AO m^2 Projected blade area of a AP Projected blade area $A_{\rm P}$ screw propeller outside the boss or hub ADR Developed blade area ratio $A_{\rm D}/A_0$ 1 $a_{\rm D}$ ADE Expanded blade area ratio $A_{\rm E}/A_0$ 1 $a_{\rm E}$ ADP Projected blade area ratio $A_{\rm P}/A_0$ 1 $a_{\rm P}$ Chord length LCH С m CHME Mean chord length The expanded or developed m $c_{\rm M}$ area of a propeller blade divided by the span from the hub to the tip CS Skew displacement The displacement between \mathcal{C}_{S} m middle of chord and the blade reference line. Positive when middle chord is at the trailing side regarding the blade reference line DH Boss or hub diameter $2 r_{\rm h}$ $d_{\rm h}$ m D DP Propeller diameter m FBP Camber of a foil section f m Gap between the propeller G_Z GAP $2\pi r \sin(\varphi)/z$ m blades HO Immersion The depth of submergence h_0 m of the propeller measured vertically from the propeller centre to the free surface

Version 2008

Ships in General
 Geometry and Hydrostatics
 Propulsor Geometry

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
H_{TC}	HTC	Hull tip clearance	Distance between the propel- ler sweep circle and the hull	m
i_G , R_k (ISO)	RAKG	Rake	The displacement from the propeller plane to the gen- erator line in the direction of the shaft axis. Aft displace- ment is positive rake.	m
i _S	RAKS	Rake, skew-induced	The axial displacement of a blade section which occurs when the propeller is skewed. Aft displacement is positive rake	m
i _T	RAKT	Rake, total	The axial displacement of the blade reference line from the propeller plane $i_G + i_S = c_S \sin\varphi$ Positive direction is aft.	m
$N_{ m P}$	NPR	Number of propellers		1
р	PDR	Pitch ratio	P/D	1
Р	PITCH	Propeller pitch in general		m
r	LR	Blade section radius		m
$r_{ m h}$	RH	Hub radius		m
R	RDP	Propeller radius		m
t	TM	Blade section thickness		m
<i>t</i> ₀	ТО	Thickness on axis of propel- ler blade	Thickness of propeller blade as extended down to propel- ler axis	m
x _B	XBDR	Boss to diameter ratio	$d_{\rm h}/D$	
Хр	ХР	Longitudinal propeller posi- tion	Distance of propeller centre forward of the after perpen- dicular	m
<i>У</i> Р	YP	Lateral propeller position	Transverse distance of wing propeller centre from middle line	m
<i>Z</i> , <i>z</i>	NPB	Number of propeller blades		1

Version 2008

Ships in General
 Geometry and Hydrostatics
 Propulsor Geometry

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
Zp	ZP	Vertical propeller position	Height of propeller centre above base line	m
$\varepsilon, \psi^{\mathrm{bP}}$	PSIBP	Propeller axis angle meas- ured to body fixed coordi- nates	Angle between reference line and propeller shaft axis	rad
$ heta_{ m s}$	TETS	Skew angle	The angular displacement about the shaft axis of the reference point of any blade section relative to the gen- erator line measured in the plane of rotation. It is posi- tive when opposite to the direction of ahead rotation	rad
heta	RAKA	Angle of rake		rad
$ heta_{ m EXT}$	TEMX	Skew angle extent	The difference between maximum and minimum local skew angle	rad
arphi	PHIP	Pitch angle of screw propel- ler	$\operatorname{arctg}(P/(2 \pi R))$	1
$arphi_{ m F}$	PHIF	Pitch angle of screw propel- ler measured to the face line		1
ψ^{aP}	PSIAP	Propeller axis angle meas- ured to space fixed coordi- nates	Angle between horizontal plane and propeller shaft axis	rad
$ au_{ m B}$		Blade thickness ratio	t_0/D	1

ITTC	Symbols
------	---------

Version 2008

Ships in General Geometry and Hydrostatics Propulsor Geometry

53

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
2.2.2.2 Du	icts			
$A_{\rm DEN}$	ADEN	Duct entry area		m^2
$A_{\rm DEX}$	ADEX	Duct exit area		m^2
d_{D}	CLEARD	Propeller tip clearance	Clearance between propeller tip and inner surface of duct	m
$f_{\rm D}$	FD	Camber of duct profile		m
$L_{\rm D}$	LD	Duct length		m
L _{DEN}	LDEN	Duct entry part length	Axial distance between lead- ing edge of duct and propel- ler plane	m
L _{DEX}	LDEX	Duct exit length	Axial distance between pro- peller plane and trailing edge of duct	m
t _D	TD	Thickness of duct profile		m
$\alpha_{\rm D}$	AD	Duct profile-shaft axis angle	Angle between nose-tail line of duct profile and propeller shaft	rad
$eta_{ m D}$	BD	Diffuser angle of duct	Angle between inner duct tail line and propeller shaft	rad
2.2.2.3 W	aterjets (see als	so section 1.3.5)		
A_n, A_6		Nozzle discharge area		m ²
$A_{\rm s}$		Cross sectional area at station <i>s</i>		m ²
D		Impeller diameter (maxi- mum)		m
D_{n}		Nozzle discharge diameter		m
H_{ij}		Head between station i and j		m
$H_{ m JS}$		Jet System Head		m

by $H_{\rm JS}$ m maximum height of cross sectional area of stream tube h_{1A} at station 1A

2	Ships in General
	-
2.2	Geometry and Hydrostatics

2.2.2 Propulsor Geometry

54

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$K_{_{H}}$		Head coefficient:	$\frac{gH}{n^2D^5}$	1
2224 0-		4 ° C*		

2.2.2.4 **Operators and identifiers**

ITTC Symbols

Version 2008

a	absolute (space) reference	(superscript)
b	body axis reference	(superscript)
Р	propeller shaft axis	(subscript)
D	Duct	(subscript)
-	2	(sussenpt)

ITTC Symbols	2	Ships in General	
	2.2	Geometry and Hydrostatics	
Version 2008	2.2.3	Appendage Geometry	55

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

2.2.3 Appendage Geometry

Related information may be found in Section 3.3.3 on Lifting Surfaces.

2.2.3.1 Basic Quantities

$A_{\rm C}$	AC	Area under cut-up		m ²
$A_{\rm FB}$	AFB	Area of bow fins		m^2
$A_{\rm FR}$	AFR	Frontal area	Projected frontal area of an appendage	m^2
$A_{ m RF}$	AF	Projected flap area		m^2
$A_{ m R}$	ARU	Lateral rudder area	Area of the rudder, including flap	m^2
$A_{\rm RX}$	ARX	Lateral area of the fixed part of rudder		m^2
A_{RP}	ARP	Lateral area of rudder in the propeller race		m^2
$A_{\rm RT}$	ART	Total lateral rudder area	$A_{\rm RX} + A_{\rm Rmov}$	m^2
$A_{\rm FS}$	AFS	Projected area of stern fins		m^2
$A_{\rm SK}$	ASK	Projected skeg area		m^2
$S_{ m WBK}$	SWBK	Wetted surface area of bilge keels		m^2
С	СН	Chord length of foil section		m
c_{M}	CHME	Mean chord length	$A_{\rm RT}/S$	m
c_{R}	CHRT	Chord length at the root		m
c_{T}	CHTP	Chord length at the tip		m
f	FM	Camber of an aerofoil or a hydrofoil	Maximum separation of me- dian and nose-tail line	m
$L_{ m F}$	LF	Length of flap or wedge	Measured in direction paral- lel to keel	m
t	TMX	Maximum thickness of an aerofoil or a hydrofoil	Measured normal to mean line	m
$lpha_{ m FB}$	ANFB	Bow fin angle		rad
$lpha_{ m FS}$	ANFS	Stern fin angle		rad

Version 2008

Ships in General
 Geometry and Hydrostatics
 Appendage Geometry

56

_

ITTC Symbol	Computer Symbol	Name	Definition or Explanation U	
$\delta_{ m F}$	DELFS	Flap angle (general)	Angle between the planing surface of a flap and the bot- tom before the leading edge	
$\delta_{ m W}$	DELWG	Wedge angle	Angle between the planing surface of a wedge and the bottom before the leading edge	rad
$\delta_{ m FR}$	ANFR	Flanking rudder angle	1	
$\delta_{ ext{FRin}}$	ANFRIN	Assembly angle of flanking rudders	g Initial angle set up during the assembly as zero angle of flanking rudders	
$\delta_{ m R}$	ANRU	Rudder angle		rad
$\delta_{ m RF}$	ANRF	Rudder-flap angle		rad
$\lambda_{\rm R}$	TARU	Rudder taper	$c_{\mathrm{T}}/c_{\mathrm{R}}$	1
λ_{FR}	TAFR	Flanking rudder taper		1
$\Lambda_{\rm R}$	ASRU	Rudder aspect ratio	$b_{\rm R}^2 / A_{\rm RT}$	1
$\Lambda_{ m FR}$	ASRF	Flanking rudder aspect ratio		
2.2.3.2	Identifiers for App	endages (Subscripts)		
	BK	Bilge keel		

BK	Bilge keel	
BS	Bossing	
FB	Bow foil	
FR	Flanking rudder	
FS	Stern foil	
KL	Keel	
RU	Rudder	
RF	Rudder flap	
SA	Stabilizer	
SH	Shafting	
SK	Skeg	
ST	Strut	
TH	Thruster	
WG	Wedge	

ITTC Symbols	5
--------------	---

Version	2008

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit	
2.2.4 Hyd	rostatics and S	tability			
· ·		es (Still under construction)			
A		Assumed centre of gravity above keel used for cross curves of stability			
b		Centre of flotation of added buoyant layer or centre of lost buoyancy of the flooded volume			
В		Centre of buoyancy			
F		Centre of flotation of the water plane			
g		Centre of gravity of an added or removed weight (mass)			
G		Centre of gravity of a vessel			
Κ		Keel reference			
Μ		Metacentre of a vessel	See subscripts for qualifica- tion		
$X_{ m CB}$, $L_{ m CB}$	XCB	Longitudinal centre of buoy- ancy (LCB)	Longitudinal distance from reference point to the centre of buoyancy, B	m	
$X_{ m CF}$, $L_{ m CF}$	XCF	Longitudinal centre of flota- tion (LCF)	Longitudinal distance from reference point to the centre of flotation, F	m	
<i>x</i> _{CB}	XACB	-	Longitudinal distance from reference point to the centre of buoyancy of the added buoyant layer, b	m	
X _{CF}	XACF	Longitudinal centre of flota- tion of added buoyant layer	Longitudinal distance from reference point to the centre of flotation of the added buoyant layer, f	m	

ITTC S	ymbols
--------	--------

08	20	ersion	V
08	20	ersion	V

2 2.2

Ships in General Geometry and Hydrostatics Hydrostatics and Stability 2.2.4

58

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
x _{CG}	XACG	Longitudinal centre of grav- ity of added weight (mass)	Longitudinal distance from reference to the centre of gravity, g, of an added or removed weight (mass)	m
$X_{ m CG}$, $L_{ m CG}$	XCG	Longitudinal centre of grav- ity (LCG)	Longitudinal distance from a reference point to the centre of gravity, G	m
Y _{CG}	YCG	Lateral displacement of cen- tre of gravity (YCG)	Lateral distance from a ref- erence point to the centre of gravity, G	m
Ζ	ZRA	Intersection of righting arm with line of action of the centre of buoyancy		
2.2.4.2 Stat	tic Stability lev	vers		
\overline{AB}	XAB	Longitudinal centre of buoy- ancy from aft perpendicular	-	m
\overline{AF}	XAF	Distance of centre of flota- tion from aft perpendicular		m
\overline{AG}_{L}	XAG	Longitudinal centre of grav- ity from aft perpendicular	Distance of centre of gravity from aft perpendicular	m
$\overline{AG}_{\mathrm{T}}$	YAG	Transverse distance from assumed centre of gravity A, to actual centre of gravity G		m
\overline{AG}_{V}	ZAG	Vertical distance from as- sumed centre of gravity A, to actual centre of gravity G		m
\overline{AZ}	YAZ	Righting arm based on hori- zontal distance from as- sumed centre of gravity A, to Z	Generally tabulated in cross curves of stability	m
\overline{BM}	ZBM	Transverse metacentre above	Distance from the centre of	m

centre of buoyancy

 $\overline{BM} = I_T / \nabla = \overline{KM} - \overline{KB}$

buoyancy B to the transverse metacentre M.

Version 2008

2 Ships in General

2.2 Geometry and Hydrostatics

2.2.4 Hydrostatics and Stability

ITTC Name Definition or SI-Computer Symbol Symbol Explanation Unit ZBML Longitudinal metacentre \overline{KM}_{I} - \overline{KB} BM_L above centre of buoyancy XFB Longitudinal centre of buoy- Distance of centre of buoy- \overline{FB} m ancy, L_{CB} , from forward ancy from forward perpenperpendicular dicular XFF Longitudinal centre of floa-Distance of centre of flota- \overline{FF} m tation, $L_{\rm CF}$, from forward tion from forward perpenperpendicular dicular XFG Longitudinal centre of grav- Distance of centre of gravity \overline{FG} m ity from forward perpendicu- from forward perpendicular lar GGH Horizontal stability lever $\overline{G}\overline{G}_{\mathrm{H}}$ m caused by a weight shift or weight addition GGL Longitudinal stability lever \overline{GG}_{L} m caused by a weight shift or weight addition $\overline{GG}_1, \overline{GG}_V$ GG1, GGV Vertical stability lever $\overline{KG}_1 = \overline{KG}_0 + \overline{GG}_1$ m caused by a weight shift or weight addition GM Transverse metacentric Distance of centre of gravity \overline{GM} m to the metacentre height \overline{KM} - \overline{KG} **GMEFF** Effective transverse meta- $\overline{GM}_{\rm EFF}$ \overline{GM} corrected for free surm centric height face and/or free communication effects GML Longitudinal centre of meta- Distance from the centre of $\overline{GM}_{\rm L}$ m gravity G to the longitudinal centric height metacentre M_L $\overline{GM}_{\rm L} = \overline{KM}_{\rm L} - \overline{KG}$ GZ Righting arm or lever $\overline{GZ} = \overline{AZ} - \overline{AG}_V \sin \varphi \overline{GZ}$ m $AG_{\rm T} \cos \varphi$ **GZMAX** Maximum righting arm or \overline{GZ}_{MAX} m lever

Version 2008

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
KA	ZKA	Assumed centre of gravity above moulded base or keel	Distance from the assumed centre of gravity A to the moulded base or keel K	m
KB	ZKB	Centre of buoyancy above moulded base or keel	Distance from the centre of buoyancy B to the moulded base or keel K	m
KG	ZKG	Centre of gravity above moulded base or keel	Distance from centre of gravity G to the moulded base or keel K	m
\overline{Kg}	ZKAG	Vertical centre of gravity of added or removed weight above moulded base or keel	Distance from centre of gravity, g, to the moulded base or keel K	m
KM	ZKM	Transverse metacentre above moulded base or keel	Distance from the transverse metacentre M to the moulded base or keel K	m
\overline{KM}_L	ZKML	Longitudinal metacentre above moulded base or keel	Distance from the longitudi- nal metacentre M_L to the moulded base or keel K	m
1	XTA	Longitudinal trimming arm	$x_{\rm CG}$ - $x_{\rm CB}$	m
t	YHA	Equivalent transverse heel- ing arm	Heeling moment /⊿	m
2.2.4.3 Int	tact and Damag	ge (Flooded) Stability		
C _{MTL}	CMTL	Longitudinal trimming coef- ficient	trimming moment divided by change in trim which approximately equals \overline{BM}_L/L	1
f	FREB	Freeboard	From the freeboard markings to the freeboard deck, ac- cording to official rules	m
$A_{\rm SI}, I_{\rm AS}$	ASI	Attained subdivision index	(to be clarified)	1
$M_{ m S}$	MS	Moment of ship stability in general	$\Delta \overline{GZ}$ Other moments such as those of capsizing, heel- ing, etc. will be represented by MS with additional sub- scripts as appropriate	Nm

Version 2008

Ships in General

2 2.2

2.2 Geometry and Hydrostatics2.2.4 Hydrostatics and Stability

61

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
т	SHIPMA	Ship mass	W/g	kg
M_{TC}	MTC	Moment to change trim by one centimetre		Nm/cm
M_{TM}	MTM	Moment to change trim by one meter	$\Delta C_{\rm MTL}$	Nm/m
$R_{\rm SI}$	RSI	Required subdivision index		1
t_s , t_{KL}	TRIM	Static trim	$T_{ m A}$ - $T_{ m F}$ - $d_{ m KL}$	m
W	SHIPWT	Ship weight	m g	Ν
$z_{ m SF}$	ZSF	Static sinkage at FP	Caused by loading	m
$z_{\rm SA}$	ZSA	Static sinkage at AP	Caused by loading	m
$z_{ m S}$	ZS	Mean static sinkage	$(z_{\rm SF} + z_{\rm SA}) / 2$	m
δ	D	Finite increment in	Prefix to other symbol	1
$\delta t_{ m KL}$	DTR	Change in static trim		m
Δ	DISPF	Displacement (buoyant) force	$g ho \nabla$	Ν
Δ_m	DISPM	Displacement mass	ho abla	kg
∇	DISPVOL	Displacement volume	Δ / ($ ho g$)	m ³
$ abla_{ m fw}$	DISVOLFW	Displacement volume of flooded water	$\Delta f_w / (ho g)$	m ³
$ heta_{ m S}$	TRIMS	Static trim angle	$\tan^{-1}((z_{\rm SF} - z_{\rm SA})/L)$	rad
μ	PMVO	Volumetric permeability	The ratio of the volume of flooding water in a com- partment to the total volume of the compartment	1
ϕ	HEELANG	Heel angle		rad
$\phi_{ m F}$	HEELANGF	Heel angle at flooding		rad
$\phi_{ m VS}$	HEELANGV	Heel angle for vanishing stability		rad

2.2.4.4 Symbols for Attributes and Subscripts (under construction)

a	apparent
A, att	attained

d, dyn dynamic

Ships in General Geometry and Hydrostatics Hydrostatics and Stability

62

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
e, EFF			effective	
f			false	
KL			keel line	
L			longitudinal	
MAX			maximum	
MTL			longitudinal trimming moment	
R, req			required (to be clarified)	
S			Static	
S, sqt			Sinkage, squat	
TC			Trim in cm	
ΤM			Trim in m	
Т			transverse	
V			vertical	
0			Initial	
ϕ			at heel angle ϕ	
θ			at trim angle θ	

ITTC Symbols

Version 2008

ITTC	Symbols
------	---------

Version 2008

Ships in General
 Resistance and Propulsion
 Hull Resistance

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

2.3 Resistance and Propulsion

2.3.1 Hull Resistance (see also Section 3.4.1 on Waves)

2.3.1.1	Basic	Quantities
---------	--------------	------------

т	BLCK	Blockage parameter	Maximum transverse area of model ship divided by tank cross section area	1
R _A	RA	Model-ship correlation al- lowance	Incremental resistance to be added to the smooth ship resistance to complete the model-ship prediction	N
$R_{\rm AA}$	RAA	Air or wind resistance		Ν
$R_{\rm APP}$	RAP	Appendage resistance		Ν
$R_{\rm AR}$	RAR	Roughness resistance		Ν
R _C	RC	Resistance corrected for dif- ference in temperature be- tween resistance and self- propulsion tests	$R_{TM}((1 + k) C_{FMC} + C_R) /$ ((1 + k) $C_{FM} + C_R$) where C_{FMC} is the frictional coefficient at the temperature of the self-propulsion test	N
$R_{ m F}$	RF	Frictional resistance of a body	Due to fluid friction on the surface of the body	N
$R_{ m F0}$	RF0	Frictional resistance of a flat plate		Ν
R_P	RP	Pressure resistance	Due to the normal stresses over the surface of a body	Ν
R_{PV}	RPV	Viscous pressure resistance	Due to normal stress related to viscosity and turbulence	Ν
$R_{ m R}$	RR	Residuary resistance	$R_{\rm T}$ - $R_{\rm F}$ or $R_{\rm T}$ - $R_{\rm F0}$	Ν
$R_{ m RH}$	RRBH	Residuary resistance of the bare hull		N
$R_{\rm S}$	RS	Spray resistance	Due to generation of spray	Ν
R_{T}	RT	Total resistance	Total towed resistance	Ν
R_{TBH}	RTBH	Total resistance of bare hull		Ν
$R_{ m V}$	RV	Total viscous resistance	$R_{ m F}+R_{P m V}$	Ν
$R_{ m W}$	RW	Wave making resistance	Due to formation of surface waves	Ν
$R_{ m WB}$	RWB	Wave breaking resistance	Associated with the break down of the bow wave	N
$R_{ m WP}$	RWP	Wave pattern resistance		Ν
S	S	Wetted surface area, under- way	$S_{ m BH}+S_{ m APP}$	m^2

Version 2008

Ships in General
 Resistance and Propulsion
 Hull Resistance

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
S_0	S0	Wetted surface area, at rest	$S_{\rm BH0} + S_{\rm APP0}$	m^2
S_0 S_{APP}	SAP	Appendage wetted surface	SBH0 SAPP0	m^2
		area, underway		2
$S_{ m APP0}$	SAP0	Appendage wetted surface		m^2
$S_{ m BH}$	SBH	area, at rest Bare Hull wetted surface		m^2
DBH	SBIT	area, underway		111
$S_{ m BH0}$	SBH0	Bare Hull wetted surface		m^2
. ~		area, at rest		
$\Delta C_{\rm F}$	DELCF	Roughness allowance		1
V	V	Speed of the model or the ship		m/s
$V_{ m KN}$	VKN	Speed in knots		
$V_{\rm WR}$	VWR	Wind velocity, relative		m/s
$Z_{V\rm F}$	ZVF	Running sinkage at FP		m
Z_{VA}	ZVA	Running sinkage at AP		m
z_{VM}	ZVM	Mean running sinkage	$(z_{V\rm F} + z_{V\rm A}) / 2$	m
η	EW	Wave Elevation	see 3.4.1	m
$ heta_V$, $ heta_{ m D}$	TRIMV	Running (dynamic) trim an- gle	$\tan^{-1}((z_{VF} - z_{VA}) / L)$	1
$ au_{ m W}$	LSF, TAUW	Local skin friction	see 3.3.4	N/m^2
2.3.1.2 De	rived Quantities	6		
C _A	CA	Incremental resistance coef- ficient for model ship corre- lation	$R_{\rm A}$ / (S q)	1
$C_{ m AA}$	CAA	Air or wind resistance coef- ficient	$R_{\mathrm{AA}}/(A_{\mathrm{V}} q_{\mathrm{R}})$	1
C_D	CD	Drag coefficient	D/(Sq)	1
$C_{ m F}$	CF	Frictional resistance coeffi- cient of a body	R_{F} / (S q)	1
$C_{ m F0}$	CF0	Frictional resistance coeffi- cient of a corresponding plate	$R_{ m F0}$ / (S q)	1
C_p	СР	Local pressure coefficient		1
C_{PR}	CPR	Pressure resistance coeffi- cient, including wave effect	$R_P/(S q)$	1
C_{PV}	CPV	Viscous pressure resistance coefficient	$R_{PV}/(Sq)$	1

Version 2008

Ships in General
 Resistance and Propulsion
 Hull Resistance

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
C_{R}	CR	Residuary resistance coefficient	$R_{\mathrm{R}} / (S q)$	1
$C_{\rm S}$	CSR	Spray resistance coefficient	$R_{\rm S}/(Sq)$	1
C_{T}	СТ	Total resistance coefficient	$R_{\mathrm{T}}/(Sq)$	1
C_{TL}	CTLT	Telfer's resistance coeffi- cient	$g R L / (\Delta V^2)$	1
C_{TQ}	CTQ	Qualified resistance coeffi- cient	C_{TV} / ($\eta_{\mathrm{H}} \eta_{\mathrm{R}}$)	1
$C_{\mathrm{T}\overline{V}}$	CTVOL	Resistance displacement	$R_{\rm T} / (abla^{2/3} q)$	1
$C_{ m V}$	CV	Total viscous resistance co- efficient	$R_{\rm V}/(S q)$	1
$C_{ m W}$	CW	Wave making resistance coefficient	$R_{\rm W} / (S q)$	1
$C_{ m WP}$	CWP	Wave pattern resistance co- efficient, by wave analysis		1
C^{C}	CIRCC	R.E. Froude's resistance co- efficient	$1000 R / (\Delta(K^{\rm C})^2)$	1
F^{C}	CIRCF	R.E. Froude's frictional re- sistance coefficient	$1000 R_{\rm F} / (\Delta (K^{\rm C})^2)$	1
f	FC	Friction coefficient	Ratio of tangential force to normal force between two sliding bodies	1
k	Κ	Three dimensional form fac- tor on flat plate friction	$(C_{\rm V} - C_{\rm F0}) / C_{\rm F0}$	1
$k(\theta)$	WDC	Wind direction coefficient	$C_{ m AA}/C_{ m AA0}$	1
K^{C}	CIRCK	R.E. Froude's speed dis- placement coefficient	$(4 \pi)^{1/2} Fr_{V} or$ $(4\pi/g)^{1/2} V_{\rm K}/V^{1/6}$	
K_R	KR	Resistance coefficient corresponding to K_Q , K_T	$R/(\rho D^4 n^2)$	1
q	PD, EK	Dynamic pressure, density of kinetic flow energy,	$\rho V^2 / 2$ see 3.3.2	Ра
$q_{ m R}$	PDWR, EKWR	Dynamic pressure based on apparent wind	$\rho V_{\rm WR}^2/2$ see 3.4.2	Ра

Version 2008

Ships in General Resistance and Propulsion Hull Resistance

2 2.3 2.3.1

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
S ^C	CIRCS	R. E. Froude's wetted sur- face coefficient	$S / V^{2/3}$	1
З	EPSG	Resistance-displacement ratio in general	R/Δ	1
ε _R	EPSR	Residuary resistance- displacement ratio	$R_{\rm R}$ / \varDelta	1

2.3.1.3 Symbols for Attributes and Subscripts

FW	Fresh water
MF	Faired model data
MR	Raw model data
OW	Open water
SF	Faired full scale data
SR	Raw full scale data
SW	Salt water

ITTC	Symbols

Version	2008
	-000

Ships in General Resistance and Propulsion Ship Performance

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
2.3.2 Ship	Performance			
-	sic Quantities			
F _D	SFC	<i>(ships, performance)</i> Friction deduction force in self propulsion test	Towing force applied to a model to correct the model resistance for different <i>Re</i> between model and full scale.	N
F_{P}	FP	Force pulling or towing a ship		N
$F_{ m P0}$	FPO	Pull during bollard test		Ν
п	Ν	Frequency, commonly rate of revolution		Hz
$P_{\rm B}$	PB	Brake power	Power delivered by prime mover	W
P_{D} , P_{P}	PD, PP	Delivered power, propeller power	Qω	W
P_{E} , P_{R}	PE, PR	Effective power, resistance power	R V	W
P_{I}	PI	Indicated power	Determined from pressure measured by indicator	W
$P_{\rm S}$	PS	Shaft power	Power measured on the shaft	W
P_T	PTH	Thrust power	$T V_{\rm A}$	W
Q	Q	Torque	$P_{\rm D}/\omega$	Nm
t_V	TV	Running trim		m
V	V	Ship speed		m/s
V _A	VA	Propeller advance speed	Equivalent propeller open water speed based on thrust or torque identity	m/s
Z_V	ZV	Running sinkage of model o ship	r	m
ω	V0,OMN	Rotational shaft velocity	2 <i>π n</i>	1/s

V	ersion	2008

Ships in General Resistance and Propulsion Ship Performance 2.3 2.3.2

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
2.3.2.2 De	erived Quantitio	es		
a	RAUG	Resistance augment fraction	$(T - R_{\mathrm{T}}) / R_{\mathrm{T}}$	1
$C_{\rm ADM}$	CADM	Admiralty coefficient	$\Delta^{2/3} V^3 / P_{\rm S}$	1
$C_{\mathrm{D}\mathrm{V}}$	CDVOL	Power-displacement coeffi- cient	$P_D / (\rho \ V^3 \ V^{2/3} / 2)$	1
C_N	CN	Trial correction for propeller rate of revolution at speed identity	$n_{\rm T}/n_{\rm S}$	1
C_{NP}	CNP	Trial correction for propeller rate of revolution at power identity	$P_{\rm DT}/P_{\rm DS}$	1
C_P	CDP	Trial correction for delivered power	l	1
K_1	C1	Ship model correlation fac- tor for propulsive efficiency	$\eta_{ m DS}$ / $\eta_{ m DM}$	1
<i>K</i> ₂	C2	Ship model correlation fac- tor for propeller rate revolu- tion	$n_{\rm S}/n_{\rm M}$	1
K_{APP}	КАР	Appendage correction factor	Scale effect correction factor for model appendage drag applied at the towing force in a self-propulsion test	1
S_V	SINKV	Sinkage, dynamic	Change of draught, fore and aft, divided by length	1
t_V	TRIMV	Trim, dynamic	Change of the trim due to dynamic condition, divided by length	1
t	THDF	Thrust deduction fraction	$(T - R_{\rm T}) / T$	1
W	WFT	Taylor wake fraction in gen- eral	(V - V _A) / V	1
WF	WFF	Froude wake fraction	$(V - V_{\rm A}) / V_{\rm A}$	1
WQ	WFTQ	Torque wake fraction	Propeller speed V_A determined from torque identity	1
W _T	WFTT	Thrust wake fraction	Propeller speed, V_A , determined from thrust identity	1

Ships in General Resistance and Propulsion Ship Performance 2 2.3 2.3.2

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
Δw	DELW	Ship-model correlation fac- tor for wake fraction	<i>WT</i> ,M - <i>WT</i> ,S	1
∆w _C	DELWC	Ship-model correlation fac- tor with respect to $w_{T,S}$ method formula of ITTC 1978 method		1
x	XLO	Load fraction in power pre- diction	$\eta_{\mathrm{D}} P_{\mathrm{D}} / P_{\mathrm{E}}$ - 1	1
β	APSF	Appendage scale effect fac- tor	Ship appendage resistance divided by model appendage resistance	1
2.3.2.3 Eff	ficiencies etc.			
$\eta_{ m APP}$	ETAAP	Appendage efficiency	$P_{\rm Ew0APP} / P_{\rm EwAPP}$, $R_{\rm TBH} / R_{\rm T}$	1
$\eta_{ m B}$	ETAB, EFTP	Propeller efficiency behind ship	$P_{\rm T}/P_{\rm D} = T V_{\rm A}/(Q \omega)$	1
$\eta_{ m D}$	ETAD, EFRP	Quasi-propulsive efficiency coefficient	$P_{\rm E}/P_{\rm D}=P_{\rm R}/P_{\rm P}$	1
$\eta_{ m G}$	ETAG, EFGP	Gearing efficiency		1
$\eta_{ m H}$	ETAH, EFRT	Hull efficiency	$P_{\rm E} / P_{\rm T} = P_{\rm R} / P_{\rm T}$ = (1 - t) / (1 - w)	1
$\eta_{ m M}$	ETAM	<i>(ships, performance)</i> Mechanical efficiency of transmission between engine and propeller	$P_{\rm D}/P_{\rm B}$	1
η ₀	ETAO, EFTPO	Propeller efficiency in open water	$P_{\rm T} / P_{\rm D} = T V_{\rm A} / (Q \omega)$ all quantities measured in open water tests	1
$\eta_{ m P}$	ETAP	Propulsive efficiency coefficient	$P_{\rm E}/P_{\rm B}$	1
$\eta_{ m R}$	ETAR, EFRO	Relative rotative efficiency	$\eta_{ m B}$ / $\eta_{ m O}$	1
$\eta_{\rm S}$	ETAS, EFPS	Shafting efficiency	$P_{\rm D}/P_{\rm S}=P_{\rm P}/P_{\rm S}$	1

Version 2008

ITTC Symbols

ITTC Sym	bols	2	Ships in General	
Version 20	08	2.3 2.3.3	Resistance and Propulsion Propulsor Performance	70
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
2.3.3 Proj	pulsor Perform	ance		
2.3.3.1 Ba	sic Quantities			
A_0	AO	Propeller disc area	$\pi D^2 / 4$	m^2
D	DP	Propeller diameter		m
п	FR	Propeller frequency of revo- lution		Hz
κ_S	KS	Roughness height of propel- ler blade surface		m
$q_{ m A}$	QA	Dynamic pressure based on advance speed	$\rho V_{\rm A}{}^2/2$	Ра
qs	QS	Dynamic pressure based on section advance speed	$\rho V_{\rm S}^2/2$	Ра
Qs	QSP	Spindle torque	About spindle axis of con- trollable pitch propeller $Q_{\rm S}=Q_{\rm SC}+Q_{\rm SH}$ positive if it increases pitch	Nm
$Q_{ m SC}$	QSPC	Centrifugal spindle torque		Nm
$Q_{ m SH}$	QSPH	Hydrodynamic spindle torque		Nm
Т	TH	Propeller thrust		Ν
$T_{\rm D}$	THDU	Duct thrust		Ν
$T_{\rm DP}$	THDP	Ducted propeller thrust		Ν
$T_{\rm DT}$	THDT	Total thrust of a ducted pro- peller unit		N
T_{xP}	ТХР	Propeller Thrust along shaft axis		N
$T_{y\mathbf{P}}$	ТҮР	Propeller normal force in y direction in propeller axis		Ν
T_{zP}	TZP	Propeller normal force in z direction in propeller axis		Ν
V_{A}	VA	Advance speed of propeller		m/s
V _P	VP	Mean axial velocity at pro- peller plane of ducted pro- peller		m/s

Version 2008

Ships in General Resistance and Propulsion Propulsor Performance

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
V _S	VS	Section advance speed at 0.7 <i>R</i>	$(V_{\rm A}^{2} + (0.7 R \omega)^{2})^{1/2}$	m/s
$ ho_{ m P}$	DNP	Propeller mass density		kg/m ³
ω	VOP	Propeller rotational velocity	2 π n	1/s
2.3.3.2 De	rived Quantitie	es		
$B_{ m P}$	BP	Taylor's propeller coefficient based on delivered horse- power	$n P_{\rm D}^{1/2} / V_{\rm A}^{2.5}$ with n is revs/min, $P_{\rm D}$ in horsepower, and $V_{\rm A}$ in kn (obsolete)	1
$B_{ m U}$	BU	Taylor's propeller coefficient based on thrust horsepower	$n P_{T}^{\frac{1}{2}} / V_{A}^{2.5}$ with n is revs/min, P_{T} in horsepower, and V_{A} in kn (obsolete)	1
C_P	CPD	Power loading coefficient	$P_{\rm D}$ / ($A_{\rm P} q_{\rm A} V_{\rm A}$)	1
C_{Q^*}	CQS	Torque index	$Q/(A_{\rm P} q_{\rm S} D)$	1
C_{Th}	СТН	Thrust loading coefficient, energy loading coefficient	$T / (A_{\rm P} q_{\rm A})$ = $(T_{\rm P} / A_{\rm P}) / q_{\rm A}$	1
C_{T^*}	CTHS	Thrust index	$T/(A_{\rm P} q_{\rm S})$	1
J	JEI	Propeller advance ratio	$V_{\rm A}$ / (D n)	1
$J_{ m A}$, $J_{ m H}$	JA, JH	Apparent or hull advance ratio	$V/(D n) = V_{\rm H}/(D n)$	1
$J_{ m P}$	JP	Propeller advance ratio for ducted propeller	$V_{\rm P}$ / (D n)	
J_T , $J_{\mathrm{P}T}$	JT, JPT	Advance ratio of propeller determined from thrust iden- tity		1
$J_{ar Q}$, $J_{{ m P}{ m Q}}$	JQ, JPQ	Advance ratio of propeller determined from torque identity		1
K_P	KP	Delivered power coefficient	$P_{\rm D} / (\rho \ n^3 \ D^5) = 2 \ \pi \ K_Q$	1
K_Q	KQ	Torque coefficient	$Q/(\rho n^2 D^5)$	1
$K_{ m SC}$	KSC	Centrifugal spindle torque coefficient	$Q_{\rm SC}$ / ($\rho n^2 D^5$)	1

Ships in General Resistance and Propulsion Propulsor Performance

72

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$K_{ m SH}$	KSH	Hydrodynamic spindle torque coefficient	$Q_{\rm SH}/(\rho n^2 D^5)$	1
K_T	KT	Thrust coefficient	$T/(\rho n^2 D^4)$	1
$K_{T\mathrm{D}}$	KTD	Duct thrust coefficient	$T_{\rm D}$ / ($\rho n^2 D^4$)	1
K_{TP}	КТР	Ducted propeller thrust coef- ficient	$T_{\rm P} / (\rho n^2 D^4)$	1
$K_{T\mathrm{T}}$	KTT	Total thrust coefficient for a ducted propeller unit	$K_{T\mathrm{P}} + K_{T\mathrm{D}}$	1
K_{Q0}	KQ0	Torque coefficient of propel- ler converted from behind to open water condition	$K_Q \eta_{ m R}$	1
K _{QT}	KQT	Torque coefficient of propel- ler determined from thrust coefficient identity		1
P_{J}	PJ	Propeller jet power	$\eta_{ m TJ}~T~V_{ m A}$	
S _A	SRA	Apparent slip ratio	1 - V / (n P)	1
$S_{ m R}$	SRR	Real slip ratio	$1 - V_{\rm A} / (n P)$	1
δ	ADCT	Taylor's advance coefficient	$n D / V_A$ with <i>n</i> in revs/min, <i>D</i> in feet, V_A in kn (obsolete)	1
$\eta_{ m JP}$	EFJP	Propeller pump or hydraulic efficiency	$P_{\rm J}/P_{\rm D}=P_{\rm J}/P_{\rm P}$	1
$\eta_{ m JP0}$	ZETO, EFJPO	Propeller pump efficiency at zero advance speed, alias static thrust coefficient	$T / (\rho \pi / 2)^{1/3} / (P_{\rm D} D)^{2/3}$	1
η_{I}	EFID	Ideal propeller efficiency	Efficiency in non-viscous fluid	1
$\eta_{ m TJ}$	EFTJ	Propeller jet efficiency	$2 / (1 + (1 + C_{Th})^{1/2})$	1
η о , η тро	ETA0, EFTP0	Propeller efficiency in open water	$P_{\rm T} / P_{\rm D} = T V_{\rm A} / (Q \omega)$ all quantities measured in open water tests	1
λ	ADR	Advance ratio of a propeller	$V_{\rm A}/(n D)/\pi = J/\pi$	1
τ	TMR	Ratio between propeller thrust and total thrust of ducted propeller	<i>T</i> _P / <i>T</i> _T	1

ITTC Symbols

Version 2008

Version 20)08
------------	-----

Ships in General Resistance and Propulsion Propulsor Performance

ITTC Symbol	Computer Symbol		Definition or Explanation	SI- Unit
2.3.3.3 Ind	luced Velocitie	s etc.		
U_{A}	UA	Axial velocity induced by propeller		m/s
$U_{ m AD}$	UADU	Axial velocity induced by duct of ducted propeller		m/s
$U_{ extsf{RP}}$	URP	Radial velocity induced by propeller of ducted propeller		m/s
$U_{ m RD}$	URDU	Radial velocity induced by duct of ducted propeller		m/s
$U_{ m AP}$	UAP	Axial velocity induced by propeller of ducted propeller		m/s
$U_{ m R}$	UR	Radial velocity induced by propeller		m/s
$U_{ m TD}$	UTDU	Tangential velocity induced by duct of ducted propeller		m/s
$U_{ m TP}$	UTP	Tangential velocity induced by propeller of ducted propeller		m/s
$U_{ m T}$	UT	Tangential velocity induced by propeller		m/s
β	BETB	Advance angle of a propeller blade section	$\operatorname{arctg}\left(V_{\mathrm{A}}/r\omega\right)$	rad
β_{I}	BETI	Hydrodynamic flow angle of a propeller blade section	Flow angle taking into ac- count induced velocity	rad
β^{*}	BETS	Effective advance angle	$\operatorname{arctg}\left(V_{\mathrm{A}}/\left(0.7\ R\ \omega\right)\right)$	rad

73

ITTC	Symbols
	~ ,

X 7 •	2000
Version	2008

Ships in General Resistance and Propulsion Unsteady Propeller Forces 74

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
2.3.4 Unst	teady Propeller	r Forces		
2.3.4.1 Ba	sic Quantities			
C_{uv}	SI(U,V)	Generalized stiffness		
D_{uv}	DA(U,V)	Generalized damping		
F _u	FG(I)	Generalized vibratory force	u = 1,, 6 u = 1, 2, 3: force u = 4, 5, 6: moment	N N Nm
F_i	F(I)	Vibratory force	<i>i</i> = 1, 2, 3	Ν
K_{Fu}	KF(U)	Generalized vibratory force coefficients	According to definitions of K_{Fi} and K_{Mi}	1
K_{Fi}	KF(I)	Vibratory force coefficients	$F_i / (\rho n^2 D^4)$	1
K_{Mi}	KM(I)	Vibratory moment coeffi- cients	$M_i / (\rho n^2 D^5)$	1
K_p	KPR	Pressure coefficient	$p/(\rho n^2 D^2)$	1
M_i	M(I)	Vibratory moment	<i>i</i> = 1, 2, 3	Nm
M_{uv}	MA(U,V)	Generalized mass		
р	PR	Pressure		Pa
R_u	R(U)	Generalized vibratory bear-		Ν
		ing reaction	u = 1, 2, 3: force u = 4, 5, 6: moment	Ν
				Nm
V_i	V(I)	Velocity field of the wake	<i>i</i> = 1, 2, 3	m/s
x y z	X Y Z	Cartesian coordinates	Origin O coinciding with the centre of the propeller. The longitudinal <i>x</i> -axis coincides with the shaft axis, positive forward; the trans-verse <i>y</i> - axis, positive to port; the third, <i>z</i> -axis, positive upward	m m m

ITTC	Symbols

Ships in General Resistance and Propulsion Unsteady Propeller Forces

75

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
X a r	X ATT R	Cylindrical coordinates	Cylindrical system with ori- gin O and longitudinal <i>x</i> -axis as defined before; angular a- (attitude)-coordinate, zero at 12 o'clock position, positive clockwise looking forward, <i>r</i> distance measured from the <i>x</i> -axis	m 1 m
δ_{u}	DP(U)	Generalized vibratory dis- placement	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m m rad
$\dot{\delta}_{u}$	DPVL(U)	Generalized vibratory veloc- ity	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m/s m/s rad/s
$\ddot{\delta}_{u}$	DPAC(U)	Generalized vibratory acceleration	u = 1,, 6 u = 1, 2, 3: linear u = 4, 5, 6: angular	m/s^2 m/s^2 rad/s^2

ITTC Symbols	2 2.3	Ships in General Resistance and Propulsion	76
Version 2008		Water Jets	

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

2.3.5 Water Jets

(See also Section 1.2.2.3 and Figure A1. Definition of Station Numbers and Normalized Energy Flux, Volume 1 Proceedings of 21st ITTC)

C_p	СР	Local pressure coefficient	$(p-p_0)/(\rho V^2/2)$	1
C_{Tn}		Thrust loading coefficient:	$\frac{T_{\rm net}}{\frac{1}{2}\rho U_0^2 A_{\rm n}}$	1
C _{es}		Energy velocity coefficient at station <i>s</i>		1
$c_{\rm ms}$		Momentum velocity coefficient at station <i>s</i>		1
Dp		Pressure differential of flow rate transducer		Pa
E_j	EJ	Energy flux at station <i>j</i>	$E_j = (\rho/2) \int V_{Ej}^2 dQ_j$ Q_J	W
$E_{\rm s}$		Total energy flux at station s (kinetic + potential + pres- sure)	$\iint_{A_s} \rho\left(\frac{1}{2}\boldsymbol{u}^2 + \frac{p}{\rho} - g_j x_j\right) u_i n_i dA$	W
$E_{\mathrm{s}\xi}$		Total axial (in ξ direction) energy flux at station s	$\iint_{A_s} \rho \left(\frac{1}{2} u_{\xi}^2 + \frac{p}{\rho} - g_j x_j \right) u_i n_i dA$	W
F_D		Skin friction correction in a self propulsion test carried out at the ship self- propulsion point		Ν
H_1	HT1	Local total head at station 1		m
H_{35}	H35	Mean increase of total head across pump and stator or several pump stages		m
$I_{\rm VR}$	IVR	Intake velocity ratio	VI/V	1
$J_{ m VR}$	JVR	Jet velocity ratio	VJ/V	1
K_Q		Impeller torque coefficient:	$\frac{Q}{\rho n^2 D^5}$	
K_{QI}		Flow rate coefficient:	$\frac{Q_{\rm J}}{nD^3}$	1

Ships in General Resistance and Propulsion Water Jets

77

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
\overline{M}_{is}		Momentum flux at station <i>s</i> in <i>i</i> direction	$\iint_{A_s} \rho u_i \left(u_j n_j \right) dA$	N
NVR		Nozzle velocity ratio:	$rac{u_{6\xi}}{U_0}$	1
п		Impeller rotation rate		Hz
n _i		Unit normal vector in <i>i</i> direction)-	1
$P_{\rm D}$		Delivered Power to pump impeller		W
$P_{ m E}$		Effective power:	$R_{ m TBH}U_{ m 0}$	W
$P_{\rm JSE}$		Effective Jet System Power	$Q_{ m J}H_{ m 1A7}$	W
$P_{ m PE}$		Pump effective power:	$Q_{ m J}H_{ m 35}$	W
$P_{T\mathrm{E}}$		Effective thrust power		W
p_0	PR0	Ambient pressure in undis- turbed flow		Pa
p_{s}		Local static pressure at station <i>s</i>		Pa
Q		Impeller torque		Nm
$\mathcal{Q}_{\mathrm{bl}}$		Volume flow rate inside boundary layer		m³/s
$\mathcal{Q}_{ ext{J}}$		Volume flow rate through water jet system		m³/s
R_{TBH}		Total resistance of bare hull		Ν
$T_{\text{jet }x}$		Jet thrust (can be measured directly in bollard pull condition)		N
$T_{\rm net}$		Net thrust exerted by the jet system on the hull		Ν
t		Thrust deduction fraction	$(1-t) = \frac{R_{\rm TBH}}{T_{\rm net}}$	1
U_{0}		Free stream velocity		m/s

ITTC Symbols

Version 2008

Version 2008

Ships in General
 Resistance and Propulsion
 Water Jets

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
\overline{u}_{eis}		Mean energy velocity in <i>i</i> direction at station s	$\sqrt{\frac{1}{Q_{ m J}}\iint u_{\xi}^{3}dA}$	m/s
\overline{u}_{es}		Mean (total) energy velocity at station <i>s</i>	$\sqrt{\frac{1}{Q_{J}} \iint u_{\xi}^{3} dA}$ $\sqrt{\frac{1}{Q_{J}} \iint u^{3} dA}$	m/s
u _{is}		Velocity component in <i>i</i> -direction at station <i>s</i>		m/s
<i>u</i> _s		Velocity at station s		m/s
$u_{7\varphi}$	UJFI	Local tangential velocity at station 7		m/s
W_1		Geometric intake width at station 1		m
W _{1A}		Width of capture area meas- ured over hull surface at sta- tion 1A		m
Z_6		Vertical distance of nozzle centre relative to undisturbed surface	1	m
ΔM	DMF	Change of momentum flux		Ν
$\Delta \overline{M}_x$		Change in Momentum Flux in <i>x</i> direction		Ν
$\eta_{ m D}$		Overall propulsive effi- ciency:	$\frac{P_{\rm E}}{P_{\rm D}}$	1
$\eta_{ m duct}$		Ducting efficiency:	$\frac{P_{\rm JSE}}{P_{\rm PE}}$	1
$\eta_{ m eI}$		Energy interaction effi- ciency:	$\frac{P_{\rm JSE0}}{P_{\rm JSE}}$	1
η_{I}		Ideal efficiency, equivalent to jet efficiency in free stream conditions	$\frac{P_{\text{TE0}}}{P_{\text{JSE0}}}$	1
$\eta_{ m inst}$		Installation efficiency to account for the distorted flow delivered by the jet intake to the pump		1

78

Ships in General
 Resistance and Propulsion
 Water Jets

79

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$\eta_{ ext{INT}}$		Total interaction efficiency:	$\frac{\eta_{\rm el}}{\eta_{\rm ml}}(1-t)$	1
$\eta_{ m jet}$		Momentum or jet efficiency:	$rac{P_{\mathrm{TE}}}{P_{\mathrm{JSE}}}$	1
$\eta_{ m JS}$		Jet system efficiency:	$\frac{P_{\rm JSE}}{P_{\rm D}}$	1
$\eta_{ m mI}$		Momentum interaction effi- ciency:	$\frac{T_{\rm net0}}{T_{\rm net}}$	1
$\eta_{ ext{P}}$	ETAP	Pump efficiency	$rac{P_{ m PE}}{P_{ m D}}$	1
$\eta_{_{ m P0}}$		Pump efficiency from a pump loop test		1
$\eta_{_0}$		Free stream efficiency:	$\eta_{ m P}\eta_{ m duct}\eta_{ m I}$	1
θ_{n}		Jet angle relative to the hori- zontal at the nozzle (station 6)		rad
ρ		Mass density of fluid		kg/m ³
ζ_{ij}		Energy loss coefficient be- tween station <i>i</i> and <i>j</i>		1
ζ_{13}		Inlet duct loss coefficient:	$\frac{E_{3}-E_{1}}{\frac{1}{2}\rho U_{0}^{2}}$	1
ζ ₅₇		Nozzle duct loss coefficient:	E E	1

ITTC Symbols

Version 2008

ITTC Symbols Version 2008			2 2.4	Ships in General Manoeuvrability and Sea Keep	oing 80
			2.4.1	Manoeuvrability	
ITTC	Computer	Name		Definition or	SI-
Symbol	Symbol			Explanation	Unit
2.4.1.1 Geor	-				
see also Secti	on 1.3.1 and S	ection 1.3.3			
$A_{ m FB}$	AFBO	Projected area of bow	fins		m^2
$A_{ m HL}$	AHLT	Lateral area of the hul	1	The area of the profile of the underwater hull of a ship when projected normally	m^2

			upon the longitudinal centre plane	
$A_{ m LV}$	AHLV	Lateral area of hull above water		m ²
$A_{\rm R}$	ARU	Total lateral area of rudder		m^2
$A_{\rm Rmov}$	ARMV	Lateral area of movable part of rudder		m ²
$A_{ m RN}$	ARNO	Nominal lateral area of rud- der	$(A_{\rm R} + A_{\rm Rmov}) / 2$	m ²
$b_{ m R}$	SPRU	Rudder span	Maximum distance from root to tip	m
$b_{ m RM}$	SPRUME	Mean span of rudder		m
C_{AL}	CAHL	Coefficient of lateral area of ship	$A_{\rm HL}$ / (L T)	1
h	DE	Water depth		m
$h_{ m M}$	DEME	Mean water depth		m
<i>x</i> _R	XRU	Longitudinal position of rudder axis		m
δ	ANRU	Rudder angle, helm angle		rad
$\Lambda_{\rm R}$	ASRU	Aspect ratio of rudder	$b_{\rm R}^2 / A_{\rm R}$	1

2.4.1.2 Motions and Attitudes

р	OX, P	Roll velocity, rotational ve-	1/s
		locity about body x-axis	

2 2.4 2.4.1 Ships in General Manoeuvrability and Sea Keeping Manoeuvrability 81

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
q	OY, Q	Pitch velocity, rotational velocity about body <i>y</i> -axis		1/s
r	OZ, R	Yaw velocity, rotational velocity about body <i>z</i> -axis		1/s
<i>p</i>	OXRT, PR	Roll acceleration, angular acceleration about body <i>x</i> -axis	dp / dt	$1/s^2$
ġ	OYRT, QR	Pitch acceleration, angular acceleration about body <i>y</i> -axis	dq / dt	$1/s^2$
ŕ	OZRT, RR	Yaw acceleration, angular acceleration about body <i>z</i> -axis	dr / dt	$1/s^2$
и	UX, U	Surge velocity, linear veloc- ity along body <i>x</i> -axis		m/s
V	UY, V	Sway velocity, linear veloc- ity along body <i>y</i> -axis		m/s
W	UZ, W	Heave velocity, linear veloc- ity along body <i>z</i> -axis		m/s
<i>ù</i>	UXRT, UR	Surge acceleration, linear acceleration along body <i>x</i> -axis	du / dt	m/s ²
ν̈́	UYRT, VR	Sway acceleration, linear acceleration along body <i>y</i> -axis	dv / dt	m/s ²
ŵ	UZRT, WR	Heave acceleration, linear acceleration along body <i>z</i> -axis	dw / dt	m/s ²
V	V	Linear velocity of origin in body axes		m/s
$V_{\mathrm{A}}, V_{\mathrm{0}}$	VA, V0	Approach speed		m/s
Vu	V(URT)	Generalized velocity		m/s
ν, μ	V(URT)	Generalized acceleration		m/s^2
$V_{ m F}$	VF	Flow or current velocity		m/s
$V_{\rm WR}$	VWREL	Relative wind velocity		m/s

ITTC Symbols

Version 2008

2Ships in General2.4Manoeuvrability and Sea Keeping2.4.1Manoeuvrability82

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$V_{ m WT}$	VWABS	True wind velocity		m/s
Ψ	YA	Course angle or heading		rad
χ	YX	Yaw angle		rad
$d_{\mathrm{t}\psi}$	YART	Rate of change of course	$d\psi / dt$	rad/s
Ψ_0	YAOR	Original course		rad
θ	PI	Pitch angle		rad
ϕ	RO	Roll angle		rad
2.4.1.3 Flo	w Angles etc.			
α	AAPI	Pitch angle	Angle of attack in pitch on the hull	rad
β	AADR	Drift angle	Angle of attack in yaw on the hull	rad
$eta_{ m WR}$	ANWIRL	Angle of attack of relative wind		rad
δ	ANCS	Angle of a control surface, rudder angle, helm angle		rad
δ_0	ANRU0	Neutral rudder angle		rad
$\delta_{ ext{EFF}}$	ANRUEF	Effective rudder inflow an- gle		rad
$\delta_{ m FB}$	ANFB	Bow fin angle		rad
$\delta_{ m FS}$	ANFS	Stern fin angle		rad
$\delta_{ m R}$	ANRU	Rudder angle		rad
$\delta_{ m RO}$	ANRUOR	Rudder angle, ordered		rad
$\psi_{ m C}$	COCU	Course of current velocity		rad
ψ_{WA}	COWIAB	Absolute wind direction	see also section 3.4.2, Wind	rad
ΨWR	COWIRL	Relative wind direction	· , · · · · ·	rad
7 111				

ITTC Symbols

Version 2008

ITTC S	Symbols
--------	---------

2Ships in General2.4Manoeuvrability and Sea Keeping2.4.1Manoeuvrability83

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
2.4.1.4 Fo	orces and Deriva	atives		
Κ	МХ	Roll moment on body, mo- ment about body <i>x</i> -axis		Nm
М	MY	Pitch moment on body, mo- ment about body <i>y</i> -axis		Nm
Ν	MZ	Yaw moment on body, mo- ment about body <i>z</i> -axis		Nm
Nr	NR	Derivative of yaw moment with respect to yaw velocity	∂N / ∂r	Nms
Nŕ	NRRT	Derivative of yaw moment with respect to yaw accelera- tion	$\partial N/\partial \dot{r}$	Nms ²
N_{v}	NV	Derivative of yaw moment with respect to sway velocity	∂N / ∂v	Ns
$N_{\dot{v}}$	NVRT	Derivative of yaw moment with respect to sway accel- eration	$\partial N / \partial \dot{v}$	Nms ²
N_{δ}	ND	Derivative of yaw moment with respect to rudder angle	$\partial N / \partial \delta$	Nm
$Q_{ m FB}$	QFB	Torque of bow fin		Nm
Q_{R}	QRU	Torque about rudder stock		Nm
$Q_{ m FS}$	QFS	Torque of stern fin		Nm
Х	FX	Surge force on body, force along body <i>x</i> -axis		Ν
X_{R}	XRU	Longitudinal rudder force		Ν
X _u	XU	Derivative of surge force with respect to surge veloc- ity	∂X / ∂u	Ns/m
X _ü	XURT	Derivative of surge force with respect to surge accel- eration	∂X / ∂ù	Ns ² /m
Y	FY	Sway force, force in direc- tion of body axis y		Ν
Y _r	YR	Derivative of sway force with respect to yaw velocity	∂Y / ∂r	Ns

Version 2008

Ships in General Manoeuvrability and Sea Keeping Manoeuvrability 84

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$Y_{\rm R}$	YRU	Transverse rudder force		Ν
Y _r	YRRT	Derivative of sway force with respect to yaw accelera- tion	$\partial Y / \partial \dot{r}$	Ns ²
Y_{v}	YV	Derivative of sway force with respect to sway velocity	∂Y / ∂ν	Ns/m
${Y}_{\dot{v}}$	YVRT	Derivative of sway force with respect to sway accel- eration	$\partial Y / \partial \dot{v}$	Ns ² /m
Y_{δ}	YD	Derivative of sway force with respect to rudder angle	$\partial Y / \delta$	Ν
Ζ	FZ	Heave force on body, force along body <i>z</i> -axis		Ν
2.4.1.5 Lin	near Models			
C_r	CRDS	Directional stability criterion	$Y_v (N_r - mux_G) - N_v (Y_r - mu)$	N^2s^2
$L_{ m b}$, $l_{ m b}$	LSB	Static stability lever	N_v / Y_v	m
$L_{ m d}$, $l_{ m d}$	LSR	Damping stability lever	$(N_r - mux_G) / (Y_r - mu)$	m
Т	TIC	Time constant of the 1 st or- der manoeuvring equation		S
T_1	TIC1	First time constant of ma- noeuvring equation		S
T_2	TIC2	Second time constant of ma- noeuvring equation		S
T_3	TIC3	Third time constant of ma- noeuvring equation		S
Κ	KS	Gain factor in linear ma- noeuvring equation		1/s
P_n	PN	P-number, heading change per unit rudder angle in one ship length		1

2.4.1.6 **Turning Circles**

$D_{\rm C}$	DC	Steady turning diameter	m
-------------	----	-------------------------	---

Ships in General Manoeuvrability and Sea Keeping Manoeuvrability

85

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
D _C '	DCNO	Non-dimensional steady turning diameter	$D_{ m C}$ / $L_{ m PP}$	1
D_0	DC0	Inherent steady turning di- ameter $\delta_R = \delta_0$		m
D_0'	DC0N	Non-dimensional inherent steady turning diameter	$D_0 / L_{ m PP}$	1
<i>l</i> _r	LHRD	Loop height of r - δ curve for unstable ship		rad/s
l_{δ}	LWRD	Loop width of r - δ curve for unstable ship		rad
r _C	OZCI	Steady turning rate		1/s
<i>r</i> _C ′	OZCINO	Non-dimensional steady turning rate	$r_C L_{\rm PP} / U_{\rm C}$ or 2 $L_{\rm PP} / D_{\rm C}$	m
R_C	RCS	Steady turning radius		m
<i>t</i> ₉₀	TI90	Time to reach 90 degree change of heading		S
t_{180}	TI180	Time to reach 180 degree change of heading		S
$U_{\rm C}$	UC	Speed in steady turn		m/s
<i>x</i> ₀₉₀	X090	Advance at 90° change of heading		m
<i>x</i> ₀₁₈₀	X0180	Advance at 180° change of heading		m
$x_{0\max}$	XMX	Maximum advance		m
<i>Y</i> 090	Y090	Transfer at 90° change of heading		m
Y0180	Y0180	Tactical diameter (transfer at 180° change of heading)	t	m
<i>Y</i> 0max	Y0MX	Maximum transfer		m
$\beta_{ m C}$	DRCI	Drift angle at steady turning		rad

2.4.1.7 Zig-Zag Manoeuvres

ta	TIA	Initial turning time	S
----	-----	----------------------	---

ITTC Symbols

Version 2008

2 2.4 2.4.1 Ships in General Manoeuvrability and Sea Keeping Manoeuvrability 86

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
t _{c1}	TIC1	First time to check yaw (starboard)		S
t _{c2}	TIC2	Second time to check yaw (port)		S
t _{hc}	TCHC	Period of changes in heading	5	S
t _r	TIR	Reach time		S
$\mathcal{Y}_{0\max}$	Y0MX	Maximum transverse devia- tion		m
$\delta_{ m max}$	ANRUMX	Maximum value of rudder angle		rad
$\psi_{ m S}$	PSIS	Switching value of course angle		rad
ψ_{01}	PSI01	First overshoot angle		rad
ψ_{02}	PSI02	Second overshoot angle		rad
2.4.1.8 Sto	opping Manoeu	vres		
s _F	SPF	Distance along track, track reach		m
$x_{0\mathrm{F}}$	X0F	Head reach		m
$\mathcal{Y}_{0\mathrm{F}}$	Y0F	Lateral deviation		m
t _F	TIF	Stopping time		S

ITTC Symbols

Version 2008

ITTC Symbols	2	Ships in General	
Version 2008		Manoeuvrability and Sea Keeping Sea Keeping	87

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

2.4.2 Sea Keeping

Related information is to be found in Chapter 3 on General Mechanics in

Sections 3.1.2 on Time and Frequency Domain Quantities, 3.1.3 on Stochastic Processes, 3.2.1 on Inertial Properties, 3.2.2 on Loads, 3.2.3 on Rigid Body Motions, and 3.4.1 on Waves.

2.4.2.1 Basic Quantities

$A_{ m F}$	S	AFS	Projected area of stern fins		m^2
a_i		AT(I)	Attitudes of the floating system	i = 1, 2, 3, e.g. Euler angles of roll, pitch, and yaw, re- spectively	rad
f		FR	Frequency	1 / <i>T</i>	Hz
$f_{\rm E}$		FE	Frequency of wave encoun- ter	1 / T _E	Hz
f_z			Natural frequency of heave	$1 / T_z$	Hz
$f_{ heta}$			Natural frequency of pitch	$1 / T_{\theta}$	Hz
f_{φ}			Natural frequency of roll	$1 / T_{\varphi}$	Hz
$F_{\rm L}$		FS(2)	Wave excited lateral shear force	Alias horizontal!	Ν
$F_{ m N}$	I	FS(3)	Wave excited normal shear force	Alias vertical!	Ν
$M_{ m I}$	L	MB(3), FS(6)	Wave excited lateral bending moment	Alias horizontal!	Nm
$M_{ m I}$	N	MB(2), FS(5)	Wave excited normal bend- ing moment	Alias vertical!	Nm
M	Г	MT(1), FS(4)	Wave excited torsional mo- ment		Nm
n _A	W	NAW	Mean increased rate of revo- lution in waves		1/s
P_A	W	PAW	Mean power increased in waves		W
Q_I	AW	QAW	Mean torque increased in waves		Nm
R _A	W	RAW	Mean resistance increased in waves		N

Version 2008

μ

2 Ships in General

2.4 Manoeuvrability and Sea Keeping

88

2.4.2 Sea Keeping

ITTC Symbol	Computer Symbol	Name Definition or Explanation	SI- Unit
$S_{\eta}(f), S_{\eta\eta}(f), S_{\eta\eta}(\omega), S_{\eta}(\omega), S_{\eta\eta}(\omega)$	EWSF, EWSC	Wave elevation auto spectral see also section 1.4.1, Wa density	ves m ² s
x_i	X(I)	Absolute displacement of the $i = 1, 2, 3$:surge, sway, ship at the reference point and heave respectively	m
X_{u}	X(U)	Generalized displacement of $u = 16$ surge, sway, heaver a ship at the reference point roll, pitch, yaw	ve, m rad
$T_{\rm AW}$	TAW	Mean thrust increase in waves	Ν
Т	TC	Wave period	S
T _e	TE	Wave encounter period	S
T_z	TNHE	Natural period of heave	S
$T_{ heta}$	TNPI	Natural period of pitch	S
T_{arphi}	TNRO	Natural period of roll	S
$Y_z(\omega), A_{z\zeta}(\omega)$		Amplitude of frequency re- $z_a(\omega) / \zeta_a(\omega)$ or sponse function for transla- $z_a(\omega) / \eta_a(\omega)$ tory motions	1
$Y_{ heta\zeta}(\omega),\ A_{ heta\zeta}(\omega)$		Amplitude of frequency re- sponse function for rotary $\Theta_a(\omega) / \zeta_a(\omega)$ or $\Theta_a(\omega) / (\omega^2 / (g\zeta_a(\omega)))$ motions	1
Λ		Tuning factor	

or $L_z = \frac{T_z}{T_E}$ $L_q = \frac{T_q}{T_E}$ $L_f = \frac{T_j}{T_E}$

Wave encounter angleAngle between ship positive
x axis and positive direction
of waves (long crested) or
dominant wave direction
(short crested)rad

ITTC S	Symbols
--------	---------

Version	2008
---------	------

Ships in General 2

2.4

Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing 89 2.4.3

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
2.4.3 L	arge Amplitude N	Aotions Capsizing		
Α		Assumed centre of gravity above keel used for cross curves of stability - 199/1.2.4.1		
$1\overline{AB}$	XAB	Longitudinal centre of buoy- ancy from aft perpendicular - I99/1.2.4.2	Distance of centre of buoy- ancy from aft perpendicular	m
$A_{\rm C}$		Area of deck available to crew		m²
\overline{AF}	XAF	Distance of the centre of flotation from after perpen- dicular		m
\overline{AG}_{L}	XAG	Longitudinal centre of grav- ity from aft perpendicular	Distance of centre of gravity from aft perpendicular	m
$\overline{AG}_{\mathrm{T}}$	YAG	Transverse distance from assumed centre of gravity A, to actual centre of gravity G		m
\overline{AG}_{V}	ZAG	Vertical distance from as- sumed centre of gravity A, to actual centre of gravity G		m
$A_{ m LV}$	AHLV	Lateral area of hull above water		m²
$A_{ m RL}$		Positive area under righting lever curve		m²
$A_{ m SI}$	ASI	Attained subdivision index		1
I _{AS}				
$A_{\rm S}$	AS	Area of sails in profile ac- cording to ISO 8666		m²
$A_{ m V}$	AV	Projected lateral area of the portion of the ship and deck cargo above the waterline - IMO/IS, IMO/HSC'2000		m²

¹ For the representation of units in applications with limited character sets, the user is referred to ISO 2955: 1983, *In-formation processing – Representation of SI and other unit systems with limited character sets*.

Version 2008

2 2.4

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing 90 2.4.3

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
\overline{AZ}	YAZ	Righting arm based on hori- zontal distance from as- sumed centre of gravity A, to Z	Generally tabulated in cross curves of stability	m
В		Centre of buoyancy		
B _{CB}		Beam between centres of buoyancy of side hulls		m
BM	ZBM	Transverse metacentre above centre of buoyancy	Distance from the centre of buoyancy CB to transverse metacentre M $\overline{BM} = \frac{I_T}{\nabla} = \overline{KM} - \overline{KB}$	m
\overline{BM}_L	ZBML	Longitudinal metacentre above centre of buoyancy	$\overline{BM}_L = \overline{KM}_L - \overline{KB}$	m
b		Centre of flotation of added buoyancy layer or centre of lost buoyancy of the flooded volume		
b		Maximum tank breadth		m
C_D		Crew density	Proportion of boat plan needed for crew	
C_H		Height coefficient, depend- ing on the height above sea level of the structural mem- ber exposed to the wind		1
C_L		Crew limit	Maximum number of per- sons on board	
C _{MTL}	CMTL	Longitudinal trimming coef- ficient - I99/1.2.4.3	Trimming moment divided by change in trim which approximately equals BM_L / L	1
Cs		Shape coefficient, depending on the shape of the structural member exposed to the wind		1
d	Т	Draught, moulded, of ship hull - I99/1.2.1		m

Version 2008

2 2.4

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing 91 2.4.3

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
d		Density coefficient for sub- merged test weights		1
F		Centre of flotation of the water plane		
F		Wind force - IMO/IS		
f	FREB	Freeboard	From the freeboard markings to the freeboard deck, ac- cording to official rules	m
\overline{FB}	XFB	Longitudinal centre of buoy- ancy, L_{CB} , from forward perpendicular	Distance of centre of buoy- ancy from forward perpen- dicular	m
\overline{FF}	XFF	Longitudinal centre of flota- tion, L_{CF} , from forward per- pendicular	Distance of centre of floata- tion from forward perpen- dicular	m
\overline{FG}	XFG	Longitudinal centre of grav- ity, from forward perpen- dicular	Distance of centre of gravity from forward perpendicular	m
G		Centre of gravity of a vessel		
g		Centre of gravity of an added or removed weight (mass)		1
\overline{GG}_1	GGV	Vertical stability lever caused by a weight shift or weight addition	$\overline{KG}_1 = \overline{KG}_0 + \overline{GG}_1$	m
$\overline{G}\overline{G}_{\mathrm{H}}$	GGH	Horizontal stability lever caused by a weight shift or weight addition		m
\overline{GG}_{L}	GGL	Longitudinal stability lever caused by a weight shift or weight addition		m
$\overline{GG}_{\mathrm{V}}$	GGV	Vertical stability lever caused by a weight shift or weight addition	$\overline{KG}_1 = \overline{KG}_0 + \overline{GG}_1$	m

2 2.4

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing 92 2.4.3

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
\overline{GM}	GM	Transverse metacentric height	Distance of centre of gravity to the metacentre $\overline{GM} = \overline{KM} - \overline{KG}$ (not corrected for free sur- face effect)	m
$\overline{GM}_{ ext{EFF}}$	GMEFF	Effective transverse meta- centric height	<u><i>GM</i></u> Corrected for free sur- face and/or free communica- tion effects	m
$\overline{GM_L}$	GML	Longitudinal metacentric height	Distance from the centre of gravity G to the longitudinal metacentre M_L $\overline{GM}_L = \overline{KM}_L - \overline{KG}$	m
\overline{GZ}	GZ	Righting arm or lever	$\overline{GZ} = \overline{AZ} - \overline{AG}_{\rm V} \sin \varphi - \overline{AG}_{\rm T} \cos \varphi$	m
\overline{GZ}		Arm of statical stability cor- rected for free surfaces - IMO/table		m
\overline{GZ}_{MAX}	GZMAX	Maximum righting arm or lever		m
h		Maximum tank height		m
$h_{\rm CE}$		Height of centre of area of A_{SP} above waterline at SSM		m
HL		Heeling lever (due to various reasons) - IMO/HSC'2000	5	m
$h_{ m LP}$		Height of waterline above centre of area of immersed profile		m
K		Keel reference		
KA	ZKA	Assumed centre of gravity above moulded base of keel	Distance from the assumed centre of gravity <i>A</i> to the moulded base of keel or <i>K</i>	m
KB	ZKB	Centre of buoyancy above moulded base of keel	Distance from the centre of buoyancy <i>B</i> to the moulded base of keel or <i>K</i>	m

Version 2008

ITTC Symbols

Version 2008

2 2.4

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing 93 2.4.3

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
KG	ZKG	Centre of gravity above moulded base of keel	Distance from the centre of gravity G to the moulded base of keel or K	m
\overline{Kg}	ZKAG	Vertical centre of gravity of added or removed weight above moulded base of keel	Distance from the assumed centre of gravity, g, to the moulded base of keel or K	m
KM	ZKM	Transverse metacentre above moulded base of keel	Distance from the transverse metacentre M to the moulded base of keel or K	m
\overline{KM}_{L}	ZKML	Longitudinal metacentre above moulded base of keel	Distance from the longitudi- nal metacentre M_L to the moulded base of keel or K	m
k		Roll damping coefficient expressing the effect of bilge keels		1
L		Length of the vessel on the waterline in maximum load condition - IMO/IS		m
l		Arm of dynamic stability corrected for free surfaces - IMO/table		m
l	XTA	Longitudinal trimming arm	$x_{\rm CG} - x_{\rm CB}$	m
1		Maximum tank length		m
l _s		Actual length of enclosed superstructure extending from side to side of the ves- sel		m
$l_{ m w}$		Wind heeling lever		m
М		Metacentre of a vessel	See subscripts for qualifica- tion	
т	SHIPMA	Ship mass	W/g	kg
M _C		Maximum offset load mo- ment due to crew		Nm
$M_{ m c}$		Minimum capsizing moment as determined when account is taken of rolling		Nm

Version 2008

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing 94

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$M_{ m FS}$		Free surface moment at any inclination		Nm
$m_{\rm LCC}$		Mass in light craft condition		kg
<i>m</i> _{LDC}		Mass in loaded displacement condition according to		kg
<i>m</i> _{MTL}		Maximum total load (mass)		kg
$M_{ m R}$		Heeling moment due to turn- ing		Nm
$M_{ m S}$	MS	Moment of ship stability in general	$\Delta \overline{GZ}$. Other moments such as those of capsizing, heel- ing, etc. will be represented by $M_{\rm S}$ with additional sub- scripts as appropriate.	Nm
m _{SSC}		Mass in standard sailing conditions according to		kg
M_{TC}	MTC	Moment to change trim one centimetre		Nm/cm
M_{TM}	MTM	Moment to change trim one meter	ΔC_{MTL}	Nm/m
$M_{ m W}$		Maximum heeling moment due to wind		Nm
$M_{ m v}$		Dynamically applied heeling moment due to wind pres- sure		Nm
\overline{OG}		Height of centre of gravity above waterline		m
$P_{\rm V}$		Wind pressure		Pa
r		Effective wave slope coeffi- cient		1
$R_{\rm SI}$	RSI	Required subdivision index		1
S		Wave steepness		1
STIX		Actual stability index value according to		1

2 2.4

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing 95 2.4.3

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
<u>STIX</u>		Required stability index value, see		1
Т	YHA	Equivalent transverse heel- ing arm	Heeling moment/ Δ	m
TL		Turning lever		m
$t_{ m s}$ $t_{ m KL}$	TRIM	Static trim	$T_{\rm A}$ - $T_{\rm F}$ - $d_{\rm KL}$	m
V v		Tank total capacity		m ³
V_0		Speed of craft in the turn - IMO/HSC'2000 Service speed - IMO/IS		m/s
$ u_{ m W}$		Wind speed used in calcula- tion		m/s
W	SHIPWT	Ship weight	mg	Ν
x _{CB}	XACB	Longitudinal centre of floa- tation of added buoyant layer	Longitudinal distance from reference point to the centre of the added buoyant layer, b	m
$X_{\rm CB}$ $L_{\rm CB}$	XCB	Longitudinal centre of buoy- ancy (L_{CB})	Longitudinal distance from reference point to the centre of buoyancy, B	m
$X_{ m CF}$ $L_{ m CF}$	XCF	Longitudinal centre of flotation $(L_{\rm CF})$	Longitudinal distance from reference point to the centre of flotation, F	m
<i>x</i> _{CG}	XACG	Longitudinal centre of grav- ity of added weight (mass)	Longitudinal distance from reference point to the centre of gravity, g, of an added or removed weight (mass)	m
$X_{ m CG}$ $L_{ m CG}$	XCG	Longitudinal centre of gravity (L_{CG})	Longitudinal distance from reference point to the centre of gravity, G	m
X_1, X_2		Roll damping coefficients		1
x _D		Distance of down flooding opening from end of boat		m

Version 2008

ITTC Symbols

Version 2008

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing 96

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
Y _{CG,} Ycg	YCG	Lateral displacement of centre of gravity (Y_{CG})	Lateral distance from a ref- erence point to the centre of gravity, G	m
УD		Distance of down flooding opening from gunwale		m
<i>y</i> _D ′		Distance of down flooding opening off centreline		m
Z	ZRA	Intersection of righting arm with line of action of the centre of buoyancy		
Ζ		Vertical distance from the centre of A to the centre of the underwater lateral area or approximately to a point at one half the draught - IMO/IS		m
Z, h		Vertical distance from the centre of A to the waterline		m
z_{D}		Height above waterline of down flooding opening		m
Z_{SA}	ZSA	Static sinkage at AP	Caused by loading	m
Z_{SF}	ZSF	Static sinkage at FP	Caused by loading	m
Z_S	ZS	Mean static sinkage	$(z_{SF}+z_{SA})/2$	m
δ		Tank block coefficient		1
$\delta t_{ m KL}$	DTR	Change in static trim		m
Δ	DISPF	Displacement (buoyant) force	$g ho \nabla$	N
Δ_m	DISPM	Displacement mass	ho abla	kg
∇	DISPVOL	Displacement volume	$\Delta/(ho g)$	m ³
$V_{ m fw}$	DISVOLFW	Displacement volume of flooded water	$\Delta_{\rm fw}/(ho g)$	m³
ϕ	HEELANG	Heel angle		rad
ϕ_0		Heel angle during offset load tests	l	rad

Version 2008

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing 97

			8 I I	8
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$\phi_{0(\text{REQ})}$		Maximum permitted heel angle during		rad
$\phi_{ m D}$		Actual down flooding angle according to		rad
$\phi_{\rm D(REQ)}$		Required down flooding angle, see		rad
$\phi_{ m DC}$		Down flooding angle to non- quick draining cockpits		rad
$\phi_{ m DH}$		Down flooding angle to any main access hatchway		rad
$\phi_{ m F}$	HEELANGF	Heel angle at flooding		rad
Ø GZMAX		Angle of heel at which maximum righting moment occurs		rad
$\phi_{ m R}$		Assumed roll angle in a seaway		rad
$\phi_{ m VS}$	HEELANGV	Heel angle for vanishing stability		rad
$\phi_{ m W}$		Heel angle due to calculation wind	1	rad
μ	PMVO	Volumetric permeability	The ratio of the volume of flooding water in a com- partment to the total volume of the compartment	1
$ heta_{ m c}$		Capsizing angle under the action of a gust of wind IMO/IS		rad
$\phi_{ m m}$		Heel angle corresponding to the maximum of the statical stability curve		rad
$\theta_{\rm S}$	TRIMS	Static trim angle	$\tan^{-1}((z_{SF}-z_{SA})/L)$	rad
ρ	RHO	(Liquid) mass density		kg/m³
$ ho_{ m A}$	RHOA DNA	(Air) mass density		kg/m³
$ ho_{\scriptscriptstyle m entropy}$	DNWA	(Water) mass density		kg/m³

Version 2008

Ships in General Manoeuvrability and Sea Keeping Large Amplitude Motions Capsizing 98

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

2.4.4 Symbols for Attributes and Subscripts

А	Aft
Е	Entrance
F	Fore
R	Run
Z	Heave
θ	Pitch
φ	Roll

Version 2008

3 Special Craft

3.1 Planing and Semi-Displacement Vessels

3.1.1 Geometry and Hydrostatics 99

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

3. SPECIAL CRAFT

3.1 Planing and Semi-Displacement Vessels

3.1.1 Geometry and Hydrostatics

See also Section 1.2.1, Hull Geometry and Section 1.2.2 Propulsor Geometry

A	1 _P	APB	Planing bottom area	Horizontally projected plan- ing bottom area (at rest), excluding area of external spray strips	m ²
E	B _{LCG}	BLCG		Breadth over spray strips measured at transverse sec- tion containing centre of gravity	m
E	B _{PC}	BPC	Beam over chines	Beam over chines, excluding external spray strips	m
E	3 _{PA}	BPA	Mean breadth over chines	$A_{\rm P}/L_{\rm P}$	m
E	Зрт	BPT	Transom breadth	Breadth over chines at tran- som, excluding external spray strips	m
E	$B_{\rm PX}$	BPX	Maximum breadth over chines	Maximum breadth over chi- nes, excluding external spray strips	m
L	SB	LSB	Total length of shafts and bossings		m
L	-PR	LPRC	Projected chine length	Length of chine projected in a plane parallel to keel	m
β	}	BETD	Deadrise angle of planing bottom	Angle between a straight line approximating body section and the intersection between basis plane and section plane	rad
ß	3 _M	BETM	Deadrise angle at midship section		rad
β	8 _T	BETT	Deadrise angle at transom		rad

Version 2008

Special CraftPlaning and Semi-Displacement VesselsGeometry and Hydrostatics100

3 3.1 3.1.1

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
€ _{SH}	EPSSH	Shaft angle	Angle between shaft line and reference line (positive, shaft inclined downwards)	rad

Version 2008

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.2 Geometry and Levers, Underway 101 101

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
3.1.2 Geon	netry and Leve	ers, Underway		
3.1.2.1 Geo	ometry, Under	way		
d_{TR}	DTRA	Immersion of transom, underway	- Vertical depth of trailing edge of boat at keel below water surface level	m
$h_{ m P}$	HSP	Wetted height of strut palms (flange mounting)		m
$h_{ m R}$	HRU	Wetted height of rudders		m
L _C	LC	Wetted chine length, under- way	-	m
l _{CP}	LCP	Lever of resultant of pres- sure forces, underway	- Distance between centre of pressure and aft end of plan- ing surface	m
$L_{\rm K}$	LK	Wetted keel length, under- way	-	m
$L_{\rm M}$	LM	Mean wetted length, under- way	$-(L_{\rm K}+L_{\rm C})/2$	m
$S_{ m WHP}$	SWHP	Wetted area underway of planing hull	f Principal wetted area bounded by trailing edge, chines and spray root line	m ²
$S_{ m WB}$	SWB	Wetted bottom area, under- way	- Area bounded by stagnation line, chines or water surface underway and transom	m ²
$S_{ m WHE}$	SWHE	Wetted hull area, underway	Total wetted surface of hull underway, including spray area and wetted side area, w/o wetted transom area	m ²
$S_{ m WHS}$	SWSH	Area of wetted sides	Wetted area of the hull side above the chine or the design water line	m ²
S _{WS} , S _S	SWS	Area wetted by spray	Wetted area between design line or stagnation line and spray edge	m ²

Version 2008

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.2 Geometry and Levers, Underway 102 102

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$lpha_{ m B}$	ALFSL	Angle of stagnation line	Angle between projected keel and stagnation line a in plane normal to centre plane and parallel to reference line	rad
$\alpha_{\rm BAR}$	ALFBAR	Barrel flow angle	Angle between barrel axis and assumed flow lines	rad
$\mathcal{E}_{\mathrm{W}L}$	EPSWL	Wetted length factor	$L_{\rm M}$ / $L_{\rm WL}$	1
$\mathcal{E}_{\mathrm{WS}}$	EPSWS	Wetted surface area factor	S / S_0	1
$ heta_{ m DWL}$	TRIMDWL	Running trim angle based on design waterline	Angle between design water- line and running waterline (positive bow up)	rad
$ heta_{ m S}$, $ heta_0$	TRIMS	Static trim angle	Angle between ship design waterline and actual water line at rest (positive bow up) $\tan^{-1}((z_{SF} - z_{SA}) / L)$	rad
$ heta_V$, $ heta_{ m D}$	TRIMV	Running (dynamic) trim angle	Angle between actual water line at rest and running water line (positive bow up) $\tan^{-1}((z_{VF} - z_{VA}) / L)$	rad
$\lambda_{ m W}$	LAMS	Mean wetted length-beam ratio	$L_{\rm M} / (B_{LCG})$	1
$ au_{ m DWL}$	TAUDWL	Reference line angle	Angle between the reference line and the design waterline	rad
$ au_{ m R}$	TAUR	Angle of attack relative to Angle between the reference the reference line line and the running water- line		rad
φsp	PHISP	Spray angle	Angle between stagnation line and keel (measured in plane of bottom)	rad
δ_λ	DLAM	Dimensionless increase in total friction area	Effective increase in friction area length-beam ratio due to spray contribution to drag	1

3.1.2.2 Levers, Underway

e _A	ENAPP	Lever of appendage lift force	e Distance between N_A and	m
		$N_{ m A}$	centre of gravity (measured	

Version 2008

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.2 Geometry and Levers, Underway 103 103

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
			normally to $N_{\rm A}$)	
e _B	ENBOT	Lever of bottom norma force $N_{\rm B}$	l Distance between $N_{\rm B}$ and centre of gravity (measured normally to $N_{\rm B}$)	m
$e_{\mathrm{P}N}$	ENPN	Lever of propeller norma force N_{PN}	l Distance between propeller centreline and centre of gravity (measured along shaft line)	m
€pp	ENPP	Lever of resultant of propel ler pressure forces N_{PP}	- Distance between $N_{\rm PP}$ and centre of gravity (measured normally to $N_{\rm PP}$)	m
e _{PS}	ENPS	Lever of resultant propelle suction forces $N_{\rm PS}$	r Distance between $N_{\rm PS}$ and centre of gravity (measured normal to $N_{\rm PS}$)	m
e _{RP}	ENRP	Lever of resultant of rudde pressure forces N_{RP}	r Distance between $N_{\text{R}P}$ and centre of gravity (measured normal to $N_{\text{R}P}$)	m
faa	FRAA	Lever of wind resistance R_{AA}	Distance between R_{AA} and centre of gravity (measured normal to R_{AA})	m
fap	FRAP	Lever of appendage drag $R_{\rm AP}$	Distance between R_{AP} and centre of gravity (measured normal to R_{AP})	m
$f_{ m F}$	FRF	Lever of frictional resistance $R_{\rm F}$	e Distance between $R_{\rm F}$ and centre of gravity (measured normal to $R_{\rm F}$)	m
fк	FRK	Lever of skeg or keel resis tance $R_{\rm K}$	- Distance between $R_{\rm K}$ and centre of gravity (measured normal to $R_{\rm K}$)	m
$f_{ m R}$	FDRR	Lever of augmented rudde drag $\Delta R_{\rm RP}$	r Distance between $\Delta R_{\rm RP}$ and centre of gravity (measured normal to $\Delta R_{\rm RP}$)	m
fs	FSL	Lever of axial propelle thrust	r Distance between axial thrust and centre of gravity (measured normal to shaft line)	m

Version 2008

3 Special Craft 3.1 Planing and Semi-Displacement Vessels 3.1.2 Geometry and Levers, Underway 104 104

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
<i>f</i> _T	FRT	Lever of total resistance R _T	Distance between $R_{\rm T}$ and centre of gravity (measured normal to $R_{\rm T}$)	m

ITTC Syn	ibols
----------	-------

Special CraftPlaning and Semi-Displacement VesselsResistance and Propulsion105 3 3.1 3.1.3

ITTC Symb	1	Name	Definition or Explanation	SI- Unit
3.1.3	Resistance and Pro	opulsion		
	See also Sections 2	2.3.1 on Hull Resistance		
C_{L0}	CL0D	Lift coefficient for zero dea- drise	$\Delta / (B_{\rm CG}^2 q)$	1
$C_{L\beta}$	CLBET	Lift coefficient for deadrise surface	$\Delta / (B_{\rm CG}^2 q)$	1
C_V	CSP	Froude number based on breadth	$V/\left(B_{\mathrm{CG}}g\right)^{1/2}$	1
C_{Δ}	CDL	Load coefficient	$\varDelta / (B_{\rm CG}{}^3\rhog)$	1
$L_{\rm VHD}$	LVD	Vertical component of hy- drodynamic lift		Ν
$L_{\rm VS}$	LVS	Hydrostatic lift	Due to buoyancy	Ν
F_{TA}	FTAPP	Appendage drag force (par- allel to reference line)	Drag forces arising from appendages inclined to flow, assumed to act parallel to the reference line	Ν
F_{TB}	FTBOT	Bottom frictional force (par- allel to reference line)	Viscous component of bot- tom drag forces assumed acting parallel to the refer- ence line	Ν
F _{TK}	FTKL	Keel or skeg drag force (parallel to reference line)	Drag forces arising from keel or skeg, assumed to act parallel to the reference line	N
F_{TRP}	FTRP	Additional rudder drag force (parallel to reference line)	Drag forces arising from influence of propeller wake on the rudder assumed to act parallel to the reference line	Ν
N _A	NAPP	Appendage lift force (nor- mal to reference line)	Lift forces arising from ap- pendages inclined to flow, assumed to act normally to reference line	Ν
N _B	NBOT	Bottom normal force (nor- mal to reference line)	Resultant of pressure and buoyant forces assumed act- ing normally to the reference line	Ν

ITTC Sy	ymbols
---------	--------

3	Special Craft
3.1	Planing and Semi-Displacement Vessels
3.1.3	Resistance and Propulsion 106

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
N_{PP}	NPP	Propeller pressure force (normal to reference line)	Resultant of propeller pres- sure forces acting normally to the reference line	N
$N_{ m PS}$	NPS	Propeller suction force (normal to reference line)	Resultant of propeller suc- tion forces acting normally to the reference line	Ν
N _{RP}	NRP	Rudder pressure force (nor- mal to reference line)	Resultant of rudder pressure forces acting normally to the reference line	N
R_{K}	RKEEL	Keel drag		Ν
R_{π}	RPI	Induced drag	$g \rho \nabla t g \tau$	Ν
$R_{\rm PAR}$	RPAR	Parasitic drag	Drag due to inlet and outlet openings	Ν
R_{PS}	RSP	Pressure component of spray drag	7	Ν
R_{T}	RT	Total resistance	Total towed resistance	Ν
$R_{\rm VS}$	RSV	Viscous component of spray drag	$C_{ m F}S_{ m WS}q_{ m S}$	Ν
$V_{\rm BM}$	VBM	Mean bottom velocity	Mean velocity over bottom of the hull	m/s
$V_{\rm SP}$	VSP	Spray velocity	Relative velocity between hull and spray in direction of the spray	m/s

ITTC	Symbols
------	---------

3 Special Craft

3.2 Multi-Hull Vessels

3.2.1 Geometry and Hydrostatics 107

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

3.2 Multi-Hull Vessels (Add trimaran symbols)

3.2.1 Geometry and Hydrostatics

See also Section 2.2.1, Hull Geometry

A_{I}	AIA	Strut-hull intersection area		m^2
B_{B}	BB	Box beam	Beam of main deck	m
B _S	BS	Hull spacing	Distance between hull centre lines	m
$B_{\rm TV}$	BTUN	Tunnel width	Minimal distance of the demihulls at the waterline	m
$D_{ m H}$	DHUL	Hull diameter	Diameter of axis symmetric submerged hulls	m
$D_{\rm X}$	DX	Hull diameter at the longitu dinal position "X"	-	m
H _{DK}	HCLDK	Deck clearance	Minimum clearance of wet deck from water surface at rest	m
$H_{\rm SS}$	HSS	Strut submerged depth	Depth of strut from still wa- ter line to strut-hull intersec- tion	m
i _{EI}	ANENIN	Half angle of entrance a tunnel (inner) side	at Angle of inner water line with reference to centre line of demihull	rad
i _{EO}	ANENOU	Half angle of entrance a outer side	at Angle of outer water line with reference to centre line of demihull	rad
$L_{\rm CH}$	LCH	Length of centre section o hull	f Length of prismatic part of hull	m
$L_{\rm CS}$	LCS	Length of centre section o strut	f Length of prismatic part of strut	m
$L_{ m H}$	LH	Box length	Length of main deck	m
$L_{ m NH}$	LNH	Length of nose section o hull	f Length of nose section of hull with variable diameter	m
$L_{\rm NS}$	LNS	Length of nose section o	f Length of nose section of	m

Version 2008

Special Craft Multi-Hull Vessels Geometry and Hydrostatics 108

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
Ls	LS	strut Strut length	strut with variable thickness Length of strut from leading	m
$L_{ m SH}$	LSH	Length of submerged hull	to trailing edge	m
t _S	TSTR	Maximum thickness of strut		m

3	Special Craft
3.2	Multi-Hull Vessels
3.2.2	Resistance and Propulsion

109

ITTC Computer Name Definition or SI-Symbol Symbol Explanation Unit **Resistance and Propulsion** 3.2.2 3.2.2.1 Resistance Components See also Section 2.3.1 on Hull Resistance RFMH Frictional resistance of Ν $R_{\rm FMH}$ multi-hull vessel Frictional resistance inter- $R_{\rm FMH}$ - $\Sigma R_{\rm F}$ $R_{\rm FINT}$ **RFINT** Ν ference correction Residuary resistance correc- R_{TMH} - R_{FMH} Ν $R_{\rm RMH}$ RRMH tion of multi-hull $R_{\rm RI}$ RRINT Residuary resistance inter- $R_{\rm RMH}$ - $\Sigma R_{\rm R}$ Ν ference correction $R_{\rm TMH}$ **RTMH** Total resistance of multi-hull Ν vessel $R_{\rm TI}$ **RTINT** Total resistance interference R_{TMH} - ΣR_{T} Ν

correction

ITTC Symbols

Version 2008

ITTC	Symbols

3

3.3

Special Craft Hydrofoil Boats Geometry and Hydrostatics 3.3.1 110

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

3.3 Hydrofoil Boats

3.3.1 Geometry and Hydrostatics

See Sections 2.2.1 and Sections 2.2.4

$A_{ m F}$	AFO	Foil area (general)	Foil area in horizontal plane	m^2
$A_{\rm FT}$	AFT	Total foil plane area		m^2
$B_{ m FOA}$	BFOA	Maximum vessel breadth including foils		m
$b_{ m S}$	BST	Span of struts		m
$b_{ m ST}$	BSTT	Transverse horizontal dis- tance of struts		m
CC	CHC	Chord length at centre plane		m
\mathcal{C}_{F}	CFL	Chord length of flap		m
\mathcal{C}_{M}	CHM	Mean chord length		m
CS	CSTR	Chord length of a strut		m
$\mathcal{C}_{\mathrm{SF}}$	CHSF	Chord length of strut at in- tersection with foil		m
c_{T}	CHTI	Chord length at foil tips		m
$W_{ m F}$	WTF	Weight of foil		Ν
$\alpha_{\rm c}$	ALFTW	Geometric angle of twist		rad
$ heta_{ m DH}$	DIHED	Dihedral angle		rad
$V_{ m F}$	DISVF	Foil displacement volume		m^3

3.3.1.1 Geometry, Underway

$A_{ m FE}$	AFE	Emerged area of foil	m^2
$A_{ m FF}$	ASFF	Submerged area of front foil	m^2
$A_{\rm FR}$	ASFR	Submerged area of rear foil	m^2
$A_{\mathrm FS}$	AFS	Submerged foil area	m^2
$A_{\rm FST0}$	AFSTO	Submerged foil plan area at take-off speed	m ²

Version 2008

3 3.3 3.3.1 Special Craft Hydrofoil Boats Geometry and Hydrostatics 111

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
A_{SS}	ASS	Submerged strut area		m^2
$b_{ m w}$	BSPW	Foil span wetted		m
C _{PF}	CPFL	Distance of centre of pres- sure on a foil or flap from leading edge		m
Fr_L	FNFD	Froude number based on foi distance	$V/(g L_{\rm F})^{1/2}$	1
Fr _c	FNC	Froude number based or chord length	$V/(g c_{\rm M})^{1/2}$	1
$h_{\rm CG}$	HVCG	Height of centre of gravity foilborne	Distance of centre of gravity above mean water surface	m
$h_{ m F}$	HFL	Flight height	Height of foil chord at foil- borne mode above position at rest	m
$h_{ m K}$	HKE	Keel clearance	Distance between keel and mean water surface foilborne	m
l _F	LEFF	Horizontal distance of centre of pressure of front foil to centre of gravity		m
l _{FR}	LEFR	Horizontal distance between centres of pressure of front and rear foils	$l_{\rm F} + l_{\rm R}$	m
l _R	LERF	Horizontal distance of centre of pressure of rear foil to centre of gravity		m
$T_{ m F}$	TFO	Foil immersion	Distance between foil chord and mean water surface	m
$T_{ m FD}$	TFD	Depth of submergence of apex of a dihedral foil	f Distance between foil apex and mean water surface	m
$T_{\rm FM}$	TFOM	Mean depth of foil submer- gence	-	m
$\alpha_{ m IND}$	ALFIND	Downwash or induced angle		rad
α_{M}	ALFM	Angle of attack of mean lift coefficient for foils with twist		rad

Version 2008

3 3.3 3.3.1 Special Craft Hydrofoil Boats Geometry and Hydrostatics

112

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$\alpha_{\rm s}$	AFS	Angle of attack for which flow separation (stall) occu	rs	rad
α_{TO}	ATO	Incidence angle at take-off speed		rad

ITTC Symbols	
--------------	--

Version 2008	8
--------------	---

3 Special Craft3.3 Hydrofoil Boats3.3.2 Resistance and Propulsion

113

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

3.3.2 Resistance and Propulsion

See also Section 2.3.1 Hull Resistance

3.3.2.1 Basic Quantities

$D_{ m F}$	DRF	Foil drag	Force in the direction of mo- tion of an immersed foil	Ν
$D_{ m FR}$	DFA	Drag force on rear foil	$C_{DF} A_{FR} q$	Ν
$D_{ m FF}$	DFF	Drag force on front foil	$C_{DF}A_{FF}q$	N
D_{I}	DRIND	Induced drag	For finite span foil, the com- ponent of lift in the direction of motion	Ν
$D_{ m INT}$	DRINT	Interference drag	Due to mutual interaction of the boundary layers of inter- secting foil	Ν
$D_{ m P0}$	DRF0	Profile drag for angle of at- tack equal to zero lift	Streamline drag	Ν
D_{S}	DRSP	Spray drag	Due to spray generation	Ν
D_{ST}	DRST	Strut drag		Ν
$D_{ m W}$	DRWA	Wave drag	Due to propagation of sur- face waves	Ν
$D_{ m V}$	DRVNT	Ventilation drag	Due to reduced pressure at the rear side of the strut base	Ν
$L_{ m F}$	LF	Lift force on foil	$C_L A_{\rm FT} q$	Ν
$L_{ m FF}$	LFF	Lift force on front foil	$C_L A_{\rm FF} q$	Ν
$L_{ m FR}$	LFR	Lift force on rear foil	$C_L A_{\rm FR} q$	Ν
L_0	LF0	Profile lift force for angle of attack of zero	$C_{L0}A_{\rm FT}q$	Ν
L_{TO}	LT0	Lift force at take off	$C_{L\mathrm{TO}}A_{\mathrm{FT}}q$	Ν
M	MSP	Vessel pitching moment		Nm

ITTC Symbols

T 7	•	2000
Ve	rsion	2008
	1 01011	

Special Craft Hydrofoil Boats Resistance and Propulsion 114

ITTC C	Computer	Name	Definition or	SI-
Symbol S	Symbol		Explanation	Unit

3.3.2.2 Derived Quantities

C_{DF}	CDF	Drag coefficient of foil	$D_{ m F}$ / ($A_{ m FS}$ q)	1
C_{DI}	CDI	Induced drag coefficient	D_{I} / (A_{FS} q)	1
C_{DINT}	CDINT	Interference drag coefficient	$D_{\rm INT} / (A_{\rm FS} q)$	1
C_{D0}	CDO	Section drag coefficient for angle of attack equal to zero	$D_{ m P}$ / ($A_{ m FS}$ q)	1
C_{DS}	CDSP	Spray drag coefficient	$D_{\rm S}$ / ($A_{\rm FS}$ q)	1
C_{DVENT}	CDVENT	Ventilation drag coefficient	$D_{ m V}/(A_{ m FS} q)$	1
C_{DW}	CDW	Wave drag coefficient	$D_{ m W}$ / (A_{FS} q)	1
$C_{L m F}$	CLF	Foil lift coefficient	$L_{ m F}$ / ($A_{ m FS}$ q)	1
C_{L0}	CLO	Profile lift coefficient for angle of attack equal to zero	$L_0 / (A_{\rm FS} q)$	1
C_{LTO}	CLTO	Lift coefficient at take-off condition	$L_{\rm TO}$ / ($A_{\rm FS}$ q)	1
C_{LX}	CLA	Slope of lift curve	$dC_L/d\alpha$	1
C_M	СМ	Pitching moment coefficient	$M/((A_{\mathrm{FF}}+A_{\mathrm{FR}})(l_{\mathrm{F}}-l_{\mathrm{R}})q)$	1
$M_{ m F}$	MLF	Load factor of front foil	$L_{ m FF}$ / $arDelta$	1
$M_{ m R}$	MLR	Load factor of rear foil	L_{FR} / \varDelta	1
\mathcal{E}_{F}	EPSLDF	Lift/ Drag ratio of foil	L/D	1

ITTC	Symbols
------	---------

Special Craft ACV and SES Geometry and Hydrostatics 115

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

3.4 ACV and SES

3.4.1 Geometry and Hydrostatics

See also Section 1.2.1

$A_{\rm C}$	CUA	Cushion area	Projected area of ACV or SES cushion on water suface	m^2
B _C	BCU	Cushion beam	SES cushion beam measured between the side walls	m
$B_{\rm WLT}$	BWLT	Total waterline breadth of SES	At the water line	m
$H_{\rm CG}$	HVCG	Height of centre of gravity above mean water plane beneath craft		m
$h_{ m BS}$	HBS	Bow seal height	Distance from side wall keel to lower edge of bow seal	m
$H_{\rm SK}$	HSK	Skirt depth		m
$h_{ m SS}$	HSS	Stern seal height	Distance from side wall keel to lower edge of stern seal	m
$L_{\rm B}$	LB	Deformed bag contact lengt	h	m
$L_{\rm C}$	LAC	Cushion length		m
L_{E}	LACE	Effective length of cushion	$A_{\rm C}/B_{\rm C}$	m
$S_{\rm H0}$	SSH0	Wetted area of side hulls at rest off cushion	Total wetted area of side walls under way on cushion	m ²
$S_{ m SHC}$	SSHC	Wetted area of side hulls under way on cushion	Total wetted area of side walls under way on cushion	m ²
$S_{ m SH}$	SSH	Wetted area of side hulls under way off cushion	Total wetted area of side walls under way off cushion	m^2
Х _Н , <i>L</i> _Н	XH, LH	Horizontal spacing betwee inner and outer side skin hinges or attachment point to structure	rt	m

Version 2008

Special Craft ACV and SES Geometry and Hydrostatics 116

ITTC Symbol	Computer Symbol	Name Definition or Explanation	SI- Unit
X _S , L _S	XS, LS	Distance of leading skirt needs clarification contact point out-board or outer hinge of attachment point to structure	m
$Z_{ m H}$, $H_{ m H}$	ZH, HH	Vertical spacing between needs clarification inner and outer side skirt hinges or attachment points to structure	m
$\delta B_{\rm C}$	DBCV	Increase in cushion beam due to water contact	m
$\mathcal{E}_{\mathrm{WS}}$	EPSWS	Wetted surface factor S_{SHC} / S_{SH0}	1
$ heta_{ m B}$	TETB	Bag contact deformation angle	rad
$ heta_{ m F}$	TETF	Finger outer face angle	rad
$ heta_{ m W}$	TETW	Slope of mean water plane for surface level beneath cushion periphery	rad
$ ho_{ m A}$	DNA	(ACV and SES) Mass density Mass of air per unit volume of air	kg/m ³
ζc	ZETAC	Height of cushion generated wave above mean water plane at leading edge side of the skirt	m

ITTC	ITTC Symbols		Special Craft 4 ACV and SES		
Versio	Version 2008			ACV and SES Geometry and Hydrostatics	117
ITTC Symbo	Computer ol Symbol	Name		Definition or Explanation	SI- Unit
3.4.2	Resistance and Prop	oulsion			
	See also Section 2.3	.1 on Hull Resistance			
C_{Δ}	CLOAD	Cushion loading coefficie	ent	$\Delta / (g \rho_{\rm A} A_{\rm C}^{3/2})$	1
C_{PR}	CPR	Aerodynamic profile c coefficient	drag	$g R_0 / (\rho_{\rm A} V_{\rm R}^2 A_{\rm C} / 2)$	1
$C_{ m WC}$	CWC	Cushion wave making conficient	oef-		1
$p_{\rm B}$	PBM	Mean bag pressure			Pa
$p_{\rm BS}$	PBS	Bow seal pressure		Pressure in the bow seal bag	Pa
$p_{\rm CE}$	PCE	Mean effective skirt press	sure		Pa
$p_{\rm CU}$	PCU	Cushion pressure		Mean pressure in the cush- ion	Pa
$p_{ m FT}$	PFT	Fan total pressure			Pa
$p_{\rm LR}$	PLR	Cushion pressure to ler ratio	ngth	$P_{\rm CU}/L_{\rm C}$	Pa/m
$p_{\rm SK}$	PSK	Skirt pressure in general			Pa
$p_{\rm SS}$	PSS	Stern seal pressure		Pressure in the stern seal bag	Pa
$P_{\rm FCU}$	PFCU	Power of lift fan			W
$P_{\rm FSK}$	PFSK	Power of skirt fan			W
$Q_{\rm BS}$	QBS	Bow seal air flow rate		Air flow rate to the bow seal	m^3/s
$Q_{\rm CU}$	QCU	Cushion air flow rate		Air flow rate to cushion	m ³ /s
$Q_{\rm SS}$	QSS	Stern seal air flow rate		Air flow rate to the stern seal	m ³ /s
Q_{T}	QT	Total air volume flow			m ³ /s
Q_{TS}	QTS	Total air volume flow of skirt			m ³ /s
$R_{\rm AT}$	RAT	Total aerodynamic re tance	esis-	$R_M + R_0$	Ν
$R_{ m H}$	RH	Hydrodynamic resistance	;	$R_{\rm W} + R_{ m WET}$	Ν
R_M	RM	Intake momentum resista in general	ance	$\rho_{\rm A} Q_{\rm T} V_{\rm A}$	Ν
R_{MCU}	RMCU	Intake momentum resista of cushion	ance	$\rho_{\rm A} Q_{\rm CU} V_{\rm A}$	Ν

Version 2008

Special Craft ACV and SES Geometry and Hydrostatics 118

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
R _{ASK}	RASK	Intake momentum	resistance $\rho_A Q_{TS} V_A$	Ν
$R_{ m WET}$	RWET	Resistance due to w	vetting	Ν
$T_{\rm C}$	TC0	Cushion thrust		Ν

ITTC Symbols	3	Special Craft	
	3.5	Ice going Vessels	
Version 2008	3.5.1	Resistance and Propulsion	119

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

3.5 Ice Going Vessels

 K_{OIA}

 K_{TIA}

 $n_{\rm IA}$

KQICMS

KTICMS

FRICMS

Average

in ice

torque in ice

revolution in ice

3.5.1 **Resistance and Propulsion** (See Figure 3.4, p 225 and Figure 3.8, p 231 of Vol. 1 of the *Proceedings of the 21st ITTC*) Coefficient of net ice resis- $R_I / (\rho_I g h^2 B)$ $C_{\rm I}$ CI 1 tance $C_{\rm IW}$ CIW Coefficient of water resis- $R_{IW} / (S q_{IW})$ 1 tance in the presence of ice FNIC Normal ice force on a body Projection of hull - ice inter-Ν F_{IN} action force on the external normal FTIC Tangential ice force on a Projection of the hull - ice Ν $F_{\rm IT}$ interaction force on the dibody rection of motion Froude number based on ice $V/(g h_{\rm I})^{1/2}$ Fr_{I} **FNIC** 1 thickness F_{XI} FXIC Components of the local Ν FYIC ice force F_{YI} Ν F_{ZI} FZIC Ν Coefficient of friction befid **CFRD** Ratio of tangential force to 1 tween surface of body and normal force between two ice (dynamic) bodies (dynamic condition) **CFRS** Coefficient of friction be-The same as above (static 1 fis tween surface of body and condition) ice (static) $h_{\rm I}$ HTIC Thickness of ice m $h_{\rm SN}$ HTSN Thickness of snow cover m

coefficient

Average rate of propeller

Average coefficient of thrust $T_{LA} / (\rho_W n_{LA}^2 D^4)$

of $Q_{IA} / (\rho_W n_{IA}^2 D^5)$

1

1

Hz

Version 2008

Special Craft Ice going Vessels Resistance and Propulsion 3 3.5 3.5.1 120

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$P_{\rm DI}$	PDI	Delivered power at propeller in ice	r 2 $\pi Q_{\rm IA} n_{\rm IA}$	W
Q_{IA}	QIMS	Average torque in ice		Nm
R_{I}	RI	Net ice resistance	$R_{\rm IT}$ - $R_{\rm IW}$	Ν
$R_{\rm IT}$	RIT	Total resistance in ice	Ship towing resistance in ice	Ν
$R_{\rm IW}$	RIW	Hydrodynamic resistance in presence of ice	Total water resistance of ship in ice	Ν
T_{IA}	TIMS	Average total thrust in ice		Ν
$\eta_{ m ICE}$	ERIC	Relative propulsive effi- ciency in ice	- $\eta_{ m ID}$ / $\eta_{ m D}$	1
$\eta_{ m ID}$	EFDIC	Propulsive efficiency in ice	$R_{\rm IT} V / (2 \pi n_{\rm IA} Q_{\rm IA})$	1

ITTC Symbols

3 3.6

Special Craft Sailing Vessels Geometry and Hydrostatics 3.6.1 121

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

Sailing Vessels 3.6

3.6.1 Geometry and Hydrostatics

See also Section 2.2.1 on Hull Geometry

			2
$A_{ m J}$	ASJ	Area of jib or genoa	m^2
$A_{ m LK}$	ALK	Lateral area of keel	m^2
$A_{ m LT}$	ALT	Total lateral area of yacht	m^2
$A_{\rm m}$	ASM	Area of mainsail	m^2
$A_{ m N}$	ASN	Normalized sail area	m^2
$A_{\rm SP}$	ASSP	Area of spinnaker	m^2
$A_{\rm S}$, S_A	AS	Sail area in general $(P E + I J) / 2$	m^2
B _{OA}	BOA	Beam, overall	m
Ε	EM	Mainsail base	m
Ι	Ι	Fore triangle height	m
J	J	Fore triangle base	m
Р	Р	Mainsail height	m
$L_{ m EFF}$	LEFF	Effective length for Rey- nolds Number	m
$S_{\rm C}$	SC	Wetted surface area of canoe body	m ²
S_{K}	SK	Wetted surface area of keel	m^2
$S_{ m R}$	SR	Wetted surface area of rud- der	m²
$T_{\rm C}$	TCAN	Draught of canoe body	m
$T_{\rm EFF}$	TEFF	Effective draught $F_{\rm H} / (\rho V_{\rm B}^2 R)^5$	m
Z _{CE}	ZCE	Height of centre of effort of sails above waterline in ver- tical centre plane	m
$V_{\rm C}$	DVCAN	Displaced volume of canoe body	m ³
∇_{K}	DVK	Displaced volume of keel	m ³

Version 2008

3 3.6 3.6.1

Special Craft Sailing Vessels Geometry and Hydrostatics 122

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$V_{ m R}$	DVR	Displaced volume of rud	der	m ³
$\Delta_{\rm C}$	DFCAN	Displacement force (weil of canoe body	ght)	Ν
$\varDelta_{\rm K}$	DFK	Displacement force (weil of keel	ght)	Ν
\varDelta_{R}	DFR	Displacement force (weight) of rudder		N

ITTC	Symbols
	Symbols .

Version 20	008
------------	------------

ITTC

3.6.2

 $C_{\rm FU}$

 $C_{\rm RU}$

 C_{TU}

 $C_{\rm WU}$

 $C_{\mathrm{T}\varphi}$

Symbol

3 Special Craft3.6 Sailing Vessels3.6.2 Resistance and Propulsion

123

SI-Computer Name Definition or Symbol Explanation Unit **Resistance and Propulsion** Frictional resistance coeffi- $R_{\rm FU} / (Sq)$ CFU 1 cient (upright) Residuary resistance coeffi- $R_{\rm RU}/(Sq)$ CRU 1 cient (upright) CTU Total resistance $R_{\rm TU} / (S q)$ 1 coefficient (upright) CWU Wave resistance coefficient 1 (upright) Total resistance coefficient $R_{T\phi} / (Sq)$ **CTPHI** 1 with heel and leeway

		with heef and heeway	
C_{I}		Induced resistance coeffi- cient	1
C_x, C_y, C_z		Force coefficients	1
$F_{ m H}$		Heeling force of sails	Ν
$F_{\mathbf{R}}$		Driving force of sails	Ν
$F_{\rm V}$		Vertical force of sails	Ν
Н		Side force	Ν
$L_{ m HY}$		Hydrodynamic lift force	Ν
$R_{\rm AW}$		Added Resistance in waves	Ν
$R_{ m FU}$		Friction resistance (upright)	Ν
$R_{ m RU}$		Residuary resistance (up- right)	Ν
R _I		Resistance increase due to side (induced resistance)	Ν
$R_{ m TU}$	RTU	Total resistance (upright)	Ν
$R_{T \varphi}$	RTUH	Total resistance when heeled $R_{\rm TU} + R_{\varphi}$	Ν
R_{arphi} , $R_{ m H}$	RTUHA	Resistance increase due to heel (with zero side force)	Ν
X, Y, Z		Components of resultant force along designated axis	Ν
V	V	Vessel velocity	m/s

Version 2008

3 Special Craft3.6 Sailing Vessels3.6.2 Resistance and Propulsion

124

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$V_{ m WR}$	VWR	Apparent wind velocity		m/s
$V_{\rm WT}$	VWT	True wind velocity		m/s
V _{mc}	VMC	Velocity made good o course	n	m/s
$V_{ m mg}$	VMG	Velocity made good t windward (contrary to win direction)		m/s
$eta_{ m L}$	BETAL	leaway angle		rad
$eta_{ m aw}$	BETWA	apparent wind angle (relativ to boat course)	e	rad
$eta_{ ext{tw}}$	BETWT	true wind angle (relative t boat course)	0	rad

4. BACKGROUND AND REFERENCES

4.1 Symbols and Terminology Group

The tasks of the former Symbols and Terminology Group (SaT) have been handed over to the Quality Systems Group in 2002.

4.2 Description of the List of Symbols

4.2.1 Classification

The prime concern of the QS Group was to revise and try to complement the list of ITTC Standard Symbols sticking to the system for the classification of concepts.

With this regard the following design requirements and goals have been maintained:

- 1. a coherent document, meeting the present and possibly the future requirements of the ITTC community in general and particular user groups
- 2. an open ended matrix structure that can be easily expanded as requirements arise, without the need of restructuring and repetition or too many explicit cross-references
- 3. minimized departures from the well established and widely accepted previous list of symbols

On the other hand, to facilitate the practical use of the list, a second version in which the symbols are arranged in alphabetic order was prepared. Symbols which have been listed several times in the matrix structured document have been maintained and for each symbol the field in which it is used is given in italic letters prior to the meaning of the symbol.

4.2.2 Structure of the Lists

4

The concepts related to a given subject area or model are designated by the ITTC Symbol and called by their Name. Their meaning can in principle only be concluded from the context of the model. The logically consistent, so called 'implicit' definition is derived from a definitely defined statement of the model, ideally a generally accepted system or an equivalent, e.g. a drawing.

The problem is that traditionally in lists of symbols, as in dictionaries, these explicit models are missing for various reasons. One reason is that many subject areas under discussion are far from being developed and understood to the extent necessary. A consequence of this situation is that the symbols proposed are not always as coherent as would be necessary for advanced and systematic work, for which explicit models and adequate notations are essential.

The problem under discussion is of course the same in national and international standards. However there is an accepted international standard which deals with the general principles concerning physical quantities, equations, quantity and unit symbols, and coherent unit systems for general use within the various fields of science and technology (ISO 31.

4.2.3 Organization of the matrix structured list

As has been emphasized the development of symbols is a continuing process and as the subject develops, further amendments and additions, as approved by the Conference, will be included in future editions of the list.

In order to avoid any extra problems the symbols are arranged in alphabetical order in each subject area as in previous lists. Continuous page numbering was discarded in earlier versions. The idea was to establish a loose leaf organization as the most appropriate, in view of new draughts to be incorporated.

In view of the tremendous effort which explicit mathematical models, explanations, and sketches take for their preparation, the present QS Group can only follow the former SaT Group and state that the Technical Committees and other interested parties are urged to provide further material for review by the QS Group and future inclusion into the list. 4

It has been noted that some users dislike the disruption of the list of symbols by lengthy explanations. The present QS Group feels that the subject and the sensible use of the symbols require such explanations, also as the fundamentals of the theory of science and terminology often are not taught to students of naval architecture and marine engineering. However the arrangement has been changed so that these explanations can be visited by using hyperlinks and the list is not disrupted any more.

5. PRINCIPLES OF NOTATION

In Fig 1 the principles of notation in according to ISO 31 are shown.

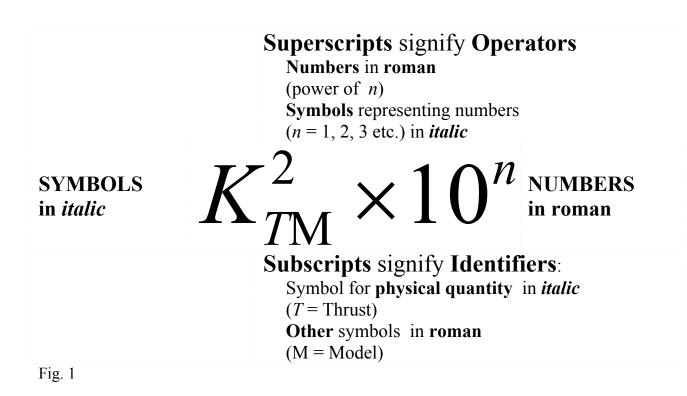
Symbols representing physical quantities normally are one Latin or Greek letter with Subscripts for further identification. They are written in *italic* style letters.

Numbers are normally written in **roman** style letters. For more details look at the list below or in the Excerpts of ISO 31 below or in standard itself.

Superscripts signify operators e.g.

• exponentiation

- the various aspects of complex quantities
- the various aspects of spectra and
- the various aspects of random quantities and stochastic processes e.g. probability operators.


Subscripts signify identifiers

- matrix components,
- identifiers tested, e.g. ship S or model M, appendages (App)or the various bodies in a multi-body problem,
- identifiers of coordinate systems and of the reference points, quantities(*L*_{PP})

Symbols for physical units	italic, one letter, except dimensionless quantities	A (e.g. Area in m^2)
Symbols for characteristic numbers	2 letters italic	Re, Fr
Numbers	roman, generally	10^{3}
Symbols representing num- bers	italic	X _{ij}
Units	roman, lower case unless derived from name	m, Pa
Prefix of units	roman	μm
Symbols for chemical ele- ments	roman	H ₂ O
Symbols for universal con- stants	italic	$g = 9,80665 \text{ m/s}^2$

5

Version 2008

5.1 Excerpts of ISO 31

1 Scope

This part of ISO 31 gives general information about principles concerning physical quantities, equations, quantity and unit symbols, and coherent unit systems, especially the International System of Units, SI.

The principles laid down in this part of ISO 31 are intended for general use within the various fields of science and technology and as a general introduction to the other parts of ISO 31.

2. Quantities and units

2.1 Physical quantity, unit and numerical value

In ISO 31 only physical quantities used for the quantitative description of physical phenomena are treated. Conventional scales, such as the Beaufort scale, Richter scale and colour intensity scales, and quantities expressed as the results of conventional tests, e.g. corrosion resistance, are not treated here, neither are currencies nor information contents.

Physical quantities may be grouped together into categories of quantities which are mutually comparable. Lengths, diameters, distances, heights, wavelengths and so on would constitute such a category. Mutually comparable quantities are called "quantities of the same kind".

If a particular example of a quantity from such a category is chosen as a reference quantity, called the *unit*, then any other quantity from this category can be expressed in terms of this unit as a product of this unit and a number. This number is called the *numerical value* of the quantity expressed in this unit. In formal treatments of quantities and units, this relation may be expressed in the form

 $A=\{A\}-[A]$

where A is the symbol for the physical quantity, [A] the symbol for the unit and $\{A\}$ symbolizes the numerical value of the quantity A expressed in the unit [A]. For vectors and tensors the components are quantities which may be expressed as described above.

If a quantity is expressed in another unit which is k times the first unit, then the new numerical value becomes 1/k times the first numerical value; the physical quantity, which is the product of the numerical value and the unit, is thus independent of the unit.

REMARK ON NOTATION FOR NUMERICAL VALUES

It is essential to distinguish between the quantity itself and the numerical value of the quantity expressed in a particular unit. The numerical value of a quantity expressed in a particular unit could be indicated by placing braces (curly brackets) around the quantity symbol and using the unit as a subscript. It is, however, preferable to indicate the numerical value explicitly as the ratio of the quantity to the unit.

2.2 Quantities and equations

2.2.1 Mathematical operations with quantities

Two or more physical quantities cannot be added or subtracted unless they belong to the same category of mutually comparable quantities.

Physical quantities are multiplied or divided by one another according to the rules of algebra; the product or the quotient of two quantities, A and B, satisfies the relations

 $AB = \{A\} \{B\} - [A] [B]$

Thus, the product $\{A\}$ $\{B\}$ is the numerical value $\{AB\}$ of the quantity AB, and the product [A] [B] is the unit [AB] of the quantity AB. Similarly, the quotient $\{A!/\{B\}\}$ is the numerical value $\{A/B\}$ of the quantity A/B, and the quotient [A]/[B] is the unit [A/B] of the quantity A/B.

2.2.2 Equations between quantities and equations between numerical values

Two types of equation are used in science and technology: *equations between quantities*, in which a letter symbol denotes the physical quantity (i.e. numerical value \times unit), and *equations between numerical values*. Equations between numerical values depend on the choice of units, whereas equations between quantities have the advantage of being independent of this choice. Therefore the use of equations between quantities should normally be preferred.

2.2.3 Empirical constants

An empirical relation is often expressed in the form of an equation between the numerical values of certain physical quantities. Such a relation depends on the units in which the various physical quantities are expressed.

An empirical relation between numerical values can be transformed into an equation between physical quantities, containing one or more empirical constants. Such an equation between physical quantities has the advantage that the form of the equation is independent of the choice of the units. The numerical values of the empirical constants occurring in such an equation depend, however, on the units in which they are expressed, as is the case with other physical quantities.

2.2.4 Numerical factors in quantity equations

Equations between quantities sometimes

contain *numerical factors*. These numerical factors depend on the definitions chosen for the quantities occurring in the equations.

EXAMPLE

$$E_k = \frac{1}{2} m v^2$$

2.2.5 Systems of quantities and equations between quantities; base quantities and derived quantities

Physical quantities are related to one another through equations that express laws of nature or define new quantities.

For the purpose of defining unit systems and introducing the concept of dimensions, it is convenient to consider some quantities as mutually independent, i.e. to regard these as *base quantities*, in terms of which the other quantities can be defined or expressed by means of equations; the latter quantities are called *derived quantities*.

It is a matter of choice how many and which quantities are considered to be base quantities.

The whole set of physical quantities included in ISO 31 is considered as being founded on seven base quantities: length L, mass M, time T, electric current I, thermodynamic temperature Θ , amount of substance N and luminous intensity J.

In the field of mechanics a system of quantities and equations founded on three base quantities is generally used. In ISO 31-3, the base quantities used are length, mass and time.

In the field of electricity and magnetism a system of quantities and equations founded on four base quantities is generally used. In ISO 31-5, the base quantities used are length, mass, time and electric current.

In the same field, however, systems founded on only three base quantities, length, mass and time, in particular the "Gaussian" or symmetric system, have been widely used. (See ISO 315:1992, annex A.)

5 5.2

2.2.6 Dimension of a quantity

Any quantity Q can be expressed in terms of other quantities by means of an equation. The expression may consist of a sum of terms. Each of these terms can be expressed as a product of powers of base quantities A, B, C, ... from a chosen set, sometimes multiplied by a numerical factor ξ , i.e. $\xi A^{\alpha}B^{\beta}C^{\gamma}$..., where the set of exponents (α , β , γ ...) is the same for each term.

The *dimension* of the quantity Q is then expressed by the dimensional product

 $\dim Q = A^{\alpha}B^{\beta}C^{\gamma} ..$

where A, B, C, ... denote the dimensions of the base quantities *A*, *B*, *C*, ..., and where α , β , γ are called the *dimensional exponents*.

A quantity all of whose dimensional exponents are equal to zero is often called a *dimensionless* quantity. Its dimensional product or dimension is $A^0 B^0 C^0 \dots = 1$. Such a quantity of *dimension one is* expressed as a number.

In the system founded on the seven base quantities length, mass, time, electric current, thermodynamic temperature, amount of substance and luminous intensity, the base dimensions may be denoted by L, M, T, I, O, N and J respectively and the dimension of a quantity Q becomes in general

 $\dim Q = L^{\alpha} M^{\beta} T^{\gamma} I^{\delta} \Theta^{\varepsilon} N^{\zeta} J^{\eta}.$

EXAMPLES

Quantity	Dimension
velocity	LT^{-1}
angular velocity	T ⁻¹
force	LMT ⁻²
energy	L^2MT^{-2}
relative density	1

2.3 Units

2.3.1 Coherent unit systems

Units might be chosen arbitrarily, but making an independent choice of a unit for each quantity would lead to the appearance of additional numerical factors in the equations between the numerical values.

It is possible, however, and in practice more convenient, to choose a system of units in such a way that the equations between numerical values have exactly the same form (including the numerical factors) as the corresponding equations between the quantities. A unit system defined in this way is called *coherent* with respect to the system of quantities and equations in question. The SI is such a system. The corresponding system of quantities is given in ISO 31-1 to ISO 31-10 and in ISO 31-12 and ISO 31-13.

For a particular system of quantities and equations, a coherent system of units is obtained by first defining units for the base quantities, the *base units*. Then for each derived quantity, the definition of the corresponding *derived unit* in terms of the base units is given by an algebraic expression obtained from the dimensional product (see 2.2.6) by replacing the symbols for the base dimensions by those of the base units. In particular, a quantity of dimension one acquires the unit 1. In such a coherent unit system no numerical factor other than the number 1 ever occurs in the expressions for the derived units in terms of the base units.

2.3.2 SI units and their decimal multiples and sub-multiples

The name International System of Units (Système International d'Unités), with the international abbreviation SI was adopted by the 11th General Conference on Weights and Measures (Conférence Générale des Poids et Mesures, CGPM) in 1960. This system includes

- base units

- derived units including supplementary units

which together form the coherent system of SI units.

2.3.2.1 Base units

The seven base units are listed in Table 1.

Table 1 - SI base units

	SI base unit		
Base quantity	Name	Symbol	
length	metre	m	
mass	kilogram	kg	
time	second	S	
electric current	ampere	А	
thermodynamic tem- perature	kelvin	K	
amount of substance	mole	mol	
luminous intensity	candela	cd	

2.3.2.2 Derived units including supplementary units

The expressions for the coherent derived units in terms of the base units can be obtained from the dimensional products by using the following formal substitutions:

$L \rightarrow m$	$I \rightarrow A$
$M \rightarrow kg$	$\Theta \rightarrow K$
$T \rightarrow s$	$N \rightarrow mol$
	$J \rightarrow cd$

In 1960, the CGPM classified the SI units radian, rad, and steradian, sr, for plane angle and solid angle respectively as "supplementary units".

In 1980, the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM) decided to inter-

ITTC Symbols	5 5.2	Principles of Notation Computer Symbols
Version 2008		

pret the class of supplementary units in the SI as a class of dimensionless derived units for which the CGPM allows the freedom of using or not using them in expressions for SI derived units.

Although, as a consequence of this interpretation, the coherent unit for plane angle and for solid angle is the number 1, it is convenient to use the special names radian, rad, and steradian, sr, instead of the number 1 in many practical cases.

Table 2 - SI derived units with special names, including SI supplementary units

	SI derived unit		
Derived quantity	Special name	Symbol	Expressed in terms of SI base units and SI derived
plane angle	radian	rad	1 rad = 1 m/m = 1
solid angle	steradian	sr	$1 \text{ sr} = 1 \text{ m}^2 / \text{m}^2 = 1$
frequency	hertz	Hz	$1 \text{ Hz} = 1 \text{ s}^{-1}$
force	newton	Ν	$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2$
pressure,	pascal	Ра	$1 \text{ Pa} = 1 \text{ N/m}^2$
stress	-		
energy,	joule	J	1 J = 1 N - m
work,			
quantity of heat power,	watt	W	1 W = 1 J/s
radiant flux	watt	vv	1 vv = 1 J/3
electric charge,	coulomb	С	1 C = 1 A - s
quantity of electricity			
electric potential,	volt	V	1 V = 1 W/A
potential difference.			
tension. electromotive force			
capacitance	farad	F	1 F = 1 C/V
electric resistance	ohm	S2	$1\Omega = 1 V/A$
electric conductance	siemens	S	$1 \text{ S} = 1 \Omega^{-1}$
magnetic flux	weber	Wb	$1 \text{ Wb} = 1 \text{ V} \cdot \text{s}$
magnetic flux density	tesla	Т	$1 \text{ T} = 1 \text{ Wb/m}^2$
inductance	henry	Н	1 H = 1 Wb/A
Celsius temperature	degree	°C	$1 ^{\circ}C = 1 K$
	Celsius')		
luminous flux	lumen	Im	1 lm = 1 cd . sr
illuminance	lux	Ix	$1 lx = 1 lm/m^2$
1) Degree Celsius is a special name for the unit kelvin for use in stating values of Celsius			
temperature. (See also ISO 31-4:19			<u> </u>

Quantity	Symbol for SI unit expressed in terms of the seven base units (and the sup- plementary units in some cases)
	some cases)

velocity	m/s
angular velocity	rad/s or s ⁻
force	$kg \cdot m/s^2$
energy	kg . m^2/s^2
relative density	1

For some of the SI derived units, special names and symbols exist; those approved by the CGPM are listed in tables 2 (and 3).

It is often of advantage to use special names and symbols in compound expressions for units.

2.3.2.3 SI prefixes

In order to avoid large or small numerical values, decimal multiples and sub-multiples of the SI units are added to the coherent system within the framework of the SI. They are formed by means of the prefixes listed in Table 4.

Table 4 - Sl prefixes

Factor	Prefix	
Factor	Name	Symbol
$\frac{10^{24}}{10^{21}}$	yotta	Y
10^{21}	zetta	Ζ
10^{18}	exa	E
10 ¹⁵	peta	Р
10^{12}	tera	Т
10^{9}	giga	G
10^{6}	mega	М
10^{3}	kilo	k
10^{2}	hecto	h
10	deca	da
10 ⁻¹	deci	d
10-2	centi	c
10^{-3}	milli	m

5 Principles of Notation

5.1 Excerpts of ISO 31

10-6	micro	μ
10-9	nano	n
10^{-12}	pico	р
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	a
10 ⁻²¹	zepto	Z
10^{-24}	yocto	у

For information about the use of the prefixes, see 3.2.4.

The SI units and their decimal multiples and submultiples formed by use of the prefixes are specially recommended.

2.3.3 The unit one

The coherent SI unit for any quantity of dimension one is the unit one, symbol 1. It is generally not written out explicitly when such a quantity is expressed numerically.

EXAMPLE

Refractive index $n = 1,53 \times 1 = 1,53$

In the case of certain such quantities, however, the unit 1 has special names that could be used or not, depending on the context.

EXAMPLES	
Plane angle	$\alpha = 0.5$
rad = 0,5,	
Solid angle	$\Omega = 2,3 \text{ sr}$
= 2,3	

Decimal multiples and sub-multiples of the unit one are expressed by powers of 10. They shall not be expressed by combining the symbol 1 with a prefix.

In some cases the symbol % (per cent) is used for the number 0,01.

NOTES

3 In some countries the symbol %0 ("per mill", or per thousand) is used for the number 0,001.

5 Principles of Notation 5.1 Excerpts of ISO 31

This symbol should be avoided.

4 Since per cent and per mill are numbers it is in principle meaningless to speak about percentage by mass or percentage by volume. Additional information, such as % (m/m) or % (V/V), should not therefore be attached to the unit symbol. The preferred way of expressing a mass fraction is: "the mass fraction is 0,67" or "the mass fraction is 67 %", and the preferred way of expressing a volume fraction is: "the volume fraction is 0,75" or "the volume fraction is 75 %". Mass and volume fractions can also be expressed in the form 5 μ g/g or 4,2 ml/m3.

Abbreviations such as ppm, pphm and ppb shall not be used.

2.3.4 Other unit systems and miscellaneous units

The CGS system of mechanical units is a coherent system the base units of which are centimetre, gram and second for the three base quantities length, mass and time.

In practice this system was enlarged by adding the kelvin, the candela and the mole as base units for the base quantities thermodynamic temperature, luminous intensity and amount of substance.

Units used in electricity and magnetism have been defined in the CGS system in several ways depending on the system of quantities and equations chosen. The "Gaussian" or symmetric CGS system, coherent with the "Gaussian" or symmetric system of quantities and equations founded on three base quantities, has been widely used. For further information on this system, see ISO 31-5:1992, Annex A.

The special names and symbols for derived CGS units such as dyne, erg, poise, stokes, gauss, oersted and maxwell shall not be used together with the Sl.

Quantity	Unit		
	Name	Symbol	Definition
time	minute hour day	min h d	1 min= 60s 1 h = 60 min 1 d = 24 h
plane an- gle	degree minute second	0 ! "	$ \begin{array}{rcl} 1 & \circ & = \\ (\pi/180) \text{rad} & = \\ (n/180) \text{ rad} \\ 1' = (1/60)^{\circ} \\ 1'' = (1/60)' \end{array} $
volume	litre	I, L ¹⁾	$11 = 1 \text{ dm}^3$ $= 1 \text{ dm}$
mass	tonne ²⁾	t	$1 t = 10^3 kg$

Table 5 - Units used with the SI

¹⁾ The two symbols for litre are on an equal footing. The CIPM will, however, make a survey on the development of the use of the two symbols in order to see if one of the two may be suppressed.

²⁾ Also called the metric ton in the English language.

Table 6 - Units used with the SI, whose values in SI units are obtained experimentally

Quan-	Unit		Init
Sym-		Definition	
energy	electronvolt	eV	The electronvolt is the kinetic energy acquired by an electron in passing through a potential difference of 1 volt in vacuum: 1 eV \approx 1,602 177 ×10 ⁻¹⁹ J.
mass	unified atomic mass unit	u	The unified atomic mass unit is equal to $(1 / 12)$ of the mass of an atom of the nuclide ¹² C: 10 \approx 1,660 540 × 10 ⁻²⁷ kg.

In other parts of ISO 31, the special names for the derived CGS units are given in informative annexes which are not integral parts of the standards.

There are certain units outside the SI which are recognized by the CIPM as having to be retained for use together with the SI, e.g. minute, hour and electronvolt. These units are given in Tables 5 and 6.

Other coherent systems of units have been defined, e.g. a system based on the units foot, pound and second and a system based on the units metre, kilogram-force and second.

Apart from these, other units have been defined which do not belong to any coherent system, e.g. the atmosphere, **the nautical mile** and the curie.

3 Recommendations for printing symbols and numbers

3.1 Symbols for quantities

3.1.1 Symbols

The symbols for physical quantities are generally single letters of the Latin or Greek alphabet, sometimes with subscripts or other modifying signs. These **symbols** are printed in *italic* (sloping) type (irrespective of the type used in the rest of the text).

The symbol is not followed by a full stop except for normal punctuation, e.g. at the end of a sentence.

NOTES

5 Symbols for quantities are given in ISO 31-1 to ISO 31-10 and in ISO 31-12 and ISO 31-13.

6 Notations for vectorial and other non-scalar quantities are given in ISO 31-11, on mathematical signs and symbols.

5 Principles of Notation 5.1 Excerpts of ISO 31

7 Exceptionally, symbols made up of two letters are sometimes used for combinations of dimension one of quantities (e.g. Reynolds number, Re). If such a two-letter symbol appears as a factor in a product, it is recommended that it be separated from the other symbols.

3.1.2 Rules for the printing of subscripts

When, in a given context, different quantities have the same letter symbol or when, for one quantity, different applications or different values are of interest, a distinction can be made by use of subscripts.

The following principles for the printing of subscripts are recommended:

A subscript that represents a symbol for a physical quantity is printed in italic (sloping) type.

Other subscripts are printed in roman (upright) type.

EXAMPLES

Upri	ght subscripts	Slopin	g subscripts
$C_{ m g}$	(g gas)	C_p	(p: pressure)
g_n	(n: normal)	$\sum_{n} a_n \delta_n$	(n: running
			number)
μ_{r}	(r: relative)	$\sum_{x} a_{x} b_{x}$	(x: running
			number)
$E_{\rm k}$	(k: kinetic)	g_{ik}	(<i>i</i> , <i>k</i> : running
			numbers)
χe	(e: electric)	p_x	<i>(x:x</i> -coordinate)
$T_{1/2}$	(1/2: half)	l_{λ}	(λ wavelength)

NOTES

8 Numbers as subscripts should be printed in roman (upright type. However, letter symbols

3.1.3 Combination of symbols for quantities; elementary Operations with quantities

When symbols for quantities are combined in a product, this process of combination may be indicated in one of the following ways:

 $ab, a b, a \cdot \bullet b, a \times b$

NOTES

10 In some fields, e.g. in vector analysis, distinction is made between $a \cdot b$ and $a \times b$.

11 For multiplication of numbers, see 3.3.3.

12 In systems with limited character sets a dot on the line may be used instead of a half-high dot.

Division of one quantity by another may be indicated in one of the following ways:

 $\frac{a}{b}$, a/b or by writing the product of a and b^{-1} ,

e.g. $a \cdot b^{-1}$

3.2 Names and symbols for units

3.2.1 International symbols for units

When international symbols for units exist, they, and no other, shall be used. They shall be printed in roman (**upright**) type (irrespective of the type used in the rest of the text), shall remain unaltered in the plural shall be written without a final full stop (period) except for normal punctuation, e.g. at the end of a sentence.

Any attachment to a unit symbol as a means

of giving information about the special nature of the quantity or context of measurement under consideration is incorrect.

EXAMPLE

 $U_{\rm max} = 500 \, {\rm V} \, ({\rm not} \, U = 500 \, {\rm V}_{\rm max})$

The unit symbols shall in general be printed in lower case letters except that the first letter is printed in upper case when the name of the unit is derived from a proper name.

EXAMPLES

m	metre
S	second
А	ampere
Wb	weber

3.2.2 Combination of symbols for units

When a compound unit is formed by multiplication of two or more units, this should be indicated in one of the following ways:

N·m, N m

NOTES

13 In systems with limited character sets a dot on the line may be used instead of a half high dot.

14 The latter form may also be written without a space, provided that special care is taken when the symbol for one of the units is the same as the symbol for a prefix.

EXAMPLE

mN means millinewton, not metre newton.

When a compound unit is formed by dividing one unit by another, this should be indicated in one of the following ways:

<u>m</u>	m/s	m⋅s ⁻¹
S		

A solidus (/) shall not be followed by a multiplication sign or a division sign an the same line unless parentheses are inserted to avoid any ambiguity. In complicated cases negative powers or parentheses shall be used.

3.2.3 Printing of symbols for units

No recommendation is made or implied about the font of upright type in which symbols for units are to be printed.

NOTE 15 In this series of publications the font used in such cases is generally that of the associated text, but this does not constitute a recommendation.

3.2.4 Printing and use of prefixes

Symbols for prefixes should be printed in roman (upright) type without a space between the symbol for the prefix and the symbol for the unit.

Compound prefixes shall not be used.

EXAMPLE

Write nm (nanometre) for 10⁻⁹ m, not mµm.

The symbol of a prefix is considered to be combined with the single unit symbol to which it is directly attached, forming with it a new symbol (for a decimal multiple or sub-multiple) which can be raised to a positive or negative power, and which can be combined with other unit symbols to form symbols for compound units (see 3.2.2).

EXAMPLES

$$1 \text{ cm}^3 = (10^{-2} \text{ m})^3 = 10^{-6} \text{ m}^3$$

 $1 \ \mu \text{s}^{-1} = (10^{-6} \text{ s})^{-1} = 10^6 \text{ s}^{-1}$
 $1 \ \text{kA/m} = (10^3 \text{A})/\text{m} = 10^3 \text{ A/m}$

NOTE 16 For historical reasons the name of the base unit or mass, the kilogram, contains

5 Principles of Notation 5.1 Excerpts of ISO 31

the name of the SI prefix ,"kilo". Names of the decimal multiples and sub-multiples of the unit of mass are formed by adding the prefixes to the word ,,gram", e.g. milligram (mg) instead of microkilogram (μ kg).

3.3 Numbers

3.3.1 Printing of numbers

Numbers should generally be printed in roman (upright) type.

To facilitate the reading of numbers with many digits, these may be separated into suitable groups, preferably of three, counting from the decimal sign towards the left and the right; the groups should be separated by a small space, and never by a comma or a point, or by any other means.

3.3.2Decimal sign

The decimal sign is a comma on the line.

If the magnitude of the number is less than unity, the decimal sign should be preceded by a zero.

NOTE 17 In documents in the English language. a dot is often used instead of a comma. If a dot is used, it should be on the line. In accordance with an ISO Council decision, the decimal sign is a comma in ISO documents.

3.3.3 Multiplication of numbers

The sign for multiplication of numbers is a cross (\times) or a dot half-high (\cdot).

NOTES

18 If a dot half-high is used as the multiplication sign, a comma should be used as the decimal sign. If a dot is used as the decimal sign, a cross should be used as the multiplication sign. 19. In ISO documents, the dot is not used directly between numbers to indicate multiplication.

3.4 Expressions for quantities

The symbol of the unit shall be placed after the numerical value in the expression for a quantity, leaving a space between the numerical value and the unit symbol. It should be noted that, in accordance with this rule, the symbol °C for degree Celsius shall be preceded by a space when expressing a Celsius temperature.

The only exceptions to this rule are for the units degree, minute and second for plane angle, in which case there shall be no space between the numerical value and the unit symbol.

If the quantity to be expressed is a sum or a difference of quantities then either parentheses shall be used to combine the numerical values, placing the common unit symbol after the complete numerical value, or the expression shall be written as the sum or difference of expressions for the quantities.

EXAMPLES

l = 12 m - 7 m = (12 - 7) m = 5m $t = 28.4 \text{ °C} \pm 0.2 \text{ °C} = (28,4 \pm 0,2) \text{ °C}$ (not 28,4 ± 0,2 °C) $\lambda = 220 \times (1 \pm 0,02) \text{ W/(m·K)}$

3.5 Symbols for chemical elements and nuclides

Symbols for chemical elements shall be written in roman (upright) type (irrespective of the type used in the rest of the text). The symbol is not followed by a full stop except for normal punctuation, e.g. at the end of a sentence.

EXAMPLES

H He C Ca

A complete list of the symbols for the chemical elements is given in ISO 31-8:1992, annex A, and 150 31-9:1992, annex A.

The attached subscripts or superscripts specifying a nuclide or molecule shall have the following meanings and positions.

The nucleon number (mass number) of a nuclide is shown in the left superscript position, e.g.

 ^{14}N

The number of atoms of a nuclide in a molecule is shown in the right subscript position, e.g.

 $^{14}N_{2}$

The proton number (atomic number) may be indicated in the left subscript position, e.g.

64Gd

If necessary, a state of ionization or an excited state may be indicated in the right superscript position.

EXAMPLES

State of ionization:

Electronic excited state: He*', N0*' Nuclear excited state: ¹¹⁰Ag*', ¹¹⁰

Na⁺ PO₄³⁻ or (PO₄)³⁻ He^{**}, N0^{**} 110 Ag^{**}, 110 Ag^m

3.6 Mathematical signs and symbols

Mathematical signs and symbols recommended for use in the physical sciences and technology are given in 1S031-11.

Version 2008

Principles of Notation Excerpts of ISO 31 5

5.1

3.7 Greek alphabet (upright and sloping types)

	г.,			
alpha	А	а	A	а
beta	В	β	В	β
gamma	Γ	γ	Γ	γ
delta	Δ	γ δ	Δ	δ
epsilon	Е	3	Ε	З
zeta	Ζ	ζ	E Z	ζ
eta	Н	η	H	η
theta	Θ	θ, θ	Θ	θ, θ
iota	Ι	ι	Ι	l
kappa	Κ	κ	K	κ
lambda	Λ	λ	Λ	λ
mu	М	μ	М	μ
nu	Ν	ν ξ	Ν	v
xi	N E O	ξ	<u>N</u> Ξ О П	ξ
omicron	0	0	0	0
pi	П	π	П	π
rho	Р	ρ	P Σ Τ	ρ,
sigma	Σ Τ	σ	Σ	σ
tau	Т	τ	Т	τ
upsilon	Y	υ	Y	v
phi	Φ	φ	Φ	φ
chi	Х	χ	X	χ
psi	Ψ	Ψ	Х Ψ	Ψ
omega	Ω	ω	Ω	ω

5.2 Computer Symbols

Wherever possible the symbols in the second column of the tables have been chosen so that their meaning is readily apparent. They have been constructed from the CCITT International Telegraph Alphabet, restricted character set. They are therefore suitable for use in a wide range of situations e. g.: Telex messages, letters, computer printouts etc.

To ensure that the symbols can be used in a wide range of programming languages they currently have been kept to less than six characters long. The symbols should be used as defined, and, in accordance with modern programming practice, should have their type explicitly declared before use. The following rules were applied in the derivation of the symbols:

- Only upper case letter A Z and digits
 0 9 have been used.
- 2. Formerly Greek letters have been spelled out, if necessary in abbreviated form or with changed spelling. This practice is considered obsolete.
- 3. The Froude 'circular' symbols are defined by the prefix CIRC.

- 4. All symbols start with a letter.
- 5. Qualifiers and operators, preferably two characters, are currently suffixed to the main symbol line, without spacing.
- No one computer compatible symbol should be used for different concepts in a given context. This goal has not been completely achieved for the whole list. Ad hoc solutions have been attempted but discarded as unsatisfactory.
- 7. Since the computer compatible symbols have been proposed as the basis of attribute names for data exchanges, the above rules will probably be further developed in the near future.

A final remark on the Computer Symbols: in the computer, the letter O and figure 0 (zero) have fundamentally different meanings, but owing to their resemblance they can be easily confused. Thus it is necessary to distinguish rigorously between them. As a matter of fact there are contradictory conventions being widely used.

5 Principles of Notation5.3 Documentation

5.3 Documentation

5.3.1 ITTC Documents

- 1. International Towing Tank Conference, Standard Symbols 1971, BSRA Technical Memorandum No.400, August 1971.
- 2. International Towing Tank Conference, Standard Symbols 1976. BSRA T.M. No.500, 1976.
- 3. ITTC Dictionary of Ship Hydrodynamics. RINA Maritime Technology Monograph No.6, 1978.
- Translation of Overall Index of Titles of Dictionary of Ship Hydrodynamics., Vol. 1: CETENA, Genova, 1984, Vol. 2: University of Tokyo, 1984.
- Bibliography and Proposed Symbols on Hydrodynamic Technology as Related Model Tests of High Speed Marine Vehicles. Prep. by 17th ITTC High-Speed Marine Vehicle Committee. SPPA Maritime Research and Consulting. Rep. No.101, 1984.

5.3.2 Translations

A number of translations of the List of ITTC Standard Symbols into languages other than English have been made including French, German, Italian, Japanese, Russian, Spanish and Chinese. For obvious reasons these translations are no longer up-to-date as the present accepted list in English and the Russian one.

- 1. French Translation of ITTC Standard Symbols 1971., Association Francaise de Normalisation (AFNOR).
- 2. International vereinbarte Buchstabensymbole und Bezeichnungen auf dem Gebiet der

Schiffshydrodynamik. Collatz, G. Schiff und Hafen 27 (1975) No.10.

- Italian Translation of ITTC Standard Symbols 1971. Luise E. Appendix II, Report of Presentation Committee. Proceedings 14th ITTC, Vol. 4, Ottawa 1975.
- 4. Japanese Translation of ITTC Standard Symbols. Transactions of the Society of Naval Architects of Japan, No.538, April 1974.
- 5. Russian Translation of ITTC Standard Symbols 1971. Brodarski Institute Publication No.28, Zagreb 1974.
- Simbolos Internacionales en Arquitectura Naval. Asociacion de Investigacion de la Construccion Naval, Publication 7/75, Juli 1975, Madrid.
- 7. Report of Information Committee, Proc. 17th ITTC, Göteborg 1984.
- 8. Chinese Translation of ITTC Standard Symbols. China Ship Scientific Research Centre, Wuxi.

5.3.3 Other References

Apart from the organizations represented on the ITTC these symbols have been recommended for use in technical writing on naval architecture by a number of organizations concerned with marine matters including The Royal Institution of Naval Architects, the American Society of Naval Architects and Marine Engineers and the American, British, Canadian, Australian, and Italian Navies. Where possible, the symbols for Section 3.4.1, Waves are consistent with the IAHR/PIANC List of

5 Principles of Notation5.3 Documentation

Sea State Parameters, Supplement to Bulletin No 52, January 1986.

In 1985 the Draught International Standard ISO/DIS 7463 Shipbuilding - Symbols for Computer Applications - has been published. The symbols are based on the list approved by the ITTC in Ottawa 1975 and a related list produced by the ISSC in 1974, inconsistencies having been removed. The ISO/TC8/SC15 has been notified that major changes of the ITTC Symbols are under discussion. Subsequently processing of ISO/DIS 7463 has not been postponed, but the standard has been published as ISO 7463 in 1990.